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Abstract. Let R be a commutative ring with identity. Let A(R) denote the collection
of all annihilating ideals of R (that is, A(R) is the collection of all ideals I of R which
admits a nonzero annihilator in R). Let AG(R) denote the annihilating ideal graph of R.
In this article, necessary and sufficient conditions are determined in order that AG(R) is
complemented under the assumption that R is a zero-dimensional quasisemilocal ring which
admits at least two nonzero annihilating ideals and as a corollary we determine finite rings
R such that AG(R) is complemented under the assumption that A(R) contains at least two
nonzero ideals.
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1. INTRODUCTION

The rings considered in this article are nonzero commutative rings with identity. Recall
from [5] that an ideal I of a ring R is an annihilating ideal if there exists r ∈ R\{0} such
that Ir = (0). As in [5], we denote by A(R), the set of all annihilating ideals of R and
by A(R)∗, the set of all nonzero annihilating ideals of R. In [5], the authors introduced the
concept of annihilating ideal graph of R, denoted by AG(R), which is defined as follows:
AG(R) is an undirected graph whose vertex set is A(R)∗ and two distinct vertices I and
J are adjacent in this graph if and only if IJ = (0). Several graph theoretic properties of
the annihilating ideal graph of any commutative ring with identity and their interplay with

∗ Corresponding author.
E-mail address: s visweswaran2006@yahoo.co.in (S. Visweswaran).
Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2014.06.001
1319-5166 c⃝ 2014 King Saud University. Production and Hosting by Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajmsc.2014.06.001&domain=pdf
mailto:s_visweswaran2006@yahoo.co.in
http://dx.doi.org/10.1016/j.ajmsc.2014.06.001


2 S. Visweswaran, H.D. Patel

the ring theoretic properties have been investigated in [5,6]. Moreover, the annihilating ideal
graph of a commutative ring is also studied in [1,7]. In this article we determine necessary
and sufficient conditions in order that AG(R) is complemented under the assumption that R
is a zero-dimensional quasisemilocal ring such that A(R)∗ contains at least two elements. As
any finite ring is zero-dimensional and has only finitely many prime ideals, we answer the
question of when AG(R) is complemented for any finite ring R which admits at least two
nonzero annihilating ideals as a corollary to the results proved in this article.

This article is motivated by the interesting theorems proved on the annihilating ideal graph
of a commutative ring in [1,5–7], and moreover, we are very much inspired by the research
article [2] in which the authors among other results determined necessary and sufficient
conditions in order that Γ (R) is complemented, where Γ (R) is the zero-divisor graph of R.

It is useful to recall the following definitions from [2,11]. Let G = (V,E) be a simple
undirected graph. Let a, b ∈ V . We define a ≤ b if a and b are not adjacent and each vertex
of G adjacent to b is also adjacent to a. We define a ∼ b if a ≤ b and b ≤ a. Thus a ∼ b if
and only if {c ∈ V |c is adjacent to a in G} = {d ∈ V |d is adjacent to b in G}. Let a, b ∈ V ,
a ≠ b. We say that a and b are orthogonal, written a ⊥ b, if a and b are adjacent and there
is no vertex c of G which is adjacent to both a and b. We say that G is complemented, if
for each vertex a of G, there is a vertex b of G (called a complement of a) such that a ⊥ b.
We say that G is uniquely complemented if G is complemented and whenever a ⊥ b and
a ⊥ c, then b ∼ c [2,11]. By dimension of a ring, we mean its Krull dimension and we
use the abbreviation dimR to denote the dimension of a ring R. A ring R is said to be
quasilocal (respectively. quasisemilocal) if R has a unique maximal ideal (respectively, R
has only finitely many maximal ideals). By a local (respectively, a semilocal) ring, we mean
a Noetherian quasilocal (respectively, a Noetherian quasisemilocal) ring. Recall that a local
ring (R,M) is said to be a special principal ideal ring (SPIR), ifR is a principal ideal ring and
M is nilpotent. Whenever a setA is a subset of a setB andA ≠ B, we denote it symbolically
by A ⊂ B.

It is also useful to recall the following definitions and results from commutative ring
theory. Let R be a ring. Let M be a unitary R-module. By the set of zero-divisors of M
as an R-module denoted by ZR(M), we mean ZR(M) = {r ∈ R|rm = 0 for some m ∈
M,m ≠ 0}. We denote ZR(R) simply by Z(R). Recall from [8] that a prime ideal P of
R is said to be a maximal N-prime of an ideal I of R, if P is maximal with respect to the
property of being contained in ZR(R/I). It follows from [10, Theorem 1] that maximal N-
primes of (0) always exist and if {Pα}α∈Λ is the set of all maximal N-primes of (0) in R,
then Z(R) = ∪α∈λ Pα.

In Section 2, it is shown that AG(R) is complemented for any reduced ring R which is
not an integral domain. Let R be a ring which is not reduced. In Section 3, we state and
prove several necessary conditions in order that AG(R) is complemented. The main theorem
proved in Section 4 is Theorem 4.8 which determines necessary and sufficient conditions in
order that AG(R) is complemented, where R is a zero-dimensional quasilocal ring which
admits at least two nonzero annihilating ideals. In Section 5, we consider zero-dimensional
quasisemilocal rings R with at least two nonzero annihilating ideals and in Theorem 5.6,
necessary and sufficient conditions are determined in order that AG(R) is complemented. In
Section 6, we consider rings R which are not reduced and which admit only a finite number
of maximal N-primes of (0). We denote the finite set of maximal N-primes of (0) in R
by {P1, . . . , Pn}. We determine necessary and sufficient conditions in order that AG(R) is
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complemented under the additional hypothesis that ∩n
i=1 Pi = nil(R), where nil(R) denotes

the nilradical of R (see Theorems 6.3 and 6.9).

2. A SUFFICIENT CONDITION UNDER WHICH AG(R) IS COMPLEMENTED

The purpose of this section is to prove that if R is any reduced ring which is not an
integral domain, then AG(R) is complemented. We begin with the following lemma. This
is an analogue to [2, Lemma 3.3]. Again we emphasize that all the rings considered in this
article are commutative with identity.

Lemma 2.1. Let R be a ring. Let I, J ∈ A(R)∗. The following statements are equivalent:
(i) I ⊥ J , I2 ≠ (0), and J2 ≠ (0).
(ii) IJ = (0) and I + J ∉ A(R).

Proof. (i) ⇒ (ii) Since I ⊥ J , it is clear that IJ = (0). Suppose that I + J ∈ A(R).
Then there exists a ∈ R\{0} such that a(I + J) = (0). Hence aI = (0) and aJ = (0).
Since I2 ≠ (0) and J2 ≠ (0), it follows that Ra ≠ I and Ra ≠ J . Observe that the ideal
Ra ∈ A(R)∗ is such that I(Ra) = (0) and J(Ra) = (0). This is in contradiction to the
hypothesis that I ⊥ J . Hence we obtain that I + J ∉ A(R).

(ii) ⇒ (i) If I2 = (0), then from IJ = (0), it follows that (I+J)I = (0). This contradicts
the assumption that I + J ∉ A(R). Hence we obtain that I2 ≠ (0). Similarly, it follows
that J2 ≠ (0). Now it is clear that I ≠ J . Let K be an ideal of R such that IK = (0) and
JK = (0). Then (I+J)K = (0). Since I+J ∉ A(R), it follows that K = (0). This proves
that I ⊥ J . �

Proposition 2.2. Let R be a reduced ring which is not an integral domain. Then AG(R) is
complemented. Moreover, AG(R) is uniquely complemented.

Proof. Since R is not an integral domain, there exist a, b ∈ R\{0} such that ab = 0. Note
that Ra,Rb ∈ A(R)∗. Since R is reduced it follows from ab = 0 with a, b ∈ R\{0} that
Ra ≠ Rb. Hence |A(R)∗ | ≥ 2.

Let I ∈ A(R)∗. Hence there exists x ∈ R\{0} such that Ix = (0). Let J = ((0) :R I).
As any nonzero element of I annihilates J , it is clear that J ∈ A(R)∗. We assert that I ⊥ J .
It is clear that IJ = (0). Hence in view of (ii) ⇒ (i) of Lemma 2.1, it is enough to show that
I + J ∉ A(R). Let r ∈ R be such that (I + J)r = (0). Then Ir = (0) and Jr = (0). Hence
r ∈ J and from Jr = (0), it follows that r2 = 0. Since R is reduced, we obtain that r = 0.
This proves that I ⊥ J . Thus each I ∈ A(R)∗ admits a complement in AG(R). This shows
that AG(R) is complemented.

We next verify that AG(R) is uniquely complemented. Let I ∈ A(R)∗. Let J1, J2 ∈
A(R)∗ be such that I ⊥ J1 and I ⊥ J2. Since R is reduced, it follows that A2 ≠ (0) for
any nonzero ideal A of R. As I ⊥ J1 and I ⊥ J2, we know from (i) ⇒ (ii) of Lemma 2.1
that I + Ji ∉ A(R) for i = 1, 2. Hence (I + J1)J2 ≠ (0). This implies that J1J2 ≠ (0)
since IJ2 = (0). Let K ∈ A(R)∗ be such that K is adjacent to J2. Then KJ2 = (0). From
IJ1 = (0), it follows that (I+J2)KJ1 = (0). As I+J2 ∉ A(R), it follows thatKJ1 = (0).
This proves that J1 ≤ J2. Similarly, using the facts that IJ2 = (0) and I + J1 ∉ A(R), it
follows that J2 ≤ J1. Hence we obtain that J1 ∼ J2. This proves that AG(R) is uniquely
complemented. �
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3. SOME NECESSARY CONDITIONS IN ORDER THAT AG(R) IS COMPLEMENTED,
WHERE R IS NOT A REDUCED RING

In this section we consider rings R such that the nilradical of R is nonzero. We use nil(R)
to denote the nilradical of a ring R. The aim of this section is to determine some necessary
conditions in order that AG(R) is complemented. We begin with the following lemma.

Lemma 3.1. Let R be a ring. If a ∈ R\{0}, then for any b ∈ nil(R), Ra ≠ Rab.

Proof. If Ra = Rab, then a = rab for some r ∈ R. This implies that a(1 − rb) = 0. Since
b ∈ nil(R), 1 − rb is a unit in R. Hence from a(1 − rb) = 0, it follows that a = 0. This is a
contradiction. Hence Ra ≠ Rab. �

The following lemma is obvious.

