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Abstract. In this work, we establish some existence theorems for solutions to a new

class of vector implicit quasi complementarity problems and the corresponding vector

implicit quasi variational inequality problems. Further we introduce the notion of a

local non-positivity of a pair of mappings (F , Q) and consider the existence and prop-

erties of solutions for vector implicit quasi variational inequality problems and the cor-

responding vector implicit quasi complementarity problems in the neighborhood of a

given point belonging to an underlined domain K.
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1. INTRODUCTION

The complementarity problem theory was introduced and studied by Lemke [19] and
Cottle and Dantzig [3] in 1960. Also, in the 1960s, variational inequality was intro-
duced by Hartman and Stampacchia [9] and Browder [1]. In 1971, Karamardian [14]
firstly considered the equivalence of some scalar complementarity problems with solu-
tion sets C(F,K) = {x 2 K: F(x) 2 Kw, Æx,F(x)æ = 0} and some scalar variational type
problems with solution sets V(F,K) = {x 2 K: Æu � x,F(x)æ P 0 for all u 2 K} for a
mapping F defined on a closed convex cone K in a locally convex Hausdorff topolog-
ical vector space X to a vector space Y. Since then, there have been much research
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[2,4,6–8,11,12,15–18,20–24] on the equivalence between a range of many kinds of
complementarity problems and corresponding variational inequality problems under
suitable different conditions. Solutions of these class of problems have extensive and
important applications in vector optimization, optimal control, mathematical pro-
graming, operations research, and equilibrium problem of economics. Inspired and
motivated by the above applications, various generalized variational inequality prob-
lems, the generalized complementarity problems have become important developed
directions of variational inequality theory (for example, see [3,4,14]).

In 2001, Yin et al. [25] introduced a class of F-complementarity problems, which
consist in finding x 2 K such that
hTx; xi þ FðxÞ ¼ 0; hTx; yi þ FðyÞP 0; 8y 2 K;
where X is a Banach space with topological dual X*, and Æ.,.æ duality pairing between
them, K a closed convex cone of X, and T: K fi X*, F : K! R. They obtained an exis-
tence theorem for solving F-complementarity problems and also proved that if F is
positively homogeneous (i.e. F(tx) = tF(x) for all t> 0 and x 2 K), the F-complemen-
tarity problem is equivalent to the following generalized variational inequality problem
which consists in finding x 2 K such that
hTx; y� xi þ FðyÞ � FðxÞP 0; 8y 2 K:
In 2003, Fang and Huang [6] introduced a class of vector F-complementarity problems
and investigated the solvability of the class for demipseudomonotone mappings and
finite-dimensional continuous mappings in reflexive Banach spaces. Later, Huang
and Li [12] introduced a class of scalar F-implicit complementarity problems and the
corresponding variational inequality problems in Banach spaces. In 2006, Li and
Huang [20] extended the result in [12] to the vector case and presented the equivalence
between the vector F-implicit complementarity problems and the corresponding vector
F-implicit variational inequality problems. They obtained some existence theorems for
solutions for their problems.

Recently, Lee et al. [18] extended Li and Huang’s results in the setting of set-valued
mapping. They studied a class of vector F-implicit complementarity problems and
established some existence results in topological vector spaces without considering
the continuity or the monotonicity on mappings. Recently, Wu and Huang [22] intro-
duced a class of mixed vector F-implicit complementarity problems and the corre-
sponding mixed vector F-implicit variational inequality problems. They derived some
existence theorems of solutions for the mixed vector F-implicit complementarity prob-
lems and the mixed vector F-implicit variational inequality problems by using Fan-
KKM theorem under some suitable assumptions without the monotonicity in the
neighborhood of a given point belonging to an underlined domain K of the set-valued
mappings, where the neighborhood is contained in K.

Very recently, Khan [16] introduced and studied the following vector implicit quasi
complementarity problem of finding x 2 K such that
hNðAx;TxÞ; gðxÞi þ FðgðxÞ; gðxÞÞ ¼ 0
and
hNðAx;TxÞ; hðyÞi þ FðhðyÞ; gðxÞÞ 2 PðxÞ; 8y 2 K;
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and the following vector implicit quasi variational inequality problem of finding x 2 K
such that
hNðAx;TxÞ; hðyÞ � gðxÞi þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 PðxÞ; 8y 2 K;
where K is a nonempty closed and convex subset of a Banach space X, P: K fi 2Y is a
set-valued mapping with nonempty convex cone values, L(X,Y) is the space of all
continuous linear mappings from X into Y and N: L(X,Y) · L(X,Y) fi L(X,Y), A,
T: K fi L(X,Y), g, h: K fi K and F: K · K fi Y are the mappings. He investigated
the nonemptiness and closeness of solution sets of the problems and proved that solu-
tion sets of both the problems are equivalent to each other under some suitable
conditions.

