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Abstract. In this paper we deal with the problem of uniqueness of meromorphic functions
as well as their power which share a small function with their derivatives and obtain some
results which improve and generalize the recent results due to Zhang and Yang (2009) and
Sheng and Zongsheng (2012).
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1. INTRODUCTION DEFINITIONS AND RESULTS

In this paper, by a meromorphic function we will always mean a meromorphic function in
the complex plane C. We adopt the standard notations of Nevanlinna theory of meromorphic
functions as explained in [4]. It will be convenient to let E denote any set of positive real
numbers of finite linear measure, not necessarily same at each occurrence. For a non-constant
meromorphic function h, we denote by T (r, h) Nevanlinna characteristic function of h and
by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}, as r −→ ∞ and r ∉ E.

Let k be a positive integer and a ∈ C ∪ {∞}. We use Nk)(r, a; f) to denote counting
function of a-points of f with multiplicity ≤k, N(k+1(r, a; f) to denote counting function
of a-points of f with multiplicity >k. Similarly Nk)(r, a; f) and N (k+1(r, a; f) are their
reduced functions respectively.

Let f and g be two non-constant meromorphic functions and let a be a complex number.
We say that f and g share a CM, provided that f − a and g − a have the same zeros with the
same multiplicities. Similarly, we say that f and g share a IM, provided that f − aand g − a
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have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if
1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

A meromorphic function a is said to be a small function of f provided that T (r, a) =
S(r, f), that is T (r, a) = o(T (r, f)) as r −→ ∞, r ∉ E.

During the last four decades uniqueness theory of entire and meromorphic functions has
become a prominent branch of value distribution theory (see [12]).

Rubel–Yang [6] proposed to investigate uniqueness of an entire function f under the
assumption that f and its derivative f ′ share two complex values. Subsequently, related
to one or two value sharing similar considerations have been made with respect to higher
derivatives and more general (linear) differential expressions by Brück [1], Gundersen [2],
Mues–Steinmetz [5], Yang [8].

In this direction an interesting problem still open is the following conjecture proposed by
Brück [1]:

Conjecture 1.1. Let f be a non-constant entire function. Suppose

ρ1(f) := lim sup
r→∞

log log T (r, f)
log r

is not a positive integer or infinite. If f and f ′ share one finite value a CM, then

f
′ − a

f − a
= c

for some non-zero constant c.

The case that a = 0 and that N(r, 0; f ′) = S(r, f) had been proved by Brück [1] while
the case that f is of finite order had been proved by Gundersen–Yang [3]. However, the
corresponding conjecture for meromorphic functions fails in general (see [3]).

To the knowledge of the author perhaps Yang–Zhang [10] (see also [13]) were the first to
consider uniqueness of a power of a meromorphic (entire) function F = fn and its derivative
F ′ when they share a certain value as this type of consideration gives the most specific form
of the function.

As a result during the last decade, growing interest has been devoted to this setting of
meromorphic functions. Improving all the results obtained in [10], Zhang [13] proved the
following theorem.

Theorem A ([13]). Let f be a non-constant meromorphic function, n, k be positive integers
and a(z)(≢ 0, ∞) be a meromorphic small function of f . Suppose fn − a and (fn)(k) − a
share the value 0 CM and

(n − k − 1)(n − k − 4) > 3k + 6, (1.1)

then fn ≡ (fn)(k), and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.
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In 2009 Zhang and Yang [14] further improved the above result in the following manner.

Theorem B ([14]). Let f be a non-constant meromorphic function, n, k be positive integers
and a(z)(≢ 0, ∞) be a meromorphic small function of f . Suppose fn − a and (fn)(k) − a
share the value 0 CM and

n > k + 1 +
√

k + 1. (1.2)

Then the conclusion of Theorem A holds.

Theorem C ([14]). Let f be a non-constant meromorphic function, n, k be positive integers
and a(z)(≢ 0, ∞) be a meromorphic small function of f . Suppose fn − a and (fn)(k) − a
share the value 0 IM and

n > 2k + 3 +


(2k + 3)(k + 3). (1.3)

Then the conclusion of Theorem A holds.

Corollary A ([14]). Let f be a non-constant meromorphic function and n ≥ 4 be an integer.
Denote F = fn. If F and F ′ share 1 CM, then F ≡ F ′ and f assumes the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Recently Sheng and Zongsheng [7] proved the following results.