Lemma 3.2. Let I be a nonzero nilpotent ideal of a ring R. Let n be the least integer p ≥ 2
with the property that Ip = (0). Then Ii ≠ Ij for all distinct i, j ∈ {1, 2, . . . , n}.

We next have the following lemma which shows that if AG(R) is complemented, then
nil(R) must be nilpotent.

Lemma 3.3. Let R be a ring. If AG(R) is complemented, then (nil(R))4 = (0).

Proof. First we show that for any a ∈ nil(R), a4 = 0. Suppose that a4 ≠ 0. Let n be the
least integer p ≥ 5 with the property that ap = 0. Since AG(R) is complemented, there
exists I ∈ A(R)∗ such that Ran−3 ⊥ I . It follows from Lemma 3.2 that Rai ≠ Raj for
all distinct i, j ∈ {1, 2, . . . , n}. Hence in particular Ran−1 ≠ Ran−2. Thus there exists
j ∈ {n − 2, n − 1} such that I ≠ Raj . From (Ran−3)I = (0), it follows that (Raj)I = (0).
Since n ≥ 5, it is clear thatRajRan−3 = (0). Hence the idealRaj is adjacent to bothRan−3

and I . This is impossible since Ran−3 ⊥ I . Therefore, for any a ∈ nil(R), a4 = 0.
Let a, b, c ∈ nil(R). We assert that a2bc = 0. Suppose that a2bc ≠ 0. As AG(R) is

complemented, there exists I ∈ A(R)∗ such that Ra2 ⊥ I . From (Ra2)I = (0), it follows
that (Ra2b)I = (Ra2bc)I = (0). It follows from Lemma 3.1 that the ideals Ra2, Ra2b, and
Ra2bc are distinct. Hence either I ≠ Ra2b or I ≠ Ra2bc. If I ≠ Ra2b, then it follows from
a4 = 0 that Ra2b is adjacent to both Ra2 and I . This is impossible since Ra2 ⊥ I . Similarly,
if I ≠ Ra2bc, then we obtain that Ra2bc is adjacent to both Ra2 and I . This is not possible
since Ra2 ⊥ I . Hence for any a, b, c ∈ nil(R), a2bc = 0.

Let a, b, c, d ∈ nil(R). We claim that abcd = 0. Suppose that abcd ≠ 0. It follows from
Lemma 3.1 that the idealsRa,Rabc, andRabcd are distinct. SinceAG(R) is complemented,
there exists I ∈ A(R)∗ such that Ra ⊥ I . It follows from (Ra)I = (0) that (Rabc)I = (0)
and (Rabcd)I = (0). Observe that either I ≠ Rabc or I ≠ Rabcd. Since a2bc = 0,
(Ra)(Rabc) = (0) and (Ra)(Rabcd) = (0). If I ≠ Rabc, then we obtain that Rabc is
adjacent to both Ra and I . This is impossible since Ra ⊥ I . Similarly I ≠ Rabcd is also
impossible. This proves that for any a, b, c, d ∈ nil(R), abcd = 0.

This shows that (nil(R))4 = (0). �

The following proposition provides some more necessary conditions on R if (nil(R))3 ≠
(0) and AG(R) is complemented.
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Proposition 3.4. Let R be a ring such that (nil(R))3 ≠ (0). If AG(R) is complemented,
then the following hold:
(i) (nil(R))i ⊥ (nil(R))3 for i = 1, 2.
(ii) (nil(R))3 = Rx for any x ∈ (nil(R))3\{0}.
(iii) (nil(R))2 = Ry for any y ∈ (nil(R))2\(nil(R))3.
(iv) nil(R) = Rz for any z ∈ nil(R)\(nil(R))2.
(v) If I is any ideal of R such that I ⊆ nil(R), then I ∈ {(0), nil(R), (nil(R))2, (nil(R))3}
and so I ∈ {(0), Rz,Rz2, Rz3} for any z ∈ nil(R)\(nil(R))2.

Proof. Since AG(R) is complemented, we know from Lemma 3.3 that (nil(R))4 = (0).
(i) Let i ∈ {1, 2}. Thus (nil(R))i(nil(R))3 = (0). By hypothesis, (nil(R))3 ≠ (0).

Hence (nil(R))i has a nonzero annihilator and so (nil(R))i ∈ A(R)∗. As AG(R) is
complemented, there exists I ∈ A(R)∗ such that (nil(R))i ⊥ I . Hence (nil(R))iI = (0)
and so it follows that (nil(R))3I = (0). It is already noted that (nil(R))3(nil(R))i = (0).
Moreover, since (nil(R))3 ≠ (0), we obtain from Lemma 3.2 that (nil(R))3 ≠ (nil(R))i.
As (nil(R))i ⊥ I , the above arguments imply that I = (nil(R))3. This proves that
(nil(R))i ⊥ (nil(R))3 for i = 1, 2.

(ii) Let x ∈ (nil(R))3\{0}. As (nil(R))4 = (0), it follows that Rx(nil(R)) = (0) and
Rx(nil(R))3 = (0). We know from (i) that nil(R) ⊥ (nil(R))3.

Since Rx ≠ (0) and Rx ≠ nil(R), we obtain that Rx = (nil(R))3.
(iii) Let y ∈ (nil(R))2\(nil(R))3. Since (nil(R))4 = (0), we obtain thatRy(nil(R))2 =

(0) and Ry(nil(R))3 = (0). We know from (i) that (nil(R))2 ⊥ (nil(R))3. As Ry ∉
{(0), (nil(R))3}, it follows that Ry = (nil(R))2.

(iv) Let y ∈ (nil(R))2\(nil(R))3. Let φ : nil(R) → (nil(R))3 be the mapping given
by φ(a) = ay for any a ∈ nil(R). It is clear that φ is a homomorphism of R-modules.
We assert that φ is onto. Let b ∈ (nil(R))3. Note that (nil(R))3 = nil(R)(nil(R))2. Since
(nil(R))2 = Ry by (iii), we obtain that (nil(R))3 = (nil(R))Ry. Hence b = ay for some
a ∈ nil(R). Hence φ(a) = ay = b. This shows that φ is onto. We know from the fundamental
theorem of homomorphism of modules that nil(R)/kerφ ∼= (nil(R))3 as R-modules. We
know from (ii) that for any nonzero x ∈ (nil(R))3,Rx = (nil(R))3. Hence it follows that for
any z ∈ nil(R)\kerφ, nil(R)/kerφ = R(z + kerφ). We claim that kerφ = (nil(R))2. As
(nil(R))4 = (0) and y ∈ (nil(R))2, it is clear that (nil(R))2 ⊆ kerφ. Let a ∈ kerφ. Hence
(Ra)Ry = Ra(nil(R))2 = (0) and Ra(nil(R))3 = (0). By (i), (nil(R))2 ⊥ (nil(R))3.
Hence we obtain that Ra ∈ {(0), (nil(R))2, (nil(R))3}. This implies that a ∈ (nil(R))2.
Hence kerφ ⊆ (nil(R))2 and so kerφ = (nil(R))2.

Let z ∈ nil(R)\(nil(R))2. Hence z ∉ kerφ. As is remarked in the previous paragraph,
nil(R)/kerφ = R(z+kerφ). Hence it follows that nil(R) = Rz+kerφ = Rz+(nil(R))2.
Therefore, we obtain that nil(R) = Rz + (Rz + (nil(R))2)2. Now it is clear that nil(R) =
Rz since (nil(R))4 = (0). Thus for any z ∈ nil(R)\(nil(R))2, nil(R) = Rz.

(v) Let I be any nonzero ideal of R such that I ⊆ nil(R). Since (nil(R))4 = (0), there
exists i ∈ {1, 2, 3} such that I ⊆ (nil(R))i but I ⊈ (nil(R))i+1. Let a ∈ I\(nil(R))i+1.
Hence a ∈ (nil(R))i\(nil(R))i+1. It follows from (ii), (iii), or (iv) that (nil(R))i = Ra.
As a ∈ I , we obtain that (nil(R))i ⊆ I and so I = (nil(R))i. This shows that
{(0), nil(R), (nil(R))2, (nil(R))3} is the set of all ideals of R which are contained in
nil(R). Let z ∈ nil(R)\(nil(R))2. Then from (iv), it follows that nil(R) = Rz and so
{(0), Rz,Rz2, Rz3} is the set of all ideals of R which are contained in nil(R). �
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We next consider rings R such that (nil(R))3 = (0) but (nil(R))2 ≠ (0) and determine
some necessary conditions in order that AG(R) is complemented.

Proposition 3.5. Let R be a ring such that (nil(R))3 = (0) but (nil(R))2 ≠ (0). If AG(R)
is complemented, then the following hold:

(i) nil(R) ⊥ (nil(R))2.
(ii) (nil(R))2 = Rx for any x ∈ (nil(R))2\{0}.
(iii) If ab ≠ 0 for some a, b ∈ nil(R), then Ra ⊥ (nil(R))2 and Rb ⊥ (nil(R))2.
(iv) If z2 ≠ 0 for some z ∈ nil(R), then nil(R) = Ra for any a ∈ nil(R)\(nil(R))2.
(v) If z2 = 0 for each z ∈ nil(R), then nil(R) is not principal but there exist

a, b ∈ nil(R) such that nil(R) = Ra+Rb.

Proof. Since (nil(R))2 ≠ (0) and (nil(R))3 = (0), it is clear that nil(R) ∈ A(R)∗.
(i) By hypothesis, AG(R) is complemented. Hence there exists I ∈ A(R)∗ such that

nil(R) ⊥ I . Hence I(nil(R)) = (0). Therefore, I(nil(R))2 = (0). Since (nil(R))3 = (0),
it follows that (nil(R))2nil(R) = (0). As nil(R) ⊥ I and (nil(R))2 ∉ {(0), nil(R)}, we
obtain that (nil(R))2 = I . This proves that nil(R) ⊥ (nil(R))2.

(ii) Let x ∈ (nil(R))2\{0}. Since (nil(R))3 = (0), it follows that Rx(nil(R)) = (0) and
Rx(nil(R))2 = (0). We know from (i) that nil(R) ⊥ (nil(R))2. As Rx ∉ {(0), nil(R)},
we obtain that Rx = (nil(R))2.