Motivated by the recent work going in this direction, in this work we introduce a
class of vector implicit quasi variational inequality problem and the corresponding
vector implicit quasi complementarity problems in real Banach spaces. Further by
using Fan-KKM theorem, we investigate the nonemptiness and closeness of solution
sets of those problems. Furthermore, we introduce the notion of a local non-positivity
of two mappings (F, Q) and consider the existences and properties of solutions for
vector implicit quasi variational inequality problems and the corresponding vector
implicit quasi complementarity problems in the neighborhood of a point belonging
to an underlined domain K. The results presented in this work improve and generalize
some recent results due to Wu et al. [22], Khan [16], Farajzadeh et al. [24],
Lee et al. [18].

2. PRELIMINARIES

Throughout this paper unless otherwise specified, let X and Y be real Banach spaces
and K be a nonempty convex subset of X. A nonempty subset P ˝ Y is said to be cone
if (i) P + P = P, (ii) kP ˝ P, for all k P 0. A cone P is said to be pointed whenever
P \ (�P) = {0}. An ordered Banach space (Y,P) is a real Banach space Y with an
ordering defined by a cone P ˝ Y with an apex at the origin in the form of
x 6 y() y� x 2 P:
Let g, h: K fi K be mappings, Q, F: K · K fi Y be bi-mappings and P: K fi 2Y be a
set-valued mapping with nonempty convex cone values. In this paper, we consider
the following vector implicit quasi complementarity problem (VIQCP) of finding
x 2 K such that
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ ¼ 0 and Qðx; hðyÞÞ þ FðhðyÞ; gðxÞÞ 2 PðxÞ; 8y 2 K:
Some special cases:

(i) If Q : K � K ! R; F : K ! R and P ðxÞ ¼ Rþ; 8x 2 K, then (VIQCP) reduces to
the following F-implicit complementarity problem; finding x 2 K such that
Qðx; gðxÞÞ þ FðgðxÞÞ ¼ 0 and Qðx; hðyÞÞ þ FðhðyÞÞP 0; 8y 2 K:
which was considered by Wu et al. [22];
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(ii) Let N: L(X,Y) · L(X,Y) fi L(X,Y), A, T: K fi L(X,Y), g, h: K fi K and F: K ·
K fi Y be the mappings. If we set Q(x,y) = ÆN(Tx,Ax),yæ, then (VIQCP) reduces
the following vector implicit quasi complementarity problem; finding x 2 K such
that
hNðAx;TxÞ; gðxÞi þ FðgðxÞ; gðxÞÞ ¼ 0
and
hNðAx;TxÞ; hðyÞi þ FðhðyÞ; gðxÞÞ 2 PðxÞ; 8y 2 K;
which was considered by Khan [16]; if A, T, h and g are the identity mappings, then we
have the following vector quasi complementarity problem; finding x 2 K such that
hNðx; xÞ; xi þ Fðx; xÞ ¼ 0
and
hNðx; xÞ; yi þ Fðy; xÞ 2 PðxÞ; 8y 2 K;
which was considered by Khan [15];
(iii) If g, h are identity mappings and P ðxÞ ¼ Rþ; 8x 2 K, then (VIQCP) reduces to the

complementarity problem (CP) which consists of finding x 2 K such that
Qðx; xÞ þ Fðx; xÞ ¼ 0 and Qðx; yÞ þ Fðy; xÞP 0; 8y 2 K;
which appears to be new.

Also we consider the following corresponding vector implicit quasi variational
inequality problem (VIQVIP) of finding x 2 K such that
Qðx; hðyÞÞ �Qðx; gðxÞÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 PðxÞ; 8y 2 K:
In the rest of this section, we recall some definitions and a preliminary result which is
used in the next section.

Definition 2.1. Let K be a nonempty convex subset of a vector space X and M: K fi Y
be a mapping. M is said to be k-positively homogenous of degree r if F(kx) = kr F(x),
"x 2 K and for some k P 0.