Theorem D. Let f be a non-constant meromorphic function such that N(r, ∞; f) = S(r, f).
Denote F = fn. Suppose that F and F ′ share 1 CM. If (1) n ≥ 3, or (2) n = 2 and
N(r, 0; f) = O(N(3(r, 0; f)), then F ≡ F ′, and f assumes the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Theorem E. Let f be a non-constant meromorphic function and a(z) ≢ 0 be a rational
function. If fn − a and (fn)′ − a share the value 0 IM and

n > 4 + 2
√

3, (1.4)

then fn ≡ (fn)′, and f assumes the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Now observing the above results the following question is inevitable.

Question 1. Can the lower bounds of n given in (1.2)–(1.4) in Theorems B, C and E
respectively be further reduced ?
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In this paper, taking a possible answer of the above question into the background we obtain
the following results.

Henceforth we suppose m (≥ 0), n (≥ 1) and k (≥ 1) are three integers and P (z) =
amzm + am−1z

m−1 + · · · + a1z + a0 is a nonzero polynomial.

Theorem 1.1. Let f be a non-constant meromorphic function and a(z)(≢ 0, ∞) be a
meromorphic small function of f . Suppose fnP (f) − a and [fnP (f)](k) − a share the
value 0 CM and

n > k + 2,

then P (z) reduces to a nonzero monomial, namely P (z) = aiz
i ≢ 0 for some i ∈

{0, 1, . . . ,m}; and fn+i ≡ (fn+i)(k), where f assumes the form

f(z) = ce
λ

n+i z,

where c is a nonzero constant and λk = 1.

Theorem 1.2. Let f be a non-constant meromorphic function such that N1)(r, ∞; f) =
S(r, f) and a(z)(≢ 0, ∞) be a meromorphic small function of f . Suppose fnP (f) − a
and [fnP (f)](k) − a share the value 0 CM and

n > k + 1.

Then the conclusion of Theorem 1.1 holds.

Theorem 1.3. Let f be a non-constant meromorphic function and a(z)(≢ 0, ∞) be a
meromorphic small function of f . Suppose fnP (f) − a and [fnP (f)](k) − a share the
value 0 IM and

n > 2k + m + 2.

Then the conclusion of Theorem 1.1 holds.

Theorem 1.4. Let f be a non-constant meromorphic function such that N(r, ∞; f) =
S(r, f), N(r, 0; f) = O(N(2(r, 0; f)) and a(z)(≢ 0, ∞) be a meromorphic small function
of f . Suppose fnP (f) − a and [fnP (f)](k) − a share the value 0 IM and

n > k + m.

Then the conclusion of Theorem 1.1 holds.

Remark 1.1. Clearly Theorems 1.2 and 1.4 improve and generalize Theorem D.

Remark 1.2. It is easy to see that conditions

N(r, ∞; f) = S(r, f) and N(r, 0; f) = O(N(2(r, 0; f))

in Theorem 1.4 are sharp by the following example.
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Example 1.1. Let

f(z) =
1
2

−
√

5
2

i tan

√
5

4
iz


.

Then f2 and (f2)′ share the value 1 IM, N(r, ∞; f) ≠ S(r, f) and N(r, 0; f) ≠
O(N(2(r, 0; f)) but f2 ≢ (f2)′.

We now explain the following definitions and notations which will be used in the paper.

Definition 1.1 ([6]). Let p be a positive integer and a ∈ C ∪ {∞}.
N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced counting function)
of those a-points of f whose multiplicities are not less than p.

Definition 1.2 ([11]). For a ∈ C ∪ {∞} and a positive integer p we denote by Np(r, a; f) the
sum N(r, a; f) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ p). Clearly N1(r, a; f) = N(r, a; f).

2. LEMMAS

In this section we present following lemmas which will be needed in the sequel.

Lemma 2.1 ([9]). Let f be a non-constant meromorphic function and let an(z)(≢ 0),
an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i =
0, 1, 2, . . . , n. Then

T (r, anfn + an−1f
n−1 + · · · + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. Let f be a non-constant meromorphic function and n ≥ k + 1. If fnP (f) ≡
[fnP (f)](k) then P (z) reduces to a nonzero monomial, namely P (z) = aiz

i ≢ 0 for some
i ∈ {0, 1, . . . ,m}; and fn+i ≡ (fn+i)(k), where f assumes the form

f(z) = ce
λ

n+i z,

where c is a nonzero constant and λk = 1.

