
Arab Journal of Mathematical Sciences (2011) 17, 153–169
King Saud University

Arab Journal of Mathematical Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Weak and strong convergence theorems of modified

Ishikawa iteration for an infinitely countable family
of pointwise asymptotically nonexpansive mappings

in Hilbert spaces

Javad Balooee *

Islamic Azad University – Sari Branch, Sari, Iran

Received 15 March 2011; revised 24 March 2011; accepted 25 March 2011

Available online 6 April 2011
13

an

Pe

U

do

*

E-
KEYWORDS

Pointwise asymptoti-

cally nonexpansive

mapping;

Monotone hybrid

method;

Ishikawa iteration

method;

Weak (strong)

convergence;

Common fixed point;

Projection operator;

Projection technique
19-5166 ª 2011 King

d hosting by Elsevier

er review under re

niversity.

i:10.1016/j.ajmsc.2011

Tel.: +98 1512332608

mail address: javad.ba
S

B

sp

.0

.

lo
Abstract In this paper, we first verify that the sequence generated by the Ishik-

awa iterative scheme is weakly convergent to a fixed point of a uniformly Lips-

chitzian and pointwise asymptotically nonexpansive mapping T in a Hilbert

space. Then, we introduce a new kind of monotone hybrid method which is a

modification of the Ishikawa iterative scheme for finding a common fixed point

of an infinitely countable family of uniformly Lipschitzian and pointwise asymp-

totically nonexpansive mappings in a Hilbert space. We also prove the strongly

convergent of the sequence generated by the proposed monotone hybrid method,

for an infinitely countable family of uniformly Lipschitzian and pointwise

asymptotically nonexpansive mappings in a Hilbert space. The results presented

in this paper extend and improve some known results in the literature.
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1. Introduction

Let C be a nonempty subset of a normed space X and let T : C! C be a self-map-
ping. We denote as FixðTÞ the set of all fixed points of T, that is FixðTÞ ¼
fx 2 C : Tx ¼ xg. Recall that the mapping T is said to be

(i) nonexpansive if, kTx� Tyk 6 kx� yk for all x; y 2 C;
(ii) asymptotically nonexpansive (Goebel and Kirk, 1972) if, there exists a

sequence fcng in ½1;þ1Þ with limn!1cn ¼ 1 such that kT nx� T nyk 6
cnkx� yk, for all x; y 2 C and n 2 N;

(iii) uniformly Lipschitzian if there exists a constant L > 0 such that
kT nx� T nyk 6 Lkx� yk, for all x; y 2 C and n 2 N. Evidently, every nonex-
pansive mapping is asymptotically nonexpansive and every asymptotically
nonexpansive mapping is uniformly Lipschitzian.

Construction of fixed points of nonexpansive mappings and asymptotically
nonexpansive mappings is an important subject in the theory of nonexpansive
mappings and finds its applications in a number of applied areas, in particular
in image recovery and signal processing (see, for example, Byrne, 2004; Podilchuk
and Mammone, 1990; Sezan and Stark, 1987; Youla, 1987, 1990).

However, the sequence fTnxg1n¼0 of iterates of the mapping T at a point x 2 C
may not converge even in the weak topology and since averaged iterations prevail.
Mann (1953) introduced the following iterative procedure for approximating a
fixed point of a nonexpansive mapping T in a Hilbert space H:
xnþ1 ¼ anxn þ ð1� anÞTxn; 8n 2 N; ð1:1Þ
where the initial point x0 is taken in C arbitrarily and fang is a sequence
in ½0; 1�.

Fixed point iteration processes for nonexpansive mappings and asymptotically
nonexpansive mappings in Hilbert spaces and Banach spaces including Mann iter-
ation processes have been studied extensively by many authors to solve nonlinear
operator equations as well as variational inequalities, see Mann (1953), Opial
(1967) and Schu (1991). However Mann iteration processes have only weak con-
vergence even in a Hilbert space, for instance, see Kim and Xu (2006); Mann
(1953); Takahashi et al. (2008). Even, Reich (1979) proved that if X is a uniformly
convex Banach space with a Frechet differentiable norm and if fang is chosen such
that

P1
n¼1anð1� anÞ ¼ 1, then the sequence fxng defined by (1.1) converges

weakly to a fixed point of T.
Some attempts to modify the Mann iteration method (1.1) so that strong con-

vergence is guaranteed have recently been made. Nakajo and Takahashi (2003)
proposed the following modification of the Mann iteration method (1.1) for a sin-
gle nonexpansive mapping T in a Hilbert space H:



Weak and strong convergence theorems of modified 155
x0 2 C chosen arbitrarily;

yn ¼ anxn þ ð1� anÞTxn;

Cn ¼ fz 2 C : kyn � zk 6 kxn � zkg;
Qn ¼ fz 2 C : hx0 � xn; xn � ziP 0g;
xnþ1 ¼ PCn\Qn

x0:

8>>>>>><
>>>>>>:

ð1:2Þ
They proved that if the sequence fang is bounded above by 1, then the sequence
fxng generated by (1.2) converges strongly to PFixðTÞx0.