Definition 2.2. LetK be a nonempty subset of a topological vector space X. A set-valued
mapping T:K fi 2X is said to be a KKMmapping, if every finite subset {x1,x2, . . . ,xn} of
K, cofx1; x2; . . . ; xng#

Sn
i¼1TðxiÞ, where co denotes the convex hull.

Theorem 2.3. [5] Let K be a nonempty subset of topological vector space X. Let T:
K fi 2X be a KKM-mapping such that for any y 2 K, T(y) is closed and T(y*) is compact
for some y* 2 K. Then there exists x* 2 K such that x* 2 T(y) for all y 2 K.

Lemma 2.4. Let (Y,P) be an ordered Banach space induced by a pointed, closed and
convex cone P. Then x 2 P and y 2 P imply that x + y 2 P for all x,y 2 Y.
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3. MAIN RESULTS

The following result due to Karamardian [14] is the first work on the equivalence of
complementarity problems and the corresponding variational inequality problems.

Theorem 3.1. Let K be a closed convex cone in a locally convex Hausdorff topological
vector space X and Y be a vector space. Let F: K fi Y be a mapping and Kw = {y 2 Y:
Æx,yæ P 0 for all x 2 K} be the polar of K in Y. Then the solution set C(F,K) = {x 2 K:
F(x) 2 Kw, Æx, F(x)æ P 0} for complementarity problems and the solution set
V(F,K) = {x 2 K: Æu � x,F(x)æ P 0 for all u 2 K} for the corresponding variational
inequality problems are the same.
3.1. Equivalence of (VIQVIP) and (VIQCP)

Now we establish the equivalence between (VIQCP) and (VIQVIP) under some
suitable conditions.

Theorem 3.2.

(i) If x solves (VIQCP), then x solves (VIQVIP).
(ii) Assume that Q, F: K · K fi Y are 2-positively homogeneous of degree 1 in the sec-

ond variable and in the first variable, respectively, and the mapping h is onto. If x
solves (VIQVIP), then x solves (VIQCP).

Proof

(i) Let x 2 K be the solution of (VIQCP), then there exists x 2 K such that
Qðx;gðxÞÞ þFðgðxÞ;gðxÞÞ ¼ 0 and Qðx;hðyÞÞ þFðhðyÞ;gðxÞÞ 2 PðxÞ; 8y 2 K:
Now
Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ
¼ Qðx; hðyÞÞ þ FðhðyÞ; gðxÞÞ � ½Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ� 2 PðxÞ;
for all y 2 K. Thus x 2 K is the solution of (VIQVIP).
(ii) Now, let x 2 K be the solution of (VIQVIP), then
Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ
2 PðxÞ; 8y 2 K: ð3:1:1Þ
Since Q(x, 2y) = 2Q(x,y) and F(2x,y) = 2F(x,y), for all x,y 2 K, it follows that
F(0,y) = 0 and Q(x, 0) = 0 and since h is onto, therefore there exists y,y0 2 K such that
h(y) = 0, h(y0) = 2g(x). By substituting h(y) = 0 and h(y0) = 2g(x) in (3.1.1), we get
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ 2 �PðxÞ;
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ 2 PðxÞ;
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and hence
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ 2 PðxÞ \ �PðxÞ:

Since P(x) is a pointed cone, we have
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ ¼ 0: ð3:1:2Þ

Thus by (3.1.1) and (3.1.2), we have
Qðx; hðyÞÞ þ FðhðyÞ; gðxÞÞ ¼ Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ
� FðgðxÞ; gðxÞÞ þQðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ

¼ Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ
� FðgðxÞ; gðxÞÞ

2 PðxÞ;
which implies that x solves (VIQCP). This completes the proof. h

Remark 3.3. K need not be convex in the proof process. In fact, K ¼ N [ f0g, as a
subset of X ¼ R, is not convex, but it satisfies that 0 2 K and 2K � K.

The following example shows that the assumption that h is onto in Theorem 3.2 is
essential.

Example 3.4. Let X ¼ Y ¼ K ¼ R; PðxÞ ¼ ½0;1Þ for all x 2 K, h(x) = g(x) = 1,
Q(x,y) = x2y2, F(x,y) = x + y for all x,y 2 K. Then
Qðx; gðxÞÞ þ FðgðxÞ; gðxÞÞ ¼ x2 þ 2 ¼ 0;
which shows that (VIQCP) does not have any solution, while every member of K is a
solution of (VIQVIP).

The following example shows that the positive homogeneity of Q and F are essential.