Proof. Suppose

fnP (f) ≡ [fnP (f)](k). (2.1)

We now prove that P (z) = aiz
i ≢ 0 for some i ∈ {0, 1, . . . ,m}. If not we may assume that

P (z) = amzm + am−1z
m−1 + · · · + a1z + a0, where at least two of a0, a1, . . . , am−1, am

are nonzero. Without loss of generality, we assume that as, at ≠ 0, where s ≠ t, s, t =
0, 1, 2, . . . ,m.

From (2.1) it is clear that f is an entire function. Also since n ≥ k+1, it follows from (2.1)
that 0 is a Picard Exceptional Value of f . So we can take f = eα, where α is a non-constant
entire function. Then by induction we get

ai[fn+i − (fn+i)(k)] = ti(α
′
, α

′′
, . . . , α(k))e(n+i)α, (2.2)
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where ti(α′, α′′, . . . , α(k)) (i = 0, 1, 2, . . . ,m) are differential polynomials in
α′, α′′, . . . , α(k).

From (2.1) and (2.2) we obtain

tm(α
′
, α

′′
, . . . , α(k))emα + · · · + t1(α

′
, α

′′
, . . . , α(k))eα

+ t0(α
′
, α

′′
, . . . , α(k)) ≡ 0. (2.3)

Since T (r, ti) = S(r, f)(i = 0, 1, . . . ,m), by the Borel unicity theorem {see, e.g.
[12, Theorem 1.52]}, (2.3) gives ti ≡ 0 (i = 0, 1, . . . ,m). As as, at ≠ 0, from (2.2) we
have

fn+s ≡ (fn+s)(k) and fn+t ≡ (fn+t)(k)

which is a contradiction. Actually in this case we get two different forms of f(z)
simultaneously. Hence P (w) = aiw

i ≢ 0 for some i ∈ {0, 1, . . . ,m}. So from (2.1) we get

fn+i ≡ [fn+i](k),

where i ∈ {0, 1, . . . ,m}. Clearly f assumes the form

f(z) = ce
λ

n+i z,

where c is a nonzero constant and λk = 1. �

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let F = fnP (f)
a and G = [fnP (f)](k)

a . Clearly F and G share 1 CM
except for zeros and poles of a(z) and so

N(r, 1; F ) = N(r, 1; G) + S(r, f).

Φ1 =
1
F


G

′

G − 1
− F

′

F − 1



=
G

F


G

′

G − 1
− G

′

G


−


F

′

F − 1
− F

′

F


. (3.1)

We now consider the following two cases:

Case 1: Let Φ1 ≡ 0.
On integration we get

F − 1 ≡ c(G − 1), (3.2)

where c is a nonzero constant.
This implies that N(r, ∞; f) = S(r, f). Let c ≠ 1.
Then from (3.2) we get

1
F

≡ 1
c − 1


c
G

F
− 1


. (3.3)
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Now using (3.3) and Lemma 2.1 we get

(n + m) T (r, f) = T (r, F ) + O(1) ≤ T


r,

G

F


+ S(r, f)

= N


r, ∞;

(fnP (f))(k)

fnP (f)


+ S(r, f)

≤ Nk(r, 0; fnP (f)) + kN(r, ∞; f) + S(r, f)
≤ k N(r, 0; f) + m T (r, f) + S(r, f),

which is impossible since n > k + 1.
Hence c = 1. From (3.2) we get F ≡ G, i.e., fnP (f) ≡ [fnP (f)](k) and so the result

follows from Lemma 2.2.

Case 2: Let Φ1 ≢ 0.
Clearly F ≢ G. From (3.1) we get m(r,Φ1) = S(r, f) and

m(r, F ) ≤ m


r,

1
Φ1


+ S(r, f). (3.4)

Then from (3.1) we get

N(r, ∞; F ) − N(r, ∞; F ) ≤ N(r, 0;Φ1) + S(r, f) (3.5)

≤ T


r,

1
Φ1


− m


r,

1
Φ1


+ S(r, f)

≤ T (r,Φ1) − m


r,

1
Φ1


+ S(r, f)

= N(r, ∞;Φ1) + m(r,Φ1) − m


r,

1
Φ1


+ S(r, f)

≤ Nk+1(r, 0; F ) − m


r,

1
Φ1


+ S(r, f)

≤ (k + 1) N(r, 0; f) + m T (r, f)

− m


r,

1
Φ1


+ S(r, f).