Subsequently, Mann iteration method (1.1) has been modified for finding a
fixed point of asymptotically nonexpansive mapping as follows:
x0 2 C chosen arbitrarily;

xnþ1 ¼ anxn þ ð1� anÞTnxn; 8n 2 N;

�
ð1:3Þ
where fang is a sequence in [0,1] (see, for example, Cholamjiak and Suantai, 2010;
Kim and Xu, 2006; Tan and Xu, 1993). Similarly, we note that the modified
Mann’s iteration (1.3) has only weak convergence and is in general not strongly
convergent for asymptotically nonexpansive mappings. In order to get strong con-
vergence, Kim and Xu (2006) introduced the following modification of (1.3) for
finding a fixed point of a single asymptotically nonexpansive mapping T in a
Hilbert spaceH to extend the result of Nakajo and Takahashi (2003) from a single
nonexpansive mapping to a single asymptotically nonexpansive mapping:
x0 2 C chosen arbitrarily;

yn ¼ anxn þ ð1� anÞTnxn;

Cn ¼ fz 2 C : kyn � zk2 6 kxn � zk2 þ hng;
Qn ¼ fz 2 C : hx0 � xn; xn � ziP 0g;
xnþ1 ¼ PCn\Qn

x0;

8>>>>>><
>>>>>>:

ð1:4Þ
where hn ¼ ð1� anÞðk2
n � 1ÞðdiamCÞ2 ! 0, as n!1. They proved that if an 6 a

for all n 2 N and for some 0 < a < 1, then the sequence fxng generated by (1.4)
converges strongly to PFixðTÞx0.

We observe that the iterative algorithms (1.2) and (1.4) generate a sequence fxng
by projecting x0 onto the intersection of the suitably constructed closed convex
sets Cn and Qn. Takahashi et al. (2008) introduced the following modification of
the Mann’s iteration method (1.1) which just involved one closed convex set for
a family of nonexpansive mappings fTng:
u0 2 H chosen arbitrarily;

C1 ¼ C; u1 ¼ PC1
x0;

yn ¼ anun þ ð1� anÞTnun;

Cnþ1 ¼ fz 2 Cn : kyn � zk 6 kxn � zkg;
xnþ1 ¼ PCnþ1x0:

8>>>>>><
>>>>>>:

ð1:5Þ
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They proved that if an 6 a for all n and for some 0 < a < 1, then the sequence fung
generated by (1.5) converges strongly to PFixðTÞx0.

Recently, Inchan (2008) introduced a hybrid method of modified Mann’s
iteration (1.3) for an asymptotically nonexpansive mapping T as below:
x0 2 C chosen arbitrarily;

C1 ¼ C; x1 ¼ PC1
x0;

yn ¼ anxn þ ð1� anÞTnxn;

Cnþ1 ¼ fz 2 Cn : kyn � zk2 6 kxn � zk2 þ hng;
xnþ1 ¼ PCnþ1x0; n 2 N;

8>>>>>><
>>>>>>:

ð1:6Þ
where hn ¼ ð1� anÞðk2n � 1ÞðdiamCÞ2 ! 0, as n!1. He proved that if 0 6 an 6

a < 1 for all n and for some a, then the sequence fxng generated by (1.6) converges
strongly to PFixðTÞx0.

Kirk and Xu (2008) introduced pointwise asymptotically nonexpansive map-
pings as below.

Definition 1.1. A mapping T : C! C is called pointwise asymptotically nonexpan-
sive if, for each n 2 N and each x; y 2 C, we have kTnx� Tnyk 6 anðxÞkx� yk,
where an ! 1 pointwise on C.

It is clear that an asymptotically nonexpansive mapping is pointwise asymptot-
ically nonexpansive. It is not hard to see that if C is bounded then a pointwise
asymptotically nonexpansive T is of asymptotically nonexpansive type, that is,
T satisfies the following condition.
lim sup
n!1

sup
y2C
ðkTnx� Tnyk � kx� ykÞ 6 0; 8x 2 C:
Ishikawa (1974) introduced the following iterative scheme which is a generaliza-
tion of the Mann’s iterative algorithm (1.1):
x0 2 C chosen arbitrarily;

xnþ1 ¼ anxn þ ð1� anÞTzn; n P 0;

zn ¼ bnxn þ ð1� bnÞTxn;

8><
>: ð1:7Þ
where fang and fbng are appropriate control sequences in ½0; 1�. However Ishikawa
iteration processes has only weak convergence even in a Hilbert space, for in-
stance, see Ishikawa (1974).

Our modified Ishikawa iteration method generates a sequence fxng recursively
via
x0 2 C chosen arbitrarily;

xnþ1 ¼ anxn þ ð1� anÞTnzn; n P 0;

zn ¼ bnxn þ ð1� bnÞTnxn;

8><
>: ð1:8Þ
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where fang and fbng are appropriate control sequences in ½0; 1� and T : C! C is a
pointwise asymptotically nonexpansive mapping with the sequence of mappings
cn : C! ½1;þ1Þðn 2 NÞ satisfying limn!1cnðxÞ ¼ 1, for all x 2 C.

If bn ¼ 1, for all n P 0, then the modified Ishikawa iteration method (1.8)
changes into the following modified Mann iteration method:
xnþ1 ¼ anxn þ ð1� anÞTnxn; n P 0; ð1:9Þ

where the initial point x0 is taken in C arbitrarily and fang and T are the same as in
(1.8).

Motivated and inspired by the above works, in this paper, we first establish that
the sequence fxng generated by the Ishikawa iteration scheme (1.8) is weakly
convergent to a fixed point of a uniformly Lipschitzian and pointwise asymptoti-
cally nonexpansive mapping T in a Hilbert space. Then, we introduce a new type
of monotone hybrid method which is a modification of the Ishikawa iteration
scheme (1.8) for finding a common fixed point of an infinitely countable family
of uniformly Lipschitzian and pointwise asymptotically nonexpansive mappings
fTig1i¼1. We also prove the strong convergence of the sequence generated by the
proposed monotone hybrid method, for an infinitely countable family of
uniformly Lipschitzian and pointwise asymptotically nonexpansive mappings in
a Hilbert space.