(iii) Let a, b ∈ nil(R) be such that ab ≠ 0. Since AG(R) is complemented, there
exists I ∈ A(R)∗ such that Ra ⊥ I . Hence (Ra)I = (0) and so (Rab)I = (0). As
(nil(R))3 = (0), we obtain that (Ra)(Rab) = (0). Thus the nonzero ideal Rab is such
that (Ra)(Rab) = (0) and (Rab)I = (0). Since Ra ⊥ I , Rab ∈ {I,Ra}. We know from
Lemma 3.1 that Ra ≠ Rab. Hence Rab = I . Therefore, Ra ⊥ Rab. By (ii), (nil(R))2 =
Rab. This proves that Ra ⊥ (nil(R))2. Similarly, it follows that Rb ⊥ (nil(R))2.

(iv) Suppose that there exists z ∈ nil(R) such that z2 ≠ 0. Consider the mapping
ψ : nil(R) → (nil(R))2 given by ψ(y) = yz for any y ∈ nil(R). It is clear that ψ
is a homomorphism of R-modules. Since (nil(R))2 = Rz2 by (ii), it follows that ψ is
onto. Hence we obtain from the fundamental theorem of homomorphism of modules that
nil(R)/kerψ ∼= (nil(R))2 as R-modules. We know from (ii) that for any nonzero x ∈
(nil(R))2,Rx = (nil(R))2. Thus for any a ∈ nil(R)\kerψ, nil(R)/kerψ = R(a+kerψ).
We claim that kerψ = (nil(R))2. Since kerψ ⊆ nil(R) and (nil(R))3 = (0), it follows
that (kerψ)(nil(R))2 = (0). As kerψ ⊆ ((0) :R z), we obtain that Rz(kerψ) = (0). We
know from (iii) that Rz ⊥ (nil(R))2. Hence kerψ ∈ {(0), Rz, (nil(R))2}. As z3 = 0,
z2 ∈ kerψ. Hence kerψ ≠ (0). Since z ∉ kerψ, it is clear that kerψ ≠ Rz. Now it
follows that kerψ = (nil(R))2. Let a ∈ nil(R)\(nil(R))2. Hence as is already observed
in this proof we obtain that nil(R)/(nil(R))2 = R(a + (nil(R))2). This shows that
nil(R) = Ra + (nil(R))2. Hence nil(R) = Ra + (Ra + (nil(R))2)2. This implies that
nil(R) = Ra since (nil(R))3 = (0).

(v) Since (nil(R))2 ≠ (0) and by assumption z2 = 0 for each z ∈ nil(R), it is clear
that nil(R) is not principal. As (nil(R))2 ≠ (0), there exist a, b ∈ nil(R) such that
ab ≠ (0). Consider the homomorphism of R-modules f : nil(R) → (nil(R))2 given by
f(z) = zb for any z ∈ nil(R). By (ii), (nil(R))2 = Rab. Hence it follows that f is onto.
We assert that ker f = Rb. Since ker f ⊆ nil(R) and (nil(R))3 = (0), it follows that
(ker f)(nil(R))2 = (0). As ker f ⊆ ((0) :R b), it follows that Rb(ker f) = (0). We know
from (iii) that Rb ⊥ (nil(R))2. Hence ker f ∈ {(0), Rb, (nil(R))2}. Since b2 = 0, b ∈



When is the annihilating ideal graph of a zero-dimensional quasisemilocal commutative ring complemented? 7

ker f and so ker f ≠ (0). We know from Lemma 3.1 that Rb ≠ Rab. Hence b ∉ (nil(R))2.
Hence we obtain that ker f ≠ (nil(R))2. Therefore, it follows that ker f = Rb. Now f
is a homomorphism of R-modules from nil(R) onto (nil(R))2. Hence by the fundamental
theorem of homomorphism of modules, it follows that nil(R)/ker f ∼= (nil(R))2 as R-
modules. We know from (ii) that (nil(R))2 = Rx for any nonzero x ∈ (nil(R))2 and
as a ∉ ker f , it follows that nil(R)/ker f = R(a + ker f). This implies that nil(R) =
Ra+ ker f = Ra+Rb. �

4. ZERO-DIMENSIONAL QUASILOCAL RINGS R SUCH THAT AG(R) IS

COMPLEMENTED

The aim of this section is to determine all zero-dimensional quasilocal rings R such that
AG(R) is complemented. We begin with the following lemma.

Lemma 4.1. Let R be a ring such that dimR = 0 and R is quasilocal with M as its unique
maximal ideal. Suppose that M3 ≠ (0). Then the following statements are equivalent:

(i) AG(R) is complemented.
(ii) M4 = (0) and R is a SPIR.

Proof. (i) ⇒ (ii) By hypothesis, it is clear that M is the only prime ideal of R. Hence
M = nil(R). SinceAG(R) is complemented by assumption, it follows from Lemma 3.3 that
M4 = (0). By hypothesis,M3 ≠ (0). Now it follows from Proposition 3.4(iv) thatM = Rm
for any m ∈ M\M2. As M4 = (0), M3 ≠ (0), and M is principal, it follows from the proof
of (iii) ⇒ (i) of [3, Proposition 8.8] that {M = Rm,M2 = Rm2,M3 = Rm3} is the set of
all proper nonzero ideals of R. Hence we obtain that R is a SPIR.

(ii) ⇒ (i) Now R is a SPIR with M4 = (0) but M3 ≠ (0). Note that {M,M2,M3} is the
set of all nonzero proper ideals of R. Now it is clear that AG(R) is a graph on three vertices
{M,M2,M3}, M ⊥ M3, and M2 ⊥ M3. This proves that AG(R) is complemented. �

We next have the following lemma.

Lemma 4.2. Let R be a quasilocal ring with M as its unique maximal ideal. Suppose that
M3 = (0) but M2 ≠ (0). Then the following statements are equivalent:

(i) AG(R) is complemented.
(ii) If z2 ≠ 0 for some z ∈ M , then M is principal. If z2 = 0 for each z ∈ M , then M is

not principal but there exist a, b ∈ M such that M = Ra+Rb.
(iii) I ⊥ M2 for each nonzero proper ideal I of R with I ≠ M2.

Proof. (i) ⇒ (ii) It is clear from the hypothesis that M is the only prime ideal of R. Hence
M = nil(R). If z2 ≠ 0 for some z ∈ M , then it follows from Proposition 3.5(iv) that M is
principal. If z2 = (0) for each z ∈ M , then it follows from Proposition 3.5(v) that M is not
principal but there exist a, b ∈ M such that M = Ra+Rb.

(ii) ⇒ (iii) Suppose that z2 ≠ 0 for some z ∈ M . Then M is principal. As M3 = (0),
it follows from the proof of (iii) ⇒ (i) of [3, Proposition 8.8] that M and M2 are the only
proper nonzero ideals of R. Hence in this case, AG(R) is a graph with vertex set {M,M2}
and M ⊥ M2.

Suppose that z2 = 0 for each z ∈ M . Then M is not principal but there exist a, b ∈ M
such that M = Ra + Rb. In such a case, M2 = Rab. Let x ∈ M2, x ≠ 0. Then x = rab
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for some r ∈ R. As M3 = (0), it follows that r is a unit in R and so M2 = Rab = Rx.
Since M3 = (0) but M2 ≠ (0), it is clear that each nonzero proper ideal is in A(R)∗. Let
I be any nonzero proper ideal of R. If I ⊆ M2, then as M2 = Rx for any x ∈ I\{0}, it
follows that I = M2. Suppose that I ⊈ M2. Let z ∈ I\M2. Since M is not principal but
is generated by two elements, it is clear that dimR/M (M/M2) = 2. As z + M2 ∈ M/M2

is nonzero, there exists w ∈ M such that {z +M2, w +M2} forms a basis of M/M2 as a
vector space over R/M . In such a case, it follows that M = Rz + Rw +M2. This implies
that M = Rz+Rw since M3 = (0). As z2 = w2 = 0, it follows that M2 = Rzw ⊆ I since
z ∈ I . Note that dimR/M (I/M2) is either 1 or 2. If dimR/M (I/M2) = 1, then {z +M2}
forms a basis of I/M2. This implies that I = Rz +M2 and so I = Rz since M2 = Rzw.
If dimR/M (I/M2) = 2, then it follows that I/M2 = M/M2 and so I = M .

From the above discussion it is clear that if z2 = 0 for each z ∈ M and if I is any nonzero
proper ideal ofR, then either I ∈ {M,M2} or I = Rz for some z ∈ I\M2. SinceM3 = (0),
it follows that IM2 = (0) for each proper ideal I of R. Let I ∈ A(R)∗ be such that I ≠ M2.
We verify that I ⊥ M2. Since IM2 = (0), I is adjacent to M2. Let J ∈ A(R)∗ be such
that J ∉ {I,M2}. Suppose that J = M . Then I ≠ M and so I = Rz for some z ∈ I\M2.
Moreover, it is noted in the previous paragraph that M2 = Rzw for some w ∈ M . Hence we
obtain that M2 ⊆ IM = IJ . Similarly, if I = M , then J ≠ M and so J = Rz′ for some
z′ ∈ J\M2 and M2 = Rz′w′ for some w′ ∈ M . Therefore, M2 = Rw′z′ ⊆ MJ = IJ .
Suppose that I ≠ M and J ≠ M . Then there exist z ∈ I\M2 and z′ ∈ J\M2 such
that I = Rz and J = Rz′. We claim that I + J = M . Indeed, if I + J ≠ M , then
I + J = Ry for some y ∈ I + J with y ∉ M2. Now as z, z′ ∈ M\M2, I = Rz ⊆ Ry,
and J = Rz′ ⊆ Ry, we obtain that I = Rz = Ry = Rz′ = J . But this contradicts the
assumption that I ≠ J . Hence Rz + Rz′ = I + J = M . Therefore, M2 = Rzz′ ⊆ IJ .
This shows that if J ∈ A(R)∗ \{M2, I}, then M2 ⊆ IJ and so IJ ≠ (0). This proves that
I ⊥ M2 for each I ∈ A(R)∗ with I ≠ M2.

(iii) ⇒ (i). Since M3 = (0) but M2 ≠ (0), it is clear that M ≠ M2. Hence R admits
at least one nonzero proper ideal which is different from M2. Note that from the preceding
observation (iii) ⇒ (i) follows immediately. �

We next have the following lemma. We denote the characteristic of a ring R by char(R).

Lemma 4.3. Let R be a quasilocal ring with M as its unique maximal ideal such that
M3 = (0) but M2 ≠ (0). If AG(R) is complemented and M is not principal, then
char(R/M) = 2 and moreover, char(R) ∈ {2, 4}.