Now using (3.4), (3.5) and Lemma 2.1 we get

(n + m) T (r, f) = T (r, F ) + O(1) (3.6)

≤ (k + 1)N(r, 0; f) + m T (r, f) + N(r, ∞; f) + S(r, f).

Let

Φ2 = F


F

′

F − 1
− G

′

G − 1

k

. (3.7)
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Clearly Φ2 ≢ 0. Since n > k + 1, from (3.7) we get

N(r, 0; F ) + k N(r, 0; f) (3.8)

≤ N(r, 0;Φ2) + S(r, f)

≤ T


r,

1
Φ2


− m


r,

1
Φ2


+ S(r, f)

≤ T (r,Φ2) − m


r,

1
Φ2


+ S(r, f)

= N(r, ∞;Φ2) + m(r,Φ2) − m


r,

1
Φ2


+ S(r, f)

≤ N(r, ∞; F ) + k N(r, ∞; f) + m(r, F ) − m


r,

1
Φ2


+ S(r, f)

≤ T (r, F ) + k N(r, ∞; f) − m


r,

1
Φ2


+ S(r, f).

Also from (3.7) we get

m


r,

1
F


≤ m


r,

1
Φ2


+ S(r, f). (3.9)

Now using (3.8), (3.9) we get

N(r, 0; f) ≤ N(r, ∞; f) + S(r, f). (3.10)

Then using (3.6), (3.10) we get

n T (r, f) ≤ (k + 2) N(r, ∞; f) + S(r, f), (3.11)

which is impossible since n > k + 2. �

Proof of Theorem 1.2. We omit the proof since it can be carried out in the line of proof of
Theorem 1.1. �

Proof of Theorem 1.3. Let F = fnP (f)
a and G = [fnP (f)](k)

a . Clearly F and G share 1 IM
except for zeros and poles of a(z) and so

N(r, 1; F ) = N(r, 1; G) + S(r, f).

First we suppose F ≢ G.
Note that

N(r, 1; F ) ≤ N


r, 1;

G

F


+ S(r, f) (3.12)

≤ T


r,

G

F


+ S(r, f)

≤ N


r, ∞;

G

F


+ m


r, ∞;

G

F


+ S(r, f)
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= N


r, ∞;

[fnP (f)](k)

fnP (f)


+ m


r, ∞;

[fnP (f)](k)

fnP (f)


+ S(r, f)

≤ k N(r, ∞; f) + Nk(r, 0; fnP (f)) + S(r, f)
≤ k N(r, ∞; f) + k N(r, 0; f) + m T (r, f) + S(r, f).

Now using (3.12) and Lemma 2.1, we get from the second fundamental theorem that

(n + m) T (r, f) = T (r, F ) + S(r, f) (3.13)

≤ N(r, ∞; F ) + N(r, 0; F ) + N(r, 1; F ) + S(r, F )
≤ N(r, ∞; f) + N(r, 0; fnP (f)) + N(r, 1; F ) + S(r, f)
≤ (k + 1) N(r, ∞; f) + (k + 1) N(r, 0; f)

+ 2m T (r, f) + S(r, f),

which is impossible since n > 2k + m + 2.
Hence F ≡ G, i.e., fnP (f) ≡ [fnP (f)](k). The remaining part follows from

Lemma 2.2. �

Proof of Theorem 1.4. Let F = fnP (f)
a and G = [fnP (f)](k)

a . Clearly F and G share 1 IM
except for zeros and poles of a(z) and so

N(r, 1; F ) = N(r, 1; G) + S(r, f).

Let

Φ3 =
F

′
(F − G)

F (F − 1)
. (3.14)

We now consider the following two cases.

Case 1: Let Φ3 ≢ 0.
Clearly F ≢ G. From (3.14) we have T (r,Φ3) = S(r, f) and

N(2(r, 0; f) ≤ N(r, 0;Φ3) + S(r, f) = S(r, f).

Therefore by the given condition we have

N(r, 0; f) = O(N(2(r, 0; f)) = S(r, f).

Then from (3.13) we arrive at a contradiction.

Case 2: Let Φ3 ≡ 0.
This gives F ≡ G, i.e., fnP (f) ≡ [fnP (f)](k). The remaining part follows from

Lemma 2.2. �
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