2. Preliminaries

LetH be a real Hilbert space which is equipped with an inner product h�; �i and the
corresponding norm k � k. Let C be a nonempty closed convex subset ofH. We de-
note by dCð�Þ the usual distance function to C, i.e., dCðuÞ ¼ infv2Cku� vk. Let
u 2 H be a point not lying in C. A point v 2 C is called a closest point or a projec-
tion of u onto C if, dCðuÞ ¼ ku� vk, i.e., v ¼ PCu if and only if
ku� PCuk 6 ku� wk, for all w 2 C. The mapping PC : H ! C is called the metric
projection of H onto C. We know that PC is a nonexpansive mapping.

We will use * for weak convergence and! for strong convergence. For given
sequence fxng#C, let xwðxnÞ ¼ fx : 9xnj * xg denote the weak limit set of fxng.

We need some facts and tools in a real Hilbert space H which are listed as lem-
mas below.

Lemma 2.1 (Tan and Xu, 1993). Let fang and fdng be two sequences of
nonnegative real numbers satisfying the inequality
anþ1 6 ð1þ dnÞan; 8n ¼ 1; 2; 3; . . .
If
P1

n¼1dn <1, then limn!1an exists.

Lemma 2.2 (Marino and Xu, 2007). Let H be a real Hilbert space. Then for each
x; y 2 H and each t 2 ½0; 1�



158 J. Balooee
(a) kx� yk2 ¼ kxk2 � 2hx; yi þ kyk2.
(b) ktxþ ð1� tÞyk2 ¼ tkxk2 þ ð1� tÞkyk2 � tð1� tÞkx� yk2.
(c) If fxng is a sequence in H weakly convergent to z, then
lim sup
n!1

kxn � yk2 ¼ lim sup
n!1

kxn � zk2 þ kz� yk2:
Lemma 2.3 (Marino and Xu, 2007). Let C be a closed convex subset of a real
Hilbert spaceH and let PC be the metric projection fromH onto C. Given x 2 H and
z 2 C. Then z ¼ PCx if and only if for each y 2 C we have hx� z; y� zi 6
0; 8y 2 C.

Lemma 2.4 (Martinez-Yanes and Xu, 2006). Let C be a nonempty closed convex
subset of a real Hilbert space H. For each x; y; z 2 H and a 2 R, the set
D :¼ fv 2 C : ky� vk2 6 kx� vk2 þ hz; vi þ ag

is closed and convex.

Lemma 2.5 (Martinez-Yanes and Xu, 2006). Let C be a closed convex subset of a
real Hilbert spaceH and fxng be a sequence inH. Let u 2 H and q ¼ PCu. If fxng is
such that xwðxnÞ#C and satisfies the condition kxn � uk 6 ku� qk, for all n 2 N,
then xn ! q.

Lemma 2.6 (Nakajo and Takahashi, 2003). Let C be a nonempty closed convex
subset of a real Hilbert space H and PC : H! C be the metric projection from H
onto C. Then ky� PCxk2 þ kx� PCxk2 6 kx� yk2, for all x 2 H and y 2 C.

Here, we will discuss basic properties of pointwise asymptotically nonexpansive
mappings which will be used in the next section.

Proposition 2.7 (Demiclosedness principle). Let C be a closed convex subset of a
Hilbert space H and let T : C! C be a uniformly L-Lipschitzian and pointwise
asymptotically nonexpansive mapping with the sequence of mappings
cn : C! ½1;þ1Þ ðn 2 NÞ satisfying limn!1cnðxÞ ¼ 1, for all x 2 C. Then I� T
is demiclosed at zero, that is, if fxng is a sequence in C such that xn * q and
lim supm!1lim supn!1kxn � Tmxnk ¼ 0, then ðI� TÞq ¼ 0.

Proof. Since the sequence fxng is bounded, we can define a function / on H by
/ðxÞ ¼ lim sup
n!1

kxn � xk2; x 2 H:
From xn * q and Lemma 2.2(c), we conclude that
/ðxÞ ¼ /ðqÞ þ kx� qk2; 8x 2 H:

In particular, for each m 2 N, we have
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/ðTmqÞ ¼ /ðqÞ þ kTmq� qk2: ð2:1Þ

On the other hand, pointwise asymptotically nonexpansivity of T implies that
/ðTmqÞ ¼ limsup
n!1

kxn�Tmqk2

¼ limsup
n!1

kxn�TmxnþTmxn�Tmqk2

¼ limsup
n!1

ðkxn�Tmxnk2þ 2hxn�Tmxn;T
mxn�TmqiþkTmxn�Tmqk2Þ

6 limsup
n!1

kxn�Tmxnkðkxn�Tmxnkþ 2Lkxn� qkÞ

þ limsup
n!1

c2mðqÞkxn� qk2:
Since limm!1cmðxÞ ¼ 1, for each x 2 C and lim supm!1lim supn!1kxn � Tm

xnk ¼ 0, taking lim supm!1 from both sides of the above inequality, we derive that
lim sup
m!1

/ðTmqÞ 6 lim sup
n!1

kxn � qk2 ¼ /ðqÞ: ð2:2Þ
Combining (2.1) and (2.2), it follows that lim supm!1kq� Tmqk2 ¼ 0, i.e.,
Tmq! q, hence Tq ¼ q. h

Since every asymptotically nonexpansive mapping is a uniformly Lipschitzian
mapping, we have the following statement for asymptotically nonexpansive
mappings.

Corollary 2.8 (Lin et al., 1995). Let C be a bounded closed convex subset of a
Hilbert space H and let T : C! C be an asymptotically nonexpansive mapping.
Then I� T is demiclosed at zero.