Proof. Assume that AG(R) is complemented and M is not principal. It follows from the
proof of (i) ⇒ (ii) of Lemma 4.2 that z2 = 0 for each z ∈ M and dimR/M (M/M2) = 2.
Moreover, it is noted in the proof of (ii) ⇒ (iii) of Lemma 4.2 that for any nonzero x ∈ M2,
M2 = Rx and I ⊥ M2 for each nonzero proper ideal I of R with I ≠ M2. We first verify
that char(R/M) = 2. Suppose that char(R/M) ≠ 2. Then 2 ∉ M and so 2 is a unit in R.
Let a, b ∈ M be such that {a+M2, b+M2} forms a basis of M/M2 as a vector space over
R/M . Consider the ideals I1 = R(a+ b) and I2 = R(a − b) of R. From the choice of a, b, it
is clear that I1 and I2 are nonzero proper ideals of R with Ii ≠ M2 for each i ∈ {1, 2}. Note
that I1 ≠ I2. For if I1 = I2, then 2b = (a+ b) − (a − b) ∈ I1. This implies that b ∈ I1 since
2 is a unit in R. Hence b = r(a + b) for some r ∈ R. Therefore, ra + (r − 1)b = 0. This
implies by the choice of a, b that r ∈ M and 1 − r ∈ M . Hence 1 = r + 1 − r ∈ M . This
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is impossible. Thus I1 ≠ I2. Now as a2 = b2 = 0, it is clear that I1I2 = R(a2 − b2) = (0).
Moreover, as M3 = (0), it is clear that I2M2 = (0). Thus I1I2 = I2M

2 = (0). This is
impossible since I1 ⊥ M2. Hence char(R/M) = 2. Now 2 ∈ M and as z2 = 0 for each
z ∈ M , it follows that 4 = 0 in R. Therefore, char(R) ∈ {2, 4}. �

We next provide some examples to illustrate Lemma 4.2.

Example 4.4. Let K be a field with char(K) = 2. Let T = K[x, y] be the polynomial ring
in two variables over K. Let I = x2T + y2T and R = T/I . Then AG(R) is complemented.

Proof. Let N = xT + yT . Note that R = T/I is a local ring with M = N/I as
its unique maximal ideal. For an element t ∈ T , we denote t + I by t. Observe that
M = xR + yR, z2 = 0 for each z ∈ M , M2 = xyR ≠ (0), and M3 = (0). Now it
follows, from (ii) ⇒ (iii) of Lemma 4.2, that J ⊥ M2 for each nonzero proper ideal J of R
with J ≠ M2. This shows that AG(R) is complemented. �

For any n ≥ 2, we denote the ring of integers modulo n by Zn.

Example 4.5. Let T = Z4[x, y] be the polynomial ring in two variables over Z4. Let
I = x2T + (xy − 2)T + y2T and R = T/I . Then AG(R) is complemented.

Proof. Let N = 2T + xT + yT . Observe that R = T/I is a local ring with M = N/I as its
unique maximal ideal. For any t ∈ T , we denote t+ I by t. Note that M = xR+ yR, z2 = 0
for each z ∈ M , M2 = 2R, and M3 = (0). Now it follows, from (ii) ⇒ (iii) of Lemma 4.2,
that J ⊥ M2 for each nonzero proper ideal J of R with J ≠ M2 and hence we obtain that
AG(R) is complemented. �

Example 4.6. Let T = Z4[x] be the polynomial ring in one variable over Z4. Let I = x2T .
Let R = T/I . Then AG(R) is complemented.

Proof. Let N = 2T + xT . Note that the ring R = T/I is local with M = N/I as its unique
maximal ideal. For any t ∈ T , let us denote t+ I by t. Observe that M = 2R+ xR, z2 = 0
for each z ∈ M , M2 = 2xR ≠ (0), and M3 = (0). It now follows, from (ii) ⇒ (iii) of
Lemma 4.2, that J ⊥ M2 for each nonzero proper ideal J of R with J ≠ M2 and therefore,
we obtain that AG(R) is complemented. �

We make use of the following remark in the proof of Theorem 4.8.

Remark 4.7. Let R be a quasilocal ring with M as its unique maximal ideal. If M2 = (0)
but M ≠ (0), then AG(R) is not complemented and indeed one of the following holds:

(i) M is the only element of A(R)∗ and hence AG(R) is a graph on a single vertex.

(ii) A(R)∗ contains at least three elements and AG(R) is a complete graph.

Proof. Suppose that M is principal. As M2 = (0), it is clear that M is the only nonzero
proper ideal of R. Since the nonzero ideal M annihilates M , it follows that M ∈ A(R)∗.
Hence (i) holds. Note that as AG(R) is a graph on a single vertex, it is not complemented.

Suppose thatM is not principal. SinceM2 = (0), it is clear thatM annihilates any proper
nonzero ideal ofR and henceA(R)∗ is the set of all proper nonzero ideals ofR and moreover,
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M can be regarded as a vector space over the field R/M . As M is not principal, it follows
that dimR/MM ≥ 2. Let {x, y} ⊆ M be such that {x, y} is linearly independent over R/M .
Note that Rx,Ry,R(x+ y) are distinct elements of A(R)∗. Since M2 = (0), we obtain that
IJ = (0) for any I, J ∈ A(R)∗. Hence it follows that AG(R) is a complete graph with at
least three vertices and hence it is not complemented. �

The following theorem characterizes whenAG(R) is complemented, whereR is any zero-
dimensional quasilocal ring with AG(R) admitting at least two vertices.

Theorem 4.8. Let R be a zero-dimensional quasilocal ring with M as its unique maximal
ideal. Suppose that AG(R) admits at least two vertices. Then AG(R) is complemented if
and only if (a) and (b) hold and moreover, either (c) or (d) holds, where (a), (b), (c), and
(d) are given below:

(a) M2 ≠ (0).
(b) M4 = (0).
(c) R is a SPIR.
(d) z2 = 0 for each z ∈ M , M is not principal but there exist a, b ∈ M such that

M = Ra+Rb.

Proof. We are assuming that dimR = 0 and R is quasilocal with M as its unique maximal
ideal. Hence we obtain that nil(R) = M .

Assume that AG(R) admits at least two vertices and is complemented. It follows from
Remark 4.7 that M2 ≠ (0). We obtain from Lemma 3.3 that M4 = (0). If M3 ≠ (0),
then it follows from (i) ⇒ (ii) of Lemma 4.1 that R is a SPIR. Suppose that M3 = (0). If
M is principal, then it follows from the proof of (iii) ⇒ (i) of [3, Proposition 8.8] that R
is a principal ideal ring and hence R is a SPIR. If M is not principal, then we obtain from
(i) ⇒ (ii) of Lemma 4.2 that z2 = 0 for each z ∈ M and there exist a, b ∈ M such that
M = Ra+Rb. Thus if AG(R) is complemented, then (a) and (b) hold. Moreover, either (c)
or (d) holds.

Conversely, assume that (a) and (b) hold and moreover, either (c) or (d) holds. Suppose
that (c) holds. If M3 ≠ (0), then it follows from (ii) ⇒ (i) of Lemma 4.1 that AG(R) is
complemented. IfM3 = (0), thenAG(R) is a graph with vertex set {M,M2} andM ⊥ M2.
Hence AG(R) is complemented. Suppose that (d) holds. Then it follows from (ii) ⇒ (i) of
Lemma 4.2 that AG(R) is complemented. �

As an immediate consequence of Theorem 4.8, we have the following result.

Corollary 4.9. Let (R,M) be a finite local ring with AG(R) admitting at least two vertices.
Then AG(R) is complemented if and only if (a), (b) of Theorem 4.8 hold and either R is a
finite SPIR or (d) of Theorem 4.8 hold.

5. ZERO-DIMENSIONAL QUASISEMILOCAL RINGS R SUCH THAT AG(R) IS

COMPLEMENTED

The aim of this section is to determine zero-dimensional quasisemilocal rings R such that
AG(R) is complemented. We begin with the following lemma.
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Lemma 5.1. Let R be a quasisemilocal ring with dimR = 0. Let {P1, . . . , Pn} be the set
of all maximal ideals of R. If AG(R) is complemented, then there exist quasilocal rings
(R1,M1), . . . , (Rn,Mn) with M4

i = (0) for each i ∈ {1, . . . , n} and R ∼= R1 × · · · × Rn

as rings.

Proof. Since dimR = 0 and R is quasisemilocal with {P1, . . . , Pn} as its set of all maximal
ideals, it is clear that {P1, . . . , Pn} is the set of all prime ideals of R. Hence we obtain that
nil(R) = ∩n

i=1 Pi. Moreover, as Pi + Pj = R for all distinct i, j ∈ {1, . . . , n}, it follows
from [3, Proposition 1.10(i)] that nil(R) = ∩n

i=1 Pi =
n

i=1 Pi.
Suppose thatAG(R) is complemented. Then we obtain from Lemma 3.3 that (nil(R))4 =

(0). Hence we obtain that
n

i=1 P
4
i = (0). Since P 4

i + P 4
j = R for all distinct i, j ∈

{1, . . . , n}, it follows from the Chinese remainder theorem [3, Proposition 1.10(ii) and (iii)]
that the mapping f : R → R/P 4

1 × · · · × R/P 4
n given by f(r) = (r + P 4

1 , . . . , r + P 4
n) is

an isomorphism of rings. Let i ∈ {1, . . . , n} and Ri = R/P 4
i . It is clear that Ri is quasilocal

with Mi = Pi/P
4
i as its unique maximal ideal and R ∼= R1 × · · · × Rn as rings. Moreover,

it is obvious that M4
i is the zero ideal of Ri for each i ∈ {1, . . . , n}. �

In view of Lemma 5.1, in the rest of this section, we assume that R = R1 × · · · × Rn,
where Ri is a quasilocal ring with unique maximal ideal Mi such that M4

i = (0) for each
i ∈ {1, . . . , n}. We proceed to determine when AG(R) is complemented. As Theorem 4.8
determines when AG(R) is complemented in the case where R is a zero-dimensional
quasilocal ring, we assume that R is not quasilocal. Hence n ≥ 2.