Example 3.5. Let X ¼ Y ¼ R; K ¼ R; Fðx; yÞ ¼ 1 and g(x) = h(x) = x, for all x,
y 2 K, and Q: K · K fi Y be a mapping defined by
Qðx; yÞ ¼
0; x ¼ 0;

1; otherwise:

�

Obviously, x = 0 is a solution of (VIQVIP) but is not a solution of (VIQCP).

The following example shows that Q is 2-positive homogeneous of degree 1. Hence it
satisfies the assumption of Theorem 3.2, but does not satisfy the assumption of the
corresponding results in [8,10,13,18,20].

Example 3.6. Let X ¼ Y ¼ R; K ¼ R; gðxÞ ¼ hðxÞ ¼ x, for all x 2 K and F(x,y) = 0,
for all x, y 2 K. Let Q: K · K fi Y be defined by
Qðx; yÞ ¼
y; if x rational;

0; if x irrational:

�
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3.2. The existence of solutions to (VIQVIP) and (VIQCP)

Now, by using the Fan-KKM Theorem 2.3, we have the following existence result for
(VIQVIP).

Theorem 3.7. Let K be the nonempty closed and convex subset of X. Assume that

(a) the mappings Q,F: K · K fi Y and g,h: K fi K are continuous;
(b) there exists a mapping H: K · K fi Y such that
(i) H(x,x) 2 P(x), "x 2 K;
(ii) Q(x,h(y)) � Q(x,g(x)) + F(h(y),g(x)) � F(g(x),g(x)) � H(x,y) 2

P(x), for all x,y 2 K;
(iii) the set {y 2 K: H(x,y) R P(x)} is convex for all x 2 K;
(c) there exists a nonempty, compact set D of K such that for each x 2 KnD, there
exists y 2 D such that
Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ R PðxÞ:
Then the solution set of (VIQVIP) is nonempty and closed.

Proof. We define a set-valued mapping G: K fi 2K by
GðyÞ ¼ fx 2 D : Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ
2 PðxÞg; 8y 2 K:
By the assumption (a), for any y 2 K, G(y) is closed in D. Since every element
x 2 ˙ y2KG(y) is a solution of (VIQVIP), we have to show that ˙y2KG(y) „ ;. Since
D is compact, it is sufficient to prove that the family {G(y)}y2K has the finite
intersection property. Let {y1,y2, . . .,yn} be a finite subset of K and set
B :¼ coðD [ fy1; y2; . . . ; yngÞ, where co denotes the closure of co. Then B is a compact
and convex subset of K.

Define two set-valued mappings F1,F2: B fi 2B by
F1ðyÞ ¼ fx 2 B : Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 PðxÞg
and
F2ðyÞ ¼ fx 2 B : Hðx; yÞ 2 PðxÞg; for all y 2 B:
From the conditions (i) and (ii) of (b), we have H(y,y) 2 P(y) and
Qðy; hðyÞÞ �Qðy; gðyÞÞ þ FðhðyÞ; gðyÞÞ � FðgðyÞ; gðyÞÞ �Hðy; yÞ 2 PðyÞ:

Now Lemma 2.4 implies
Qðy; hðyÞÞ �Qðy; gðyÞÞ þ FðhðyÞ; gðyÞÞ � FðgðyÞ; gðyÞÞ 2 PðyÞ

and so F1(y) is nonempty. Similarly, we can prove that for any y 2 B,F1(y) is closed.
Since F1(y) is a closed subset of a compact set B, we know that F1(y) is compact.
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To show that F2(y) is a KKM-mapping. Suppose that there exists a finite subset
{u1,u2, . . .,un} of B and ki P 0 (i = 1,2, . . .,n) with

Pn
i¼1ki ¼ 1 such that
u ¼
Xn
i¼1

kiui R
[n
j¼1

F2ðujÞ:
Since H(u,uj) R P(u) for j= 1, 2, . . .,n and {y 2 K: H(x,y) R P(x)} is convex, it follows
that
H u;
Xn
i¼1

kiui

 !
¼ Hðu; uÞ R PðuÞ;
which is a contradiction to the assumption (i) of (b). Therefore F2(y) is a KKM-
mapping. On the other hand, from the assumption (ii) of (b) and the fact that P(x)
is a cone, we have F2(y) � F1(y) for all y 2 B. Hence F1 is also a KKM mapping. Since
F1(y) is a closed subset of a compact set B and thus F1(y) is compact. By Theorem 2.3
\

y2B
F1ðyÞ– ;:
By assumption (c), each element of ˙y2BF1(y) cannot belong to KnD but to D. There-
fore ˙y2B F1(y) � G(yi) for i = 1,2, . . .,n, that is,