Corollary 2.9 (Opial, 1967; Goebel and Kirk, 1972). Let C be a closed convex sub-
set of a Hilbert space H and let T : C! C be a nonexpansive mapping such that
FixðTÞ– ;. Then I� T is demiclosed at zero.

Proposition 2.10. Let C, H and T be the same as in Proposition 2.7. Then the fixed
point set FixðTÞ of T is closed and convex so that projection PFixðTÞ is well defined.

Proof. To see that FixðTÞ is closed, suppose fpng#FixðTÞ and pn ! p. Then for
all n 2 N,
kTp� pk 6 kTp� pnk þ kpn � pk ¼ kTp� Tpnk þ kpn � pk:

Since pn ! p as n!1 and T is continuous, the right side of the above inequality
approaches to zero as n!1, hence p 2 FixðTÞ and so FixðTÞ is closed.
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To see the convexity of FixðTÞ, we need to prove that kuþ ð1� kÞv 2 FixðTÞ,
whenever u; v 2 FixðTÞ and k 2 ð0; 1Þ. Set w ¼ kuþ ð1� kÞv. We note that
ku� wk ¼ ð1� kÞku� vk and kv � wk ¼ kku� vk. Then by Lemma 2.2(b), we get
kw� Tnwk2 ¼ kkuþ ð1� kÞv � Tnwk2 ¼ kkðu� TnwÞ þ ð1� kÞðv � TnwÞk2

¼ kku� Tnwk2 þ ð1� kÞkv � Tnwk2 � kð1� kÞku� vk2

6 kc2nðuÞku� wk2 þ ð1� kÞc2nðvÞkv � wk2 � kð1� kÞku� vk2

6 kð1� kÞ2~c2nku� vk2 þ k2ð1� kÞ~c2nku� vk2 � kð1� kÞku� vk2

¼ kð1� kÞð~c2n � 1Þku� vk2; ð2:3Þ

where ~cn ¼ maxfcnðuÞ; cnðvÞg, for each n 2 N. By taking the limit in (2.3) as
n!1 and using the fact that ~cn ! 1 as n!1, we get Tnw! w, hence
Tw ¼ w, and therefore FixðTÞ is convex. h
3. Weak convergence of the modified Ishikawa iteration method

In this section, we shall prove that the sequence generated by the Ishikawa itera-
tion method (1.8) is weakly convergent to a fixed point of a pointwise asymptot-
ically nonexpansive mapping T and in general is not strongly convergent.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and
T : C! C a uniformly L-Lipschitzian and pointwise asymptotically nonexpansive
mapping with FixðTÞ– ; and cn : C! ½1;þ1Þðn 2 NÞ satisfying limn!1cnðxÞ ¼ 1,
for all x 2 C. Suppose the sequences fang and fbng are chosen so that
lim supn!1an < 1; lim supn!1 bn < 1 and lim infn!1bn > 0. Moreover, assume
that

P1
n¼1ðc4nðpÞ � 1Þ <1 for each p 2 FixðTÞ. Then the sequence fxng generated by

the modified Ishikawa iteration method (1.8) converges weakly to a fixed point of T.

Proof. Pick p 2 FixðTÞ. We first show that limn!1kxn � pk exists. By using
Lemma 2.2(b), we get
kxnþ1 � pk2 ¼ kanðxn � pÞ þ ð1� anÞðTnzn � pÞk2

6 ankxn � pk2 þ ð1� anÞkTnzn � pk2

6 ankxn � pk2 þ ð1� anÞc2nðpÞkzn � pk2 ð3:1Þ

and
kzn� pk2 ¼ kbnðxn� pÞ þ ð1� bnÞðTnxn� pÞk2

¼ bnkxn� pk2þ ð1� bnÞkTnxn� pk2� bnð1� bnÞkxn�Tnxnk2

6 bnkxn� pk2þ ð1� bnÞc2nðpÞkxn� pk2� bnð1� bnÞkxn�Tnxnk2

¼ kxn� pk2þ ð1� bnÞðc2nðpÞ � 1Þkxn� pk2� bnð1� bnÞkxn�Tnxnk2:
ð3:2Þ



Weak and strong convergence theorems of modified 161
Substituting (3.2) in (3.1) yields
kxnþ1� pk2 6 ankxn� pk2þ ð1� anÞc2nðpÞ½kxn� pk2

þ ð1� bnÞðc2nðpÞ � 1Þkxn� pk2� bnð1� bnÞkxn�Tnxnk2�
¼ ½anþ ð1� anÞc2nðpÞ þ ð1� anÞð1� bnÞc2nðpÞðc2nðpÞ � 1Þ�kxn� pk2

� bnð1� anÞð1� bnÞc2nðpÞkxn�Tnxnk2

6 ½1þ ð1� anÞðc2nðpÞ � 1Þ þ ð1� anÞc2nðpÞðc2nðpÞ � 1Þ�kxn� pk2

� bnð1� anÞð1� bnÞc2nðpÞkxn�Tnxnk2

¼ ½1þ ð1� anÞðc4nðpÞ � 1Þ�kxn� pk2

� bnð1� anÞð1� bnÞc2nðpÞkxn�Tnxnk2

6 ½1þ ðc4nðpÞ � 1Þ�kxn� pk2: ð3:3Þ

Since

P1
n¼1ðc4nðpÞ � 1Þ <1, it follows from (3.3) and Lemma 2.1 that

limn!1kxn � pk exists. This implies that fxng is bounded. Since lim supn!1an < 1,
lim supn!1bn < 1 and lim infn!1bn > 0, we can choose � > 0 such that an < 1� �
and � < bn < 1� �, for large enough n 2 N. So we can rewrite (3.3) as follows:
�3kxn � Tnxnk2 6 bnð1� anÞð1� bnÞc2nðpÞkxn � Tnxnk2