Lemma 5.2. Let R = R1 × R2 × · · · × Rn (n ≥ 2), where (Ri,Mi) is a quasilocal ring
with M4

i = (0) for each i ∈ {1, 2, . . . , n}. If AG(R) is complemented, then M2
i = (0)

and Mi is principal for i ∈ {1, 2, . . . , n}; in the case where Mi ≠ (0),Mi = Rixi for
any nonzero element xi of Mi. Moreover, Ri has at most one proper nonzero ideal for each
i ∈ {1, 2, . . . , n}.

Proof. Assume that AG(R) is complemented. Suppose that M2
i ≠ (0) for some i ∈

{1, 2, . . . , n}. Consider the ideal I = I1 ×I2 × · · · ×In ofR defined by Ii = M2
i and Ij = Rj

for all j ∈ {1, 2, . . . , n}\{i}. SinceM4
i = (0), the ideal J = J1 ×J2 × · · · ×Jn ofR given by

Ji = M2
i and Jj = (0) for all j ∈ {1, 2, . . . , n}\{i} is such that IJ = (0) × (0) × · · · × (0).

Hence I ∈ A(R)∗. As AG(R) is complemented, there exists K ∈ A(R)∗ such that I ⊥ K.
Now it follows from IK = (0) × (0) × · · · × (0) and Ij = Rj for all j ∈ {1, 2, . . . , n}\{i}
that Kj = (0) for all j ∈ {1, 2, . . . , n}\{i}. Note that KiM

2
i = (0). Observe that

JK = IK = (0) × (0) × · · · × (0). Since I ⊥ K and J ∉ {(0) × (0) × · · · × (0), I},
it follows that J = K. Hence we obtain that I ⊥ J . We next claim that M3

i = (0). Indeed,
if M3

i ≠ (0), then the ideal A = A1 × A2 × · · · × An of R given by Ai = M3
i and

Aj = (0) for all j ∈ {1, 2, . . . , n}\{i} is such that AI = AJ = (0) × (0) × · · · × (0) and
A ∉ {(0) × (0) × · · · × (0), I, J}. This is impossible since I ⊥ J . Thus M3

i = (0).
Note that the ideal B = B1 × B2 × · · · × Bn given by Bi = Mi and Bj = (0) for
all j ∈ {1, 2, . . . , n}\{i} of R is such that IB = JB = (0) × (0) × · · · × (0) and
B ∉ {(0) × (0) × · · · × (0), I, J}. This cannot happen since I ⊥ J . Hence we obtain
that M2

i = (0) for each i ∈ {1, 2, . . . , n}.
Let i ∈ {1, 2, . . . , n}. We next show that Mi is a principal ideal of Ri. If Mi = (0), then

it is clear that Mi is principal. Suppose that Mi ≠ (0). We show that Mi = Rixi for any
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nonzero xi ∈ Mi. Consider the ideal I = I1 ×I2 × · · · ×In defined by Ii = Rixi and Ij = Rj

for all j ∈ {1, 2, . . . , n}\{i}. SinceM2
i = (0), the ideal J = J1 ×J2 × · · · ×Jn ofR given by

Ji = Mi and Jj = (0) for all j ∈ {1, 2, . . . , n}\{i} is such that IJ = (0) × (0) × · · · × (0).
Hence I ∈ A(R)∗. Since AG(R) is complemented, there exists K ∈ A(R)∗ such that
I ⊥ K. From IK = (0) × (0) × · · · × (0) and Ij = Rj for all j ∈ {1, 2, . . . , n}\{i},
it is clear that Kj = (0). Note that KiRixi = (0). Hence Ki ⊆ Mi. As M2

i = (0), it is
clear that JK = (0) × (0) × · · · × (0). Thus IK = JK = (0) × (0) × · · · × (0). Since
I ⊥ K and J ∉ {(0) × (0) × · · · × (0), I}, it follows that J = K. Thus I ⊥ J . The ideal
A = A1 ×A2 × · · · ×An ofR given byAj = (0) for all j ∈ {1, 2, . . . , n}\{i} andAi = Rixi

is such that IA = JA = (0)×(0)× · · · ×(0). Since I ⊥ J andA ∉ {(0)×(0)× · · · ×(0), I},
it follows that A = J . Hence we obtain that Mi = Rixi.

Let i ∈ {1, 2, . . . , n}. If Mi = (0), then Ri is a field and it has no proper nonzero ideal.
If Mi ≠ (0), then it is noted in the previous paragraph that Mi = Rixi for each nonzero
xi ∈ Mi. Hence we obtain that Mi is the only proper nonzero ideal of Ri. This proves that
Ri has at most one nonzero proper ideal. �

WithR as in the statement of Lemma 5.2, the following lemma provides another necessary
condition in order that AG(R) is complemented.

Lemma 5.3. Let n ≥ 2 and let R = R1 × R2 × · · · × Rn, where (Ri,Mi) is a quasilocal
ring with M4

i = (0) for each i ∈ {1, 2, . . . , n}. If AG(R) is complemented, then Rj is a
field for some j ∈ {1, 2, . . . , n}.

Proof. Suppose thatAG(R) is complemented andRi is not a field for each i ∈ {1, 2, . . . , n}.
Hence Mi ≠ (0) for each i ∈ {1, 2, . . . , n}. Let I = M1 × M2 × · · · × Mn. We know from
Lemma 5.2 that M2

i = (0) for each i ∈ {1, 2, . . . , n}. Hence it follows that I ∈ A(R)∗.
Since AG(R) is complemented, there exists an ideal J = J1 × J2 × · · · × Jn of R such that
I ⊥ J . From IJ = (0) × (0) × · · · × (0), it follows that IiJi = (0) for any i ∈ {1, 2, . . . , n}.
Hence Ji ⊆ Mi and moreover, it follows from Lemma 5.2 that Ji ∈ {(0),Mi} for each
i ∈ {1, 2, . . . , n}. Since I ≠ J and J ≠ (0) × (0) × · · · × (0), it is clear that there
exist distinct r, s ∈ {1, 2, . . . , n} such that Jr = Mr and Js = (0). Consider the ideal
K = K1 × K2 × · · · × Kn of R given by Ki = (0) for all i ∈ {1, 2, . . . , n}\{s} and
Ks = Ms. Note that the ideal K is such that K ∉ {(0) × (0) × · · · × (0), I, J} and
IK = JK = (0) × (0) × · · · × (0). This is impossible as I ⊥ J . Thus if AG(R) is
complemented, then Rj is a field for some j ∈ {1, 2, . . . , n}. �

Let R be as in the statement of Lemma 5.2. The following lemma provides another
necessary condition in order that AG(R) is complemented.

Lemma 5.4. Let n ≥ 2 and let R = R1 × R2 × · · · × Rn, where (Ri,Mi) is a quasilocal
ring with M4

i = (0) for each i ∈ {1, 2, . . . , n}. If AG(R) is complemented, then there exists
at most one i ∈ {1, 2, . . . , n} such that Ri is not a field.

Proof. Suppose that AG(R) is complemented and there exist distinct s, t ∈ {1, 2, . . . , n}
such thatRs andRt are not fields. HenceMs ≠ (0) andMt ≠ (0). We know from Lemma 5.3
that there exists j ∈ {1, 2, . . . , n} such that Rj is a field. It is clear that j ∉ {s, t}. Consider
the ideal I = I1 × I2 × · · · × In of R given by Ii = Ri for all i ∈ {1, 2, . . . , n}\{s, t},
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Is = Ms, and It = Mt. We know from Lemma 5.2 thatM2
s = (0) andM2

t = (0). Moreover,
Ri(0) = (0) for all i ∈ {1, 2, . . . , n}\{s, t}. Hence we obtain that I ∈ A(R)∗. SinceAG(R)
is complemented, there exists an ideal J = J1 × J2 × · · · × Jn of R such that I ⊥ J . Thus
IJ = (0) × (0) × · · · × (0). Therefore, IiJi = (0) for each i ∈ {1, 2, . . . , n}. By the choice
of I , it is clear that Ji = (0) for all i ∈ {1, 2, . . . , n}\{s, t}. Moreover, as we know from
Lemma 5.2 that Ms (respectively Mt) is the only proper nonzero ideal of Rs (respectively
Rt), it follows that Js ∈ {(0),Ms} and Jt ∈ {(0),Mt}. Since J is a nonzero ideal of R,
we must have either Js = Ms or Jt = Mt. Without loss of generality, we may assume that
Js = Ms. Note that the ideal K = K1 × K2 × · · · × Kn of R given by Ki = (0) for all
i ∈ {1, 2, . . . , n}\{t} and Kt = Mt is such that K ∉ {(0) × (0) × · · · × (0), I, J} and
IK = JK = (0) × (0) × · · · × (0). This is impossible since I ⊥ J . Thus if AG(R) is
complemented, then there exists at most one i ∈ {1, 2, . . . , n} such thatRi is not a field. �

With R as in the statement of Lemma 5.2, the following lemma gives another necessary
condition in order that AG(R) is complemented under the additional assumption that R is
not reduced.

Lemma 5.5. Let n ≥ 2 and let R = R1 × R2 × · · · × Rn, where (Ri,Mi) is a quasilocal
ring with M4

i = (0) for each i ∈ {1, 2, . . . , n}. Suppose that R is not reduced. If AG(R) is
complemented, then n = 2.

Proof. Suppose that AG(R) is complemented and n ≥ 3. We are assuming that R is
not reduced (that is, R has nonzero nilpotent elements). Hence there exists at least one
i ∈ {1, 2, . . . , n} such that Ri is not a field. Note that by Lemma 5.4, such an i is necessarily
unique. Fix j ∈ {1, 2, . . . , n} with j ≠ i. Consider the ideal I = I1 × I2 × · · · × In
of R given by Ii = Mi, Ij = Rj , and Ik = (0) for all k ∈ {1, 2, . . . , n}\{i, j}. Note
that Mi ≠ (0) and by Lemma 5.2, M2

i = (0). Hence it is clear that I ∈ A(R)∗. Since
AG(R) is complemented, there exists J = J1 × J2 × · · · × Jn of R such that I ⊥ J . From
IJ = (0)×(0)× · · · ×(0), it follows that IsJs = (0) for all s ∈ {1, 2, . . . , n}. Since Ii = Mi,
it follows that Ji ⊆ Mi and as Ij = Rj , we obtain that Jj = (0). Since n ≥ 3, there exists
k ∈ {1, 2, . . . , n}\{i, j}. As Rk is a field, it follows that Jk ∈ {(0), Rk }. Consider the ideal
A = A1 × A2 × · · · × An of R given by Ai = Mi, Aj = (0), Ak ∈ {(0), Rk }\{Jk }, and
As = (0) for all s ∈ {1, 2, . . . , n}\{i, j, k}. Note that AI = AJ = (0) × (0) × · · · × (0) but
A ∉ {(0) × (0) × · · · × (0), I, J}. This is impossible since I ⊥ J . Thus if R is not reduced
and AG(R) is complemented, then n = 2. �

Let R be a zero-dimensional quasisemilocal ring admitting more than one maximal ideal.
The following theorem determines necessary and sufficient conditions in order that AG(R)
is complemented.