Tn
i¼1GðyiÞ – ;. Hence {G(y): y 2 K} is

a family of closed subsets of the compact subset D, having the finite intersection prop-
erty. Therefore ˙y2KG(y) „ ; and it is a compact subset of K. That is, there exists x 2 K
such that
Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 PðxÞ; 8y 2 K:
Since Q, F, g and h are continuous, the solution set of (VIQVIP) is obviously closed.
Let D = K in the condition (c) of Theorem 3.7, then we have the following

result. h

Theorem 3.8. Let K be a nonempty, compact and convex subset of X and assume that the
conditions (a) and (b) of Theorem 3.7 hold, then (VIQVIP) has a solution.

Proof. The conclusion follows directly from Theorem 3.7. h

Theorem 3.9. Assume that Q, F: K · K fi Y are 2-positively homogeneous of degree 1 in
the second variable and in the first variable, respectively, and h is onto. If all the
assumptions of Theorem 3.7 are satisfied, then (VIQCP) has a solution. Furthermore,
the solution set of (VIQCP) is closed.

Proof. The conclusion follows directly from Theorems 3.2 and 3.7. h
3.3. The existence results in the neighborhood of a given point

Usually, it is not easy to find the exact solution to given complementarity problems and
variational inequality problems. However, in this section, we try to find some
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neighborhood of a given point, in which the solutions exist by considering the notion of
the local non-positivity of a pair (F,Q) of mapping Q, F: K · K fi Y.

Now we introduce a concept of the local non-positivity for a pair (F,Q) of two
bi-mappings Q,F: K · K fi Y.

Definition 3.10. Let K be a nonempty subset of X. If g, h: K fi K are mappings and Q,
F: K · K fi Y bi-mappings, then (F,Q) is said to be locally non-positive at x0 2 K with
respect to (g,h) if there exists a neighborhood N(x0) of x0 and z0 2 K \ intN(x0) such
that
Qðx; hðz0ÞÞ �Qðx; gðxÞÞ þ Fðhðz0Þ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 �PðxÞ; 8x
2 K \ @Nðx0Þ;
where oN(x0) denotes the boundary of N(x0).

Example 3.11. Let X ¼ Y ¼ R; K ¼ ½0; 1Þ and P(x) = [0,1) for all x 2 K. Define map-
pings g, h: K fi K by gðxÞ ¼ x

5
and hðxÞ ¼ x

3
, and bi-mappings Q, F: K · K fi Y by

Q(x,y) = xy and F(x,y) = x + y, then (F,Q) is locally non-positive at x0 = 0 2 K
with respect to (g,h). If we take a neighborhood Nð0Þ ¼ � 1

3
; 1
3

� �
of x0 and

z0 ¼ 1
5
2 K \ int Nð0Þ ¼ 0; 1

3

� �
then for the unique element x ¼ 1

3
of K \ @Nð0Þ ¼ 1

3

� �
we have
Qðx; hðz0ÞÞ �Qðx; gðxÞÞ þ Fðhðz0Þ; gðxÞÞ � FðgðxÞ; gðxÞÞ ¼ xz0
3
� x2

5
þ z0

3
� x

5
¼ 0 2 �PðxÞ:
Theorem 3.12. Let K be the nonempty closed and convex subset of X. Assume that

(a) the mappings Q,F: K · K fi Y and g,h: K fi K are continuous;
(b) there exists a mapping H: K · K fi Y such that
(i) H(x,x) 2 P(x), "x 2 K;
(ii) Q(x,h(y)) � Q(x,g(x)) + F(h(y),g(x)) � F(g(x),g(x)) � H(x,y) 2

P(x), for all x,y 2 K;
(iii) the set {y 2 K: H(x,y) R P(x)} is convex for all x 2 K;
(c) (F,Q) is locally non-positive at x0 2 K with respect to (g,h) and there exists a
nonempty compact set D of K \ N(x0) such that for all x 2 (K \ N(x0))nD there
exists y 2 D such that
Qðx; hðyÞÞ �Qðx; gðxÞÞ þ FðhðyÞ; gðxÞÞ � FðgðxÞ; gðxÞÞ 2 �PðxÞ;

(d) the set {y 2 K: Q(x,h(y)) � Q(x,g(x)) + F(h(y),g(x)) � F (g(x),g(x)) 2

P(x)} is convex for all x 2 K.