6 ½1þ ð1� anÞðc4nðpÞ � 1Þ�kxn � pk2 � kxnþ1 � pk2

6 ð1þ ðc4nðpÞ � 1ÞÞkxn � pk2 � kxnþ1 � pk2;

which leads to
kxn � Tnxnk2 6
1

�3
ðkxn � pk2 � kxnþ1 � pk2Þ þ c4nðpÞ � 1

�3
kxn � pk2: ð3:4Þ
Since cnðpÞ ! 1 as n!1 and limn!1kxn � pk exists it follows from (3.4) that
lim
n!1
kxn � Tnxnk ¼ 0: ð3:5Þ
Now, we show that limn!1kxn � Txnk ¼ 0. It follows from (1.8) and uniformly L-
Lipschitzian of the mapping T that
kxnþ1 � xnk ¼ kanxn þ ð1� anÞTnzn � xnk ¼ ð1� anÞkTnzn � xnk
6 ð1� anÞðkTnzn � Tnxnk þ kTnxn � xnkÞ
6 ð1� anÞðLkzn � xnk þ kTnxn � xnkÞ ð3:6Þ
and
kzn � xnk ¼ kbnxn þ ð1� bnÞTnxn � xnk ¼ ð1� bnÞkTnxn � xnk: ð3:7Þ

Substituting (3.7) in (3.6) and by using (3.5), we gain
kxnþ1 � xnk 6 ð1� anÞðLð1� bnÞkTnxn � xnk þ kTnxn � xnkÞ
¼ ð1� anÞð1þ Lð1� bnÞÞkTnxn � xnk ! 0; ð3:8Þ
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as n!1. Since T is uniformly L-Lipschitzian, for each n 2 N, we have
kxn � Txnk 6 kxn � xnþ1k þ kxnþ1 � Tnþ1xnþ1k þ kTnþ1xnþ1 � Tnþ1xnk
þ kTnþ1xn � Txnk

6 kxnþ1 � xnk þ kxnþ1 � Tnþ1xnþ1k þ Lkxnþ1 � xnk
þ LkTnxn � xnk: ð3:9Þ
It follows from (3.5), (3.8) and (3.9) that limn!1kxn � Txnk ¼ 0. Since the se-
quence fxng is bounded there exists a subsequence fxnkg of fxng such that
xnk * q, for some q 2 C. Now limn!1kxn � Txnk ¼ 0 and Proposition 2.7 imply
that Tq ¼ q, that is, q 2 FixðTÞ. We next show that fxng converges weakly to q.
For this end, take another subsequence fxmk

g of fxng converging weakly to some
q0 2 C. Again, as above, we conclude that q0 2 FixðTÞ. Finally, we show that
q ¼ q0. Since limn!1kxn � pk exists for every p 2 FixðTÞ and since q; q0 2 FixðTÞ,
by Lemma 2.2(c), we get
lim
n!1
kxn � qk2 ¼ lim

k!1
kxnk � qk2 ¼ lim

k!1
kxnk � q0k2 þ kq� q0k2

¼ lim
k!1
kxmk

� q0k2 þ kq� q0k2 ¼ lim
k!1
kxmk

� qk2 þ 2kq� q0k2

¼ lim
n!1
kxn � qk2 þ 2kq� q0k2:
Therefore q ¼ q0 and this completes the proof. h

If bn ¼ 1, for all n P 0, in similar way to the proof of Theorem 3.1, one can
establish the weakly convergent of iterative sequence generated by the Mann iter-
ation method (1.9) and we omit its proof.

Theorem 3.2. Let C; H; T and the sequence fang be the same as in Theorem 3.1.
Suppose

P1
n¼1ðc2nðpÞ � 1Þ <1 for each p 2 FixðTÞ. Then the sequence fxng

generated by the modified Mann iteration method (1.9) converges weakly to a
fixed point of T.

Since every asymptotically nonexpansive mapping is uniformly Lipschitzian, by
using Theorem 3.1, we obtain the following theorems for asymptotically nonex-
pansive mappings.

Theorem 3.3. Let C be a closed convex subset of a real Hilbert space H and let
T : C! C be an asymptotically nonexpansive mapping with FixðTÞ– ; and
fcng# ½1;þ1Þ ðn 2 NÞ satisfying limn!1cn ¼ 1. Suppose the sequence fang and
fbng are chosen so that lim supn!1an < 1, lim supn!1bn < 1 and lim infn!1bn > 0.
If,
P1

n¼1ðc4n � 1Þ <1, then the sequence fxng generated by the modified Ishikawa
iteration method (1.8) converges weakly to a fixed point of T.
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Theorem 3.4. Suppose that C, H, T and the sequence fang are the same as in The-
orem 3.3 and

P1
n¼1ðc2n � 1Þ <1. Then the sequence fxng generated by the modified

Mann iteration method (1.9) converges weakly to a fixed point of T.
4. Algorithms and strong convergence theorems

In view of Theorems 3.1 and 3.3, we note that the modified Ishikawa iteration
method (1.8) in general is not strongly convergent for either pointwise asymptoti-
cally nonexpansive mappings or asymptotically nonexpansive mappings. So to get
strong convergence one has to modify the iteration (1.8). In this section, we intro-
duce some hybrid iterative algorithms which are just involving one closed convex
set for pointwise assymptotically nonexpansive mappings and assymptotically non-
expansive mappings in Hilbert spaces. We also prove the strongly convergent of the
sequences generated by the proposed monotone hybrid methods in Hilbert spaces.