Theorem 5.6. Let R be a quasisemilocal ring which is not quasilocal and let dimR = 0.
Then the following statements are equivalent:

(i) AG(R) is complemented.
(ii) Either R ∼= F1 × F2 × · · · × Fn as rings, where n ≥ 2 and Fi is a field for all

i ∈ {1, 2, . . . , n}, or R ∼= S × F as rings, where (S,M) is a SPIR with M ≠ (0) but
M2 = (0) and F is a field.
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Proof. (i) ⇒ (ii) Let n be the number of maximal ideals of R. Since R is not quasilocal, it
follows that n ≥ 2. We know from Lemma 5.1 that R ∼= R1 × R2 × · · · × Rn as rings,
where (Ri,Mi) is a quasilocal ring with M4

i = (0) for each i ∈ {1, 2, . . . , n}. If Mi = (0)
for each i ∈ {1, 2, . . . , n}, then Ri is a field for each i and hence with Fi = Ri, we obtain
that R ∼= F1 × F2 × · · · × Fn as rings. Suppose that Ri is not a field for at least one
i ∈ {1, 2, . . . , n}. We know from Lemma 5.4 that such an i is necessarily unique. Now R is
not reduced. Hence we obtain from Lemma 5.5 that n = 2. Thus R ∼= R1 × R2 as rings,
where we may assume that R1 is not a field and R2 is a field. We know from Lemma 5.2
that M2

1 = (0) and M1 = R1x1 for any nonzero x1 ∈ M1. Hence M1 is the only nonzero
proper ideal of R1. Thus (R1,M1) is a SPIR with M1 ≠ (0) but M2

1 = (0). Hence with
S = R1,M = M1, and F = R2, we obtain that R ∼= S × F as rings, where (S,M) is a
SPIR with M ≠ (0) but M2 = (0) and F is a field.

(ii) ⇒ (i) Suppose that R ∼= F1 × F2 × · · · × Fn as rings with n ≥ 2 and Fi is a field for
all i ∈ {1, 2, . . . , n}. Note that R is reduced and hence we obtain from Proposition 2.2 that
AG(R) is complemented. Indeed AG(R) is uniquely complemented.

Suppose that R ∼= S × F as rings, where (S,M) is a SPIR with M ≠ (0) but
M2 = (0) and F is a field. Let T = S × F . Note that M is the only nonzero proper
ideal of S. Hence A(T )∗ = {(0) × F,M × (0),M × F, S × (0)}. It is easy to verify that
(0) × F ⊥ M × (0),M × F ⊥ M × (0), and S × (0) ⊥ (0) × F . This shows that AG(T )
is complemented. As R ∼= T as rings, we obtain that AG(R) is complemented. Observe that
(0) × F ⊥ M × (0) and (0) × F ⊥ S × (0). As M × F is adjacent to M × (0) but M × F
is not adjacent to S × (0), it follows that AG(T ) is not uniquely complemented. Hence we
obtain that AG(R) is not uniquely complemented. �

The following corollary determines when AG(R) is complemented, where R is a finite
semilocal ring which is not local.

Corollary 5.7. Let R be a finite semilocal ring which is not local. The following statements
are equivalent:

(i) AG(R) is complemented.
(ii) Either R ∼= F1 × F2 × · · · × Fn as rings for some n ≥ 2, where Fi is a finite field

for i = 1, 2, . . . , n, or R ∼= S × F as rings, where (S,M) is a finite SPIR with M ≠ (0) but
M2 = (0) and F is a finite field.

Proof. The proof of this corollary follows immediately from Theorem 5.6. Note that the
finiteness assertion of Fi for i = 1, 2, . . . , n, S, and F in (ii) follow since R is a finite
ring. �

6. RINGS R WITH ONLY FINITELY MANY MAXIMAL N-PRIMES OF (0) SUCH THAT

AG(R) IS COMPLEMENTED

Let R be a commutative ring with identity which is not reduced (that is, nil(R) ≠ (0)).
Suppose thatR admits only a finite number of maximal N-primes of (0). Let {P1, . . . , Pn} be
the set of all maximal N-primes of (0) inR. Moreover, we assume that ∩n

i=1 Pi = nil(R) and
A(R)∗ contains at least two elements. The purpose of this section is to determine necessary
and sufficient conditions in order that AG(R) is complemented. We begin with the following
lemma.
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Lemma 6.1. Let R be a ring which is not reduced. Suppose that R admits only one
maximal N-prime of (0). Let P be the unique maximal N-prime of (0) in R. If AG(R)
is complemented, then P is a maximal ideal of R. Moreover, if P = nil(R), then P is the
only prime ideal of R.

Proof. Suppose that AG(R) is complemented. We prove that P is a maximal ideal of R. Let
M be a maximal ideal of R such that P ⊆ M . We assert that P = M . Suppose that P ≠ M .
Let a ∈ M\P . Since P is the only maximal N-prime of (0) in R, it follows that P = Z(R).
Thus a ∉ Z(R). As nil(R) ≠ (0), there exists x ∈ nil(R)\{0} such that x2 = 0. Let
J = Rx. Note that J ∈ A(R)∗. Hence there exists K ∈ A(R)∗ such that J ⊥ K. Let
A = Rax. From (Rx)K = (0), it is clear that AK = (Rax)K = (0). Moreover, as x2 = 0,
it follows that AJ = (Rax)(Rx) = (0). Thus the ideal A of R satisfies AJ = AK = (0).
Since J ⊥ K, it follows that A ∈ {(0), J,K}. Since x ≠ 0 and a ∉ Z(R), A = Rax ≠ (0).
Observe that A ≠ J . Indeed, for any y ∈ M , J = Rx ≠ Ryx. For if Rx = Ryx, then
x = ryx for some r ∈ R. This implies that x(1 − ry) = 0 and so 1 − ry ∈ Z(R) = P ⊆ M .
As y ∈ M , we obtain that 1 = 1−ry+ry ∈ M . This is impossible sinceM ≠ R. This shows
that A ≠ J . Therefore, A = K. Hence we obtain that J ⊥ A. Let B = Ra2x. Since x2 = 0,
it is clear that BJ = (Ra2x)(Rx) = (0) and BA = (Ra2x)(Rax) = (0). As a ∉ Z(R) but
a ∈ M , it is clear that Rx ≠ Ra2x and Rax ≠ Ra2x. Thus the ideal B = Ra2x ∈ A(R)∗

is adjacent to both J and A. This is impossible since J ⊥ A. Therefore, P = M and this
proves that P is a maximal ideal of R.

Suppose that P = nil(R). We next verify that P is the only prime ideal of R. Let Q be
any prime ideal of R. Then Q ⊇ nil(R) = P and as P is a maximal ideal of R, it follows
that Q = P . This shows that P is the only prime ideal of R. �

The following example illustrates that the moreover assertion of Lemma 6.1 may fail to
hold if the hypothesis that P = nil(R) is omitted.

Example 6.2. Let T = Z[x] be the polynomial ring in one variable over Z. Let I =
x2T + 2xT . Let R = T/I . For any t ∈ T , we denote t + I by t. Since Z ∩ I = (0),
we identify n with n for any n ∈ Z. This example appeared in [2, Example 3.6(a)], where
it was noted that nil(R) = {0, x} and moreover, it was shown that Γ (R) is an infinite star
graph with center x, where Γ (R) is the zero-divisor graph of R.

Note that I = x2T+2xT = xT ∩ (x2T+2T ) is an irredundant primary decomposition of
I in T with xT is P1 = xT -primary and x2T + 2T is P2 = xT + 2T -primary. Observe that
xT/I is a P1/I-primary ideal of R and (x2T + 2T )/I is a P2/I-primary ideal of R. Hence
it follows that xT/I ∩ (x2T + 2T )/I is an irredundant primary decomposition of the zero
ideal of R. We know from [3, Proposition 4.7] that Z(R) = P1/I ∪ P2/I and as P1 ⊆ P2, it
follows that Z(R) = P2/I . This shows that R admits P2/I as its only maximal N-prime of
(0). Note that nil(R) = P1/I ≠ P2/I .

We now verify that AG(R) is complemented. Indeed, we show that AG(R) is an infinite
star graph with center nil(R). Let J ∈ A(R)∗. Then J ⊆ Z(R) = P2/I . Observe that
P2/I = ((0) :R x). Hence we obtain that Jnil(R) = (0). Let J1, J2 be distinct nonzero
ideals ofR which are different from nil(R). As nil(R) = {0, x}, it follows that J1 ⊈ nil(R)
and J2 ⊈ nil(R). Since nil(R) is a prime ideal of R, we obtain that J1J2 ⊈ nil(R). Hence
we obtain that J1J2 ≠ (0). It is clear that for any positive integer n, 2nR ∈ A(R)∗ and
moreover, for any distinct positive integers n,m, 2nR ≠ 2mR. The above arguments show
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that AG(R) is an infinite star graph with center nil(R). Hence AG(R) is complemented.
However, R has an infinite number of prime ideals. �

The following theorem is an immediate consequence of Lemma 6.1 and Theorem 4.8.

Theorem 6.3. Let R be a ring which is not reduced, admitting only one maximal N-prime
P of (0) such that P = nil(R) and AG(R) admits at least two vertices. Then AG(R) is
complemented if and only if (a) and (b) hold and moreover, either (c) or (d) holds where
(a)–(d) are given below:

(a) P 2 ≠ (0).
(b) P 4 = (0).
(c) R is a SPIR.
(d) (d1) z2 = 0 for each z ∈ P , P is not principal but there exist a, b ∈ P such that

P = Ra+Rb; and (d2) P 2 = Rx for any nonzero x ∈ P 2.