Then (VIQVIP) has a solution in the neighborhood of x0, that is, there exists
xw 2 (K \ N(x0))nD such that
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ; 8y 2 K:
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Proof. Since (F,Q) is locally non-positive at x0 2 K with respect to (g,h), without loss
of generality, we can assume that N(x0) is a closed and convex set. Since KnN(x0) is also
closed and convex, from Theorem 3.7, (VIQVIP) has a solution x 2 K \ N(x0) such
that
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ; 8y 2 K \Nðx0Þ ð3:3:1Þ
Now we prove
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ; 8y 2 K:
If xw 2 K \ intN(x0), then N(x0)n{xw} is a neighborhood of the origin and so it is
absorbing. For any y 2 K, there exists t 2 (0,1) such that t(y � xw) 2 N(x0)n{xw}
and so yt = ty+ (1 � t)xw 2 K \ N(x0). It follows from (3.3.1) that
QðxH; hðytÞÞ �QðxH; gðxHÞÞ þ FðhðytÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ 2 PðxHÞ:

From the condition (d), we have
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ 2 PðxHÞ:

Note that (F,Q) is locally non-positive at x0 2 K with respect to g, h. If
xw 2 K \ oN(x0), then there exists z0 2 K \ int N(x0) such that
QðxH; hðz0ÞÞ �QðxH; gðxHÞÞ þ Fðhðz0Þ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 �PðxHÞ: ð3:3:2Þ
Similarly, for any y 2 K, there exists t 2 (0,1) such that t(y � z0) 2 N(x0)n{z0} and so
zt = ty + (1 � t)z0 2 K \ N(x0). It follows from (3.3.1) that
QðxH; hðztÞÞ �QðxH; gðxHÞÞ þ FðhðztÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ: ð3:3:3Þ
Letting t fi 0 in (3.3.3), we obtain
QðxH; hðz0ÞÞ �QðxH; gðxHÞÞ þ Fðhðz0Þ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ: ð3:3:4Þ
Since P is a pointed cone, (3.3.4) with (3.3.2) implies that
QðxH; hðz0ÞÞ �QðxH; gðxHÞÞ þ Fðhðz0Þ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ ¼ 0: ð3:3:5Þ

From the condition (d), we have
tQðxH; hðyÞÞ þ ð1� tÞQðxH; hðz0ÞÞ �QðxH; gðxHÞÞ þ tFðhðyÞ; gðxHÞÞ
þ ð1� tÞFðhðz0Þ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ
2 PðxHÞ: ð3:3:6Þ
From the inclusions (3.3.5) and (3.3.6), we have
tQðxH; hðyÞÞ � tQðxH; gðxHÞÞ þ tFðhðyÞ; gðxHÞÞ � tFðgðxHÞ; gðxHÞÞ 2 PðxHÞ:
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Therefore
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ 2 PðxHÞ:

This completes the proof. h

Letting D = K in the condition (c) of Theorem 3.12, we have the following result.

Theorem 3.13. Let K be a nonempty, compact and convex subset of a real Banach space
X, and assume that the conditions (a), (b) and (d) of Theorem 3.12 and the following
condition hold:

(c0) (F,Q) is locally non-positive at x0 2 K with respect to (g,h). Then (VIQVIP) has
a solution in the neighborhood of x0, that is, there exists x

w 2 K \ N(x0) such that
QðxH; hðyÞÞ �QðxH; gðxHÞÞ þ FðhðyÞ; gðxHÞÞ � FðgðxHÞ; gðxHÞÞ 2 PðxHÞ; 8y 2 K:
Theorem 3.14. Assume that Q, F: K · K fi Y are 2-positively homogeneous of degree 1
in the second variable and in the first variable, respectively, and h is onto. If all the
assumptions of Theorem 3.12 are satisfied, then (VIQCP) has a solution in the neighbor-
hood of x0, that is, there exists xw 2 (K \ N(x0))nD such that
QðxH; gðxHÞÞ þ FðgðxHÞ; gðxHÞÞ ¼ 0
and
QðxH; hðyÞÞ þ FðhðyÞ; gðxHÞÞ 2 PðxHÞ; 8y 2 K:
Proof. The conclusion follows directly from Theorems 3.2 and 3.12. h
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