Algorithm 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let for each i 2 N, Ti : C! C be a uniformly Li-Lipschitzian and pointwise
asymptotically nonexpansive mapping with FixðTiÞ – ; and ci;n : C! ½1;þ1Þ
ðn 2 NÞ such that limn!1ci;nðxÞ ¼ 1, for all x 2 C. Suppose that fai;ng1n¼0 and
fbi;ng1n¼0ði 2 NÞ are appropriate control sequences in ð0; 1Þ and let
F :¼

T1
i¼1FixðTiÞ–;. Define the sequence fxng by the following manner:
x0 2 H chosen arbitrarily;

Ci;1 ¼ C; C1 ¼
T1
i¼1

Ci;1; x1 ¼ PC1
x0;

yi;n ¼ ai;nxn þ ð1� ai;nÞTn
i zn;

zn ¼ bi;nxn þ ð1� bi;nÞTn
i xn;

Ci;nþ1 ¼ fz 2 Ci;n : kyi;n � zk2 6 kxn � zk2

�bi;nð1� ai;nÞð1� bi;nÞc2i;nðpÞkTn
i xn � xnk2 þ hi;ng;

Cnþ1 ¼
T1
i¼1

Ci;nþ1; n P 1;

xnþ1 ¼ PCnþ1x0; n P 0;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð4:1Þ
where for each i 2 N and n P 0, hi;n ¼ ð1� ai;nÞðc4i;nðpÞ � 1Þr2
n; rn ¼

supn2Nfkxn � zk : z 2 Fg <1.

Now, we verify the strongly convergent of the sequence fxng, generated by the
hybrid iterative Algorithm 4.1 for a countable family uniformly Lipschitzian and
pointwise asymptotically nonexpansive mappings in a Hilbert space.

Theorem 4.2. Let C, H, Ti, F, hi;n, rn and the sequences fai;ng1n¼0 and fbi;ng1n¼0 for
n P 0 and i 2 N, be the same as in Algorithm 4.1. If lim supn!1ai;n < 1,
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lim supn!1bi;n < 1 and lim infn!1bi;n > 0, for each i 2 N, then the sequence fxng
generated by Algorithm 4.1 converges strongly to PFx0.

Proof. First, from Proposition 2.10, we note that FixðTiÞ is a closed convex subset
of C, for each i 2 N. So F is a nonempty closed convex subset of C. This implies
that the projection PF is well defined. Now, we show that Cn is closed and convex
for all n P 1. For this end, we prove by induction on n that for each i 2 N, Ci;n is
closed and convex. For n ¼ 1, Ci;1 ¼ C is closed and convex. Assume that Ci;n is
closed and convex for some n 2 N. It follows from the definition Ci;nþ1 and Lemma
2.3 that Ci;nþ1 is also closed and convex. Hence Ci;n is closed and convex for all
n 2 N. So Cn is closed and convex for all n 2 N. Next we show that F#Cn, for
each n P 1. By using Lemma 2.2(b), for each p 2 F, i 2 N and n P 1, we have
kyi;n � pk2 ¼ kai;nðxn � pÞ þ ð1� ai;nÞðTn
i zn � pÞk2

6 ai;nkxn � pk2 þ ð1� ai;nÞkTn
i zn � pk2

6 ai;nkxn � pk2 þ ð1� ai;nÞc2i;nðpÞkzn � pk2 ð4:2Þ
and
kzn� pk2 ¼ kbi;nðxn� pÞ þ ð1� bi;nÞðTn
i xn� pÞk2

¼ bi;nkxn� pk2þ ð1� bi;nÞkTn
i xn� pk2� bi;nð1� bi;nÞkxn�Tn

i xnk2

6 bi;nkxn� pk2þ ð1� bi;nÞc2i;nðpÞkxn� pk2� bi;nð1� bi;nÞkxn�Tn
i xnk2

¼ kxn� pk2þ ð1� bi;nÞðc2i;nðpÞ � 1Þkxn� pk2

� bi;nð1� bi;nÞkxn�Tn
i xnk2: ð4:3Þ
Substituting (4.3) in (4.2) yields
kyi;n� pk2 6 ai;nkxn� pk2þð1� ai;nÞc2i;nðpÞ½kxn� pk2

þð1�bi;nÞðc2i;nðpÞ� 1Þkxn� pk2�bi;nð1�bi;nÞkxn�Tn
i xnk2�

¼ ½ai;nþð1� ai;nÞc2i;nðpÞþ ð1� ai;nÞð1�bi;nÞc2i;nðpÞðc2i;nðpÞ� 1Þ�kxn

� pk2�bi;nð1� ai;nÞð1�bi;nÞc2i;nðpÞkxn�Tn
i xnk2

6 ½1þð1� ai;nÞðc2i;nðpÞ� 1Þþ ð1� ai;nÞc2i;nðpÞðc2i;nðpÞ� 1Þ�kxn

� pk2�bi;nð1� ai;nÞð1�bi;nÞc2i;nðpÞkxn�Tn
i xnk2

6 kxn� pk2�bi;nð1� ai;nÞð1�bi;nÞc2i;nðpÞkxn�Tn
i xnk2þ hi;n: ð4:4Þ
Therefore, p 2 Ci;n for each i 2 N and n P 1. This implies that F#Cn for each
n P 1 and so Cn–;. Hence, the sequence fxng is well defined. It follows from
xn ¼ PCn