Proof. Suppose that P = nil(R) and AG(R) is complemented. Now it follows, from
Lemma 6.1, that P is the only prime ideal of R. Hence R is a zero-dimensional quasilocal
ring with P as its unique maximal ideal. Applying Theorem 4.8, we obtain that (a) and (b)
hold and moreover, either (c) or (d1) holds. We now verify that when (d1) holds, then (d2)
holds. From (d1), P = Ra+ Rb. As z2 = 0 for each z ∈ P , it follows that P 2 = Rab, and
P 3 = (0). Let x ∈ P 2, x ≠ 0. Hence x = rab for some r ∈ R. Since R is quasilocal with P
as its unique maximal ideal and P 3 = (0), it follows that r is a unit in R and so ab = r−1x.
Hence we obtain that P 2 = Rab = Rx.

Conversely, assume that (a) and (b) hold and moreover, either (c) or (d) holds. If (c) holds,
then it is clear that P is the unique maximal ideal of R and it follows that either AG(R) is a
graph on the vertex set {P, P 2, P 3} with P ⊥ P 3 and P 2 ⊥ P 3 or AG(R) is a graph on the
vertex set {P, P 2} and P ⊥ P 2. Thus if (c) holds, then AG(R) is complemented. Suppose
that (d) holds. Let r ∈ R\P . Now P = Ra+Rb, P 2 = Rab, and P 3 = (0). Since P is the
only maximal N-prime of (0) in R, it follows that Z(R) = P . As ab ≠ 0 and r ∈ R\Z(R),
we obtain that rab ≠ 0. Hence P 2 = R(rab). So there exists s ∈ R such that ab = srab.
This implies that (1 − sr)ab = 0. Hence we obtain that 1 − sr ∈ Z(R) = P . Therefore,
P +Rr = R. This is true for any r ∈ R\P . Hence it follows that P is a maximal ideal of R.
By hypothesis, P = nil(R). So, R must be quasilocal with P as its unique maximal ideal.
Now we obtain from (ii) ⇒ (i) of Lemma 4.2 that AG(R) is complemented. �

Let R and {P1, . . . , Pn} be as in the beginning of this section. We assume that n ≥
2 and attempt to determine necessary and sufficient conditions in order that AG(R) is
complemented. We next state and prove Lemma 6.4. It is useful to recall the following. Let
I be an ideal of a commutative ring T with identity. A prime ideal P of T is said to be a
B-prime of I if there exists t ∈ T such that P = (I :T t) [9].

Lemma 6.4. Let R be a ring which is not reduced. Let n ≥ 2 and let {P1, P2 . . . , Pn} be
the set of all maximal N-primes of (0) in R. Suppose that nil(R) = ∩n

i=1 Pi. If AG(R) is
complemented, then the following hold:

(i) For each i ∈ {1, 2, . . . , n}, there exists xi ∈ R such that Pi = ((0) :R xi) (that is, Pi

is a B-prime of (0) in R for each i ∈ {1, 2, . . . , n}). Moreover, for each i ∈ {1, 2, . . . , n},
xi ∈ Pj for all j ∈ {1, 2, . . . , n}\{i}.
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(ii) With x1, x2, . . . , xn as in (i), xi ∈ nil(R) for some i ∈ {1, 2, . . . , n} and moreover,
for that i, Pi is a maximal ideal of R.

Proof. (i) As {P1, P2 . . . , Pn} is the set of all maximal N-primes of (0) in R, it follows that
Z(R) = ∪n

i=1 Pi. Suppose that AG(R) is complemented. We know, from Lemma 3.3, that
(nil(R))4 = (0). Hence (∩n

i=1 Pi)4 = (0). Therefore,
n

i=1 P
4
i = (0). Let i ∈ {1, 2, . . . , n}.

Since n ≥ 2 and Pk is a maximal N-prime of (0) in R for each k ∈ {1, 2, . . . , n},
it follows that


j∈Ai

P 4
j ≠ (0), where Ai = {1, 2, . . . , n}\{i}. Let yi ∈


j∈Ai

P 4
j ,

yi ≠ 0. It now follows that P 4
i yi = (0). Let 0 ≤ s < 4 be such that P s

i yi ≠ (0)
but P s+1

i yi = (0). Let xi ∈ P s
i yi\{0}. Observe that Pixi = (0). Hence we obtain that

Pi ⊆ ((0) :R xi) ⊆ Z(R) = ∪n
k=1 Pk. It now follows that Pi = ((0) :R xi). This proves that

Pi is a B-prime of (0) in R for each i ∈ {1, 2, . . . , n}. We now prove the moreover assertion.
We obtain from [4, Lemma 3.6] that xixj = 0 for all distinct i, j ∈ {1, 2, . . . , n}. Hence for
each i ∈ {1, 2, . . . , n}, xi ∈ ((0) :R xj) = Pj for all j ∈ {1, 2, . . . , n}\{i}.

(ii) Let z ∈ nil(R) with z ≠ 0. Note that (x1 + x2 + · · · + xn)z = 0. Therefore,
x1 + x2 + · · · + xn ∈ Z(R) = ∪n

i=1 Pi. Hence we obtain that x1 + x2 + · · · + xn ∈ Pi

for some i ∈ {1, 2, . . . , n}. We know from (i) that for each j ∈ {1, 2, . . . , n}\{i}, xj ∈ Pi.
It follows from x1 + x2 + · · · + xn ∈ Pi that xi ∈ Pi = ((0) :R xi). Therefore, we obtain
that x2

i = 0 and so xi ∈ nil(R). We now prove that Pi is a maximal ideal of R. Let M be a
maximal ideal of R such that Pi ⊆ M . We claim that M ⊆ Z(R). Suppose that M ⊈ Z(R).
Let w ∈ M\Z(R). Let I = Rxi. Since xi ≠ 0 but x2

i = 0, it is clear that I ∈ A(R)∗. As
AG(R) is complemented, there exists J ∈ A(R)∗ such that I ⊥ J . Let A = Rwxi. Since
x2

i = 0, IJ = (Rxi)J = (0), it is clear that AJ = AI = (0). It follows from I ⊥ J that
A ∈ {(0), I, J}. Sincew ∉ Z(R), we obtain thatA = Rwxi ≠ (0). Observe thatA ≠ I . For
if A = I , then xi ∈ A and so xi = rwxi for some r ∈ R. This implies that (1 − rw)xi = 0.
Hence 1 − rw ∈ ((0) :R xi) = Pi ⊆ M . This is impossible since w ∈ M and M is a proper
ideal of R. Hence A ≠ I and so A = J . Thus we arrive at I = Rxi ⊥ A = Rwxi. Note
that B = Rw2xi is such that B ∉ {(0), I, A}, but BI = BA = (0). This is in contradiction
to the fact that I ⊥ A. Hence we must have M ⊆ Z(R). As M is a maximal ideal of R and
M ⊆ Z(R), M is necessarily a maximal N-prime of (0) in R. Since Pi is also a maximal
N-prime of (0) in R, it follows from Pi ⊆ M that Pi = M . This proves that Pi is a maximal
ideal of R. �

With the same hypotheses as in the statement of Lemma 6.4, the following lemma provides
another necessary condition in order that AG(R) is complemented.

Lemma 6.5. Let R be a ring which is not reduced. Let n ≥ 2 and let {P1, P2, . . . , Pn} be
the set of all maximal N-primes of (0) in R. Suppose that nil(R) = ∩n

i=1 Pi. If AG(R) is
complemented, then (nil(R))2 = (0).

Proof. Suppose that AG(R) is complemented. We know from Lemma 3.3 that (nil(R))4 =
(0). We first prove that (nil(R))3 = (0). Suppose that (nil(R))3 ≠ (0). We know from
Proposition 3.4(i) that nil(R) ⊥ (nil(R))3. Moreover, we know from Lemma 6.4 that
there exist elements xi ∈ R such that Pi = ((0) :R xi) for each i ∈ {1, 2, . . . , n} and so
(nil(R))(Rxi) = (0) and (nil(R))3(Rxi) = (0). Since nil(R) ⊥ (nil(R))3, it follows that
Rx1 ∈ {nil(R), (nil(R))3} and Rx2 ∈ {nil(R), (nil(R))3}. As (nil(R))3 ⊆ nil(R),
it follows that either Rx1 ⊆ Rx2 or Rx2 ⊆ Rx1. We may assume without loss of
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generality that Rx1 ⊆ Rx2. This implies that x1 = rx2 for some r ∈ R. Let a ∈ P2.
Then ax2 = 0 and so ax1 = a(rx2) = 0. This implies that a ∈ P1. Hence we
arrive at P2 ⊆ P1. This is impossible since P1 and P2 are distinct maximal N-primes of
(0) in R. Hence we obtain that (nil(R))3 = (0). We now show that (nil(R))2 = (0).
Suppose that (nil(R))2 ≠ (0). We know from Proposition 3.5(i) that nil(R) ⊥ (nil(R))2.
As (nil(R))Rxi = (nil(R))2Rxi = (0) for each i ∈ {1, 2, . . . , n}, we obtain that
Rx1 ∈ {nil(R), (nil(R))2} and Rx2 ∈ {nil(R), (nil(R))2}. Since (nil(R))2 ⊆ nil(R),
proceeding as in the previous paragraph, we obtain a similar contradiction.

This proves that (nil(R))2 = (0). �

Let R, {P1, P2, . . . , Pn} be as in the statement of Lemma 6.4. With the assumption that
nil(R) = ∩n

i=1 Pi, we determine in Theorem 6.9 when AG(R) is complemented. We make
use of the following lemmas in the proof of Theorem 6.9. We denote by Tot(R), the total
quotient ring of R.

Lemma 6.6. Let R be a ring which is not reduced. Let n ≥ 2 and let {P1, P2, . . . , Pn} be
the set of all maximal N-primes of (0) in R. Suppose that nil(R) = ∩n

i=1 Pi. If AG(R) is
complemented, then n = 2.

Proof. As {P1, P2, . . . , Pn} is the set of all maximal N-primes of (0) in R, it is clear that
Z(R) = ∪n

i=1 Pi. Let S = R\Z(R) = R\(∪n
i=1 Pi). Observe that S−1R = Tot(R) is

a zero-dimensional quasisemilocal ring and moreover, {S−1P1, S
−1P2, . . . , S

−1Pn} is the
set of all its maximal ideals. Furthermore, as R is not reduced, it follows that Tot(R) is not
reduced. Since n ≥ 2, it is clear that Tot(R) is not quasilocal. We want to show that n = 2.
In view of (i) ⇒ (ii) of Theorem 5.6, it is enough to show thatAG(Tot(R)) is complemented.
This is clear if R = Tot(R). Hence we may assume that R ≠ Tot(R). Therefore, Pi is not
a maximal ideal of R for at least one i ∈ {1, 2, . . . , n}. Without loss of generality we may
assume that P1 is not a maximal ideal of R. We know from Lemma 6.4(i) that there exist
elements xi ∈ R such that Pi = ((0) :R xi) for i = 1, 2, . . . , n. Since P1 is not a maximal
ideal of R, it follows from Lemma 6.4(ii) that x1 ∉ nil(R).