x0, Cnþ1 #Cn and xnþ1 2 Cn that
kxn � x0k 6 kxnþ1 � x0k; 8n P 1: ð4:5Þ
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Since F#Cn, for each n P 1, one has
kxn � x0k 6 kz� x0k; 8z 2 F; 8n P 1: ð4:6Þ
The inequalities (4.5) and (4.6) imply that the sequence fxn � x0g is bounded and
nondecreasing, hence limn!1kxn � x0k exists. Now, we verify that limn!1kxnþ1�
xnk ¼ 0. For m > n, by the definition of Cn, we have xm ¼ PCm

x0 2 Cm #Cn. By
Lemma 2.6, we obtain that
kxm � xnk2 6 kxm � x0k2 � kxn � x0k2: ð4:7Þ
Since limn!1kxn � x0k exists, (4.7) implies that limn!1kxm � xnk ¼ 0. Hence fxng
is a cauchy sequence in C and so xn ! z0 2 C as n!1. Therefore,
limn!1kxnþ1 � xnk ¼ 0.

Now, we show that limn!1kxn � Tixnk ¼ 0, for each i 2 N. Let i; n 2 N. Since
xnþ1 2 Ci;n, it follows from the definition of Ci;n that
kyi;n � xnþ1k2 6 kxn � xnþ1k2 � bi;nð1� ai;nÞð1� bi;nÞc2i;nðpÞkxn � Tn
i xnk2 þ hi;n

6 kxn � xnþ1k2 þ hi;n: ð4:8Þ
From hi;n ! 0, kxn � xnþ1k ! 0 as n!1, and (4.8) we deduce that kyn;i�
xnþ1k ! 0, as n!1. On the other hand, we can rewrite (4.8) as below:
bi;nð1� ai;nÞð1� bi;nÞc2i;nðpÞkxn � Tn
i xnk2

6 kxn � xnþ1k2 � kyi;n � xnþ1k2 þ hi;n: ð4:9Þ
Since lim supn!1ai;n < 1, lim supn!1bi;n < 1 and lim infn!1bi;n > 0, for each i 2 N,
we can choose � > 0 such that for each i 2 N, we have ai;n < 1� � and � < bi;n <
1� �, for large enough n 2 N. It follows from (4.9) that
kxn � Tn
i xnk2 6

1

�3
ðkxn � xnþ1k2 � kyi;n � xnþ1k2 þ hi;nÞ ! 0; ð4:10Þ
as n!1. From Li-Lipschitzian of Ti ði 2 NÞ, we conclude that
kxn � Tixnk 6 kxn � xnþ1k þ kxnþ1 � Tnþ1
i xnþ1k þ kTnþ1

i xnþ1

� Tnþ1
i xnk þ kTnþ1

i xn � Tixnk
6 kxnþ1 � xnk þ kxnþ1 � Tnþ1

i xnþ1k þ Lkxnþ1 � xnk
þ LkTn

i xn � xnk: ð4:11Þ
The inequalities (4.10), (4.11) and the fact that limn!1kxnþ1 � xnk ¼ 0 imply that
limn!1kxn � Tixnk ¼ 0, for each i 2 N. It follows from the boundedness of fxng,
Proposition 2.7 and limn!1kTixn � xnk ¼ 0ði 2 NÞ, that ;–xwðxnÞ#FðTiÞ, for
each i 2 N, hence ; – xwðxnÞ#F. From (4.6) conclude that kxn � x0k 6
ku� x0k for each n P 1, where u ¼ PFx0. Now, Lemma 2.5 guarantees that
xn ! u, as n!1. This completes the proof. h
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Remark 4.3. In the weak convergence result of the iteration process (1.8) for
pointwise asymptotically nonexpansive mappings T (Theorem 3.1), there is a
restriction on the sequence of mappings cn : C! ½1;1Þ ðn 2 NÞ that is the
assumption
X1
n¼1
ðc4nðpÞ � 1Þ <1; 8p 2 FixðTÞ;
while in Theorem 4.2 we do not need this assumption.

If bi;n ¼ 1, for all i 2 N and n P 0, then Algorithm 4.1 reduces to the following
algorithm which is involving the modified Mann iteration for a countable family
uniformly Lipschitzian and pointwise asymptotically nonexpansive mappings in a
Hilbert space.

Algorithm 4.4. Let C, H, Ti and fai;ng1n¼0 ði 2 NÞ be the same as in Algorithm 4.1
and suppose that F ¼

T1
i¼1FixðTiÞ–;. Define the sequence fxng by the following

manner:
x0 2 H chosen arbitrarily;

Ci;1 ¼ C; C1 ¼
T1
i¼1

Ci;1; x1 ¼ PC1
x0;

yi;n ¼ ai;nxn þ ð1� ai;nÞTn
i xn;

Ci;nþ1 ¼ fz 2 Ci;n : kyi;n � zk2 6 kxn � zk2 þ hi;ng;

Cnþ1 ¼
T1
i¼1

Ci;nþ1; n P 1;

xnþ1 ¼ PCnþ1x0; n P 0;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
where for each i 2 N and n P 0, hi;n ¼ ð1� ai;nÞðc2i;nðpÞ � 1Þr2
n, rn ¼ supn2N

fkxn � zk : z 2 Fg <1.

Theorem 4.5. Let C, H, Ti and the sequences fai;ng1n¼0 ði 2 NÞ, be the same as in
Algorithm 4.4. If lim supn!1ai;n < 1, for each i 2 N, then the sequence fxng gener-
ated by Algorithm 4.4 converges strongly to PFx0.

If Ti ¼ T, and ai;n ¼ an, for each i 2 N and n P 0, then Algorithm 4.4 reduces to
the following modified Mann iteration algorithm involving a pointwise asymptot-
ically nonexpansive mapping.

Algorithm 4.6. Let C, H be the same as in Algorithm 4.1 and T : C! C be a
pointwise asymptotically nonexpansive mapping with FixðTÞ–; and
cn : C! ½1;1Þ satisfying limn!1cnðxÞ ¼ 1, for all x 2 C. Define the sequence
fxng by the following manner:



Weak and strong convergence theorems of modified 167
x0 2 H chosen arbitrarily;

yn ¼ anxn þ ð1� anÞTnxn;

Cnþ1 ¼ fz 2 Cn : kyn � zk2 6 kxn � zk2 þ hng;
xnþ1 ¼ PCnþ1x0; n P 0;

8>>><
>>>:
where hn ¼ ð1� anÞðc2nðpÞ � 1Þr2
n, rn ¼ supn2Nfkxn � zk : z 2 Fg <1.

Theorem 4.7. Let C, H, T, F and the sequence fang1n¼0, be the same as in Algorithm
4.6. If lim supn!1an < 1, then the sequence fxng generated by Algorithm 4.6 con-
verges strongly to PFx0.

Algorithm 4.8. Let C be a nonempty closed convex subset of a real Hilbert space
H and let Ti : C! Cði 2 NÞ be an asymptotically nonexpansive mapping with
FixðTiÞ–; and fci;ng

1
n¼0 # ½1;þ1Þ ði 2 NÞ satisfying limn!1ci;n ¼ 1, for each

i 2 N. Assume that fai;ng1n¼0 and fbi;ng
1
n¼0ði 2 NÞ are appropriate control sequences

in ð0; 1Þ and suppose that F ¼
T1

i¼1FixðTiÞ–;. Define the sequence fxng as follows:
x0 2 H chosen arbitrarily;

Ci;1 ¼ C; C1 ¼
T1
i¼1

Ci;1; x1 ¼ PC1
x0;

yi;n ¼ ai;nxn þ ð1� ai;nÞTn
i zn;

zn ¼ bi;nxn þ ð1� bi;nÞTn
i xn;

Ci;nþ1 ¼ fz 2 Ci;n : kyi;n � zk2 6 kxn � zk2

�bi;nð1� ai;nÞð1� bi;nÞc2i;nkTn
i xn � xnk2 þ hi;ng;

Cnþ1 ¼
T1
i¼1

Ci;nþ1; n P 1;

xnþ1 ¼ PCnþ1x0; n P 0;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
where for each i 2 N and n P 0, hi;n ¼ ð1� ai;nÞðc4n;i � 1Þr2
n, rn ¼ supn2Nfkxn�

zk : z 2 Fg <1.

Theorem 4.9. Suppose C, H, Ti, F and the sequences fai;ng1n¼0 and fbi;ng
1
n¼0 ði 2 NÞ

are the same as in Algorithm 4.8. If lim supn!1ai;n < 1, lim supn!1bi;n < 1 and
lim infn!1bi;n > 0, for each i 2 N, then the sequence fxng generated by Algorithm
4.8 converges strongly to PFx0.

If bi;n ¼ 1, for all i 2 N and n P 0, then Algorithm 4.8 collapses to the following
algorithm which is involving the modified Mann iteration for a countable family
uniformly Lipschitzian and asymptotically nonexpansive mappings in a Hilbert
space.

Algorithm 4.10. Let C, H, Ti and fai;ng1n¼0 ði 2 NÞ be the same as in Algorithm 4.8
and assume that F ¼

T1
i¼1FixðTiÞ–;. Define the sequence fxng as below:
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x0 2 H chosen arbitrarily;

Ci;1 ¼ C; C1 ¼
T1
i¼1

Ci;1; x1 ¼ PC1
x0;

yi;n ¼ ai;nxn þ ð1� ai;nÞTn
i xn;

Ci;nþ1 ¼ fz 2 Ci;n : kyi;n � zk2 6 kxn � zk2 þ hi;ng;

Cnþ1 ¼
T1
i¼1

Ci;nþ1; n P 1;

xnþ1 ¼ PCnþ1x0; n P 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:12Þ
where for each i 2 N and n P 0, hi;n ¼ ð1� ai;nÞðc2i;n � 1Þr2
n,

rn ¼ supn2Nfkxn � zk : z 2 Fg <1.

If Ti ¼ T, and ai;n ¼ an, for each i 2 N and n P 0, then the modified Mann iter-
ation (4.12) reduces to the modified Mann iteration processes (1.6) introduced by
Inchan (2008).

Corollary 4.11. [Theorem 3.1, Inchan, 2008]. Let H be a Hilbert space and let C be
a nonempty closed convex subset of H. Let T be an asymptotically nonexpansive
mapping of C into itself such that FixðTÞ – ;. If lim supn!1an < 1, then the
sequence fxng generated by (1.6) converges strongly to z0 ¼ PFixðTÞx0.

If for each i 2 N, Ti ¼ T be a nonexpansive mapping and ai;n, for each i 2 N

and n P 0, be the same as in Algorithm 4.10, then the modified Mann iteration
(4.12) reduces to the modified Mann iteration processes (1.5) introduced by
Takahashi et al. (2008).

Corollary 4.12. [Takahashi et al. (2008), Theorem 4.1]. Let H be a Hilbert space
and let C be a nonempty closed convex subset of H. Let T be a nonexpansive
mapping of C into itself such that FixðTÞ–;. If 0 6 an 6 a < 1 for all n 2 N, then
the sequence fxng generated by (1.6) converges strongly to z0 ¼ PFixðTÞx0.
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