Let A ∈ A(Tot(R))∗. Note that A = S−1I for some ideal I ∈ A(R)∗. Since we
are assuming that AG(R) is complemented, there exists J ∈ A(R)∗ such that I ⊥ J
in AG(R). We claim that A = S−1I ⊥ S−1J in AG(Tot(R)). From IJ = (0), it
follows that S−1IS−1J = (0). If B = S−1K is any element of A(Tot(R))∗ such that
S−1IS−1K = S−1JS−1K = (0), it follows that IK = JK = (0). Since I ⊥ J in
AG(R), it follows that K ∈ {I, J} and hence we obtain that either S−1K = S−1I or
S−1K = S−1J . Now to show S−1I ⊥ S−1J in AG(Tot(R)), we need only to verify that
S−1I ≠ S−1J . Suppose that S−1I = S−1J . Then it follows from S−1IS−1J = (0) that
(S−1I)2 = (S−1J)2 = (0). Therefore, we obtain that I2 = J2 = (0). Hence it follows that
I ⊆ nil(R) and J ⊆ nil(R). Note that I(Rx1) = J(Rx1) = (0). As x1 ∉ nil(R), it is clear
that Rx1 ∉ {(0), I, J}. Thus we obtain that the ideal Rx1 is adjacent to I and J in AG(R).
This is impossible since I ⊥ J in AG(R). This proves that S−1I ≠ S−1J and so as is
noted already, we obtain that S−1I ⊥ S−1J in AG(Tot(R)). This shows that AG(Tot(R))
is complemented and so as is remarked earlier in this proof, it follows that n = 2. �
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Lemma 6.7. Let T1, T2 be commutative rings with identity. Suppose that Ni is the unique
maximal N-prime of (0) in Ti for each i ∈ {1, 2} with nil(Ti) = Ni. Let T = T1 × T2.
Suppose that AG(T ) is complemented. If N2 ≠ (0), then N2 is a maximal ideal of T2.

Proof. Since nil(T2) = N2 ≠ (0), there exists t2 ∈ N2 such that t2 ≠ 0 but t22 = 0. By
contradiction, suppose that N2 is not a maximal ideal of T2. Let M be a maximal ideal of T2

such that N2 ⊂ M . Consider the ideal I = T1 × T2t2. Note that I ∈ A(T )∗. As AG(T )
is complemented, there exists J ∈ A(T )∗ such that I ⊥ J . Observe that J = J1 × J2 for
some ideal J1 of T1 and an ideal J2 of T2. From IJ = (0) × (0), it follows that J1 = (0)
and (T2t2)J2 = (0). Let y ∈ M\N2. Since Z(T2) = N2, we obtain that y ∉ Z(T2). As
t2 ≠ 0, it follows that yt2 ≠ 0. Note that the nonzero ideal K = (0) × T2(yt2) is such that
IK = JK = (0) × (0). Since I ⊥ J , we obtain that K ∈ {I, J}. It is clear that K ≠ I .
Hence K = J . Therefore, we obtain that T2t2 = T2(yt2). So there exists s2 ∈ T2 such that
t2 = s2yt2. This implies that t2(1 − s2y) = 0. Thus 1 − s2y ∈ Z(T2) = N2 ⊂ M . As
y ∈ M , it follows that 1 = 1 − s2y + s2y ∈ M . This is impossible. Therefore, N2 must be a
maximal ideal of T2. �

We also make use of the following lemma in the proof of Theorem 6.9.

Lemma 6.8. Let (S,M) be a SPIR with M ≠ (0) but M2 = (0) and D be an integral
domain. Let R = S × D. Then AG(R) is complemented.

Proof. If D is a field, then it is already verified in the proof of (ii) ⇒ (i) of Theorem 5.6
that AG(R) is complemented. Suppose that D is not a field. Observe that A(R)∗ = {(0) ×
I|I varies over all nonzero ideals of D} ∪ {M ×J |J varies over all ideals of D} ∪ {S× (0)}.
It is easy to verify that for any nonzero ideal I ofD, (0) ×I ⊥ M × (0), for any nonzero ideal
J of D, M ×J ⊥ M × (0), and S × (0) ⊥ (0) ×D. This proves that each element of A(R)∗

admits a complement in AG(R) and hence we obtain that AG(R) is complemented. �

With the help of Lemmas 6.4–6.8, we prove the following theorem.

Theorem 6.9. Let R be a ring which is not reduced. Let n ≥ 2 and let {P1, P2, . . . , Pn} be
the set of all maximal N-primes of (0) in R. Suppose that nil(R) = ∩n

i=1 Pi. Then AG(R) is
complemented if and only if either R is isomorphic to F × S as rings, where F is a field and
(S,M) is a SPIR with M ≠ (0) but M2 = (0), or is isomorphic to S × D as rings, where
(S,M) is a SPIR with M ≠ (0) but M2 = (0) and D is an integral domain which is not a
field.

Proof. Suppose that AG(R) is complemented. We know from Lemma 6.6 that n = 2. Thus
{P1, P2} is the set of all maximal N-primes of (0) in R. We know from Lemma 6.4(i)
that there exist x1, x2 ∈ R such that P1 = ((0) :R x1), P2 = ((0) :R x2) and moreover,
x1 ∈ P2 and x2 ∈ P1. Furthermore, we know from Lemma 6.4(ii) that either x1 ∈ nil(R)
or x2 ∈ nil(R). We may assume without loss of generality that x1 ∈ nil(R). In such a
case, it follows from Lemma 6.4(ii) that P1 is a maximal ideal of R. As P1, P2 are distinct
maximal N-primes of (0) in R, we obtain that P1 + P2 = R. We know from Lemma 6.5
that (nil(R))2 = (0) and so (Pi ∩ P2)2 = (0). Hence P 2

1P
2
2 = (0). As P 2

1 + P 2
2 = R,

we obtain from the Chinese remainder theorem [3, Proposition 1.10(ii) and (iii)] that the
mapping f : R → R/P 2

1 × R/P 2
2 given by f(r) = (r + P 2

1 , r + P 2
2 ) is an isomorphism



20 S. Visweswaran, H.D. Patel

of rings. Let us denote R/P 2
1 by T1 and R/P 2

2 by T2. Moreover, let us denote P1/P
2
1 = N1

and P2/P
2
2 by N2. Note that f(Z(R)) = f(P1 ∪ P2) = (N1 × T2) ∪ (T1 × N2). As f is an

isomorphism of rings, it follows that f(Z(R)) = Z(T1 ×T2) = (Z(T1)×T2)∪(T1 ×Z(T2)).
Hence we obtain that Z(T1) = N1 and Z(T2) = N2. Therefore, Ni is the unique maximal
N-prime of the zero ideal of Ti for each i ∈ {1, 2}. Moreover, f(nil(R)) = f(P1 ∩ P2) =
P1/P

2
1 × P2/P

2
2 = nil(T1) × nil(T2). Hence it follows that nil(T1) = P1/P

2
1 = N1 and

nil(T2) = P2/P
2
2 = N2.

We consider two cases.

Case (i). P2 is a maximal ideal of R.
As P1 is already a maximal ideal of R and nil(R) = P1 ∩ P2, it follows that R is a zero-

dimensional quasisemilocal ring with {P1, P2} as its set of all prime ideals ofR. NowAG(R)
is complemented andR is not reduced. Hence it follows from (i) ⇒ (ii) of Theorem 5.6 thatR
must be isomorphic to S × F as rings, where (S,M) is a SPIR with M ≠ (0) but M2 = (0)
and F is a field.

Case (ii). P2 is not a maximal ideal of R.
Note that N2 = P2/P

2
2 is not a maximal ideal of T2. Since AG(R) is complemented

and R is isomorphic to T1 × T2 as rings, we obtain that AG(T1 × T2) is complemented.
Now it follows from Lemma 6.7 that nil(T2) is the zero ideal of T2. Hence we obtain that
P2 = P 2

2 and so T2 = R/P 2
2 = R/P2 is an integral domain. By assumption, P2 is not a

maximal ideal of R and so T2 is not a field. Let us denote T1 × T2 by T . Since T is not
reduced, it follows that nil(T1) is a nonzero ideal of T1. Hence P1 ≠ P 2

1 . We assert that
any x ∈ P1\P 2

1 , P1/P
2
1 = T1(x + P 2

1 ). Observe that I = T1(x + P 2
1 ) × T2 ∈ A(T )∗.

As AG(T ) is complemented, there exists an ideal J1 of T1 and an ideal J2 of T2 such that
I = T1(x + P 2

1 ) × T2 ⊥ J = J1 × J2. Hence J2 = (0 + P 2
2 ) and from T1(x + P 2

1 )J1 =
(0 + P 2

1 ), it follows that J1 ⊆ P1/P
2
1 . Note that the ideal K = P1/P

2
1 × (0 + P 2

2 ) is such
that IK = JK = (0+P 2

1 ) × (0+P 2
2 ). Since I ⊥ J and asK ∉ {(0+P 2

1 ) × (0+P 2
2 ), I}, it

follows thatK = J . Hence we obtain that I ⊥ K. Now the idealB = T1(x+P 2
1 ) × (0+P 2

2 )
is such thatBI = BK = (0+P 2

1 )×(0+P 2
2 ). Since I ⊥ K andB ∉ {(0+P 2

1 )×(0+P 2
2 ), I},

we obtain that B = K. Hence P1/P
2
1 = T1(x + P 2

1 ). As P1/P
2
1 is a maximal ideal of T1,

it is clear that (T1, N1) is a SPIR with N1 is a nonzero ideal of T1 but N2
1 is the zero ideal

of T1. Let S = T1, M = N1, and D = T2. Note that (S.M) is a SPIR with M ≠ (0) but
M2 = (0), D is an integral domain which is not a field and moreover, R ∼= S × D as rings.

The converse follows immediately from Lemma 6.8. �
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