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Abstract. In a graph G, a module is a vertex subset M such that every vertex outside M
is adjacent to all or none of M . A graph G is prime if φ, the single-vertex sets, and V (G)

are the only modules in G. A prime graph G is k-minimal if there is some k-set U of vertices
such that no proper induced subgraph of G containing U is prime.

Cournier and Ille in 1998 characterized the 1-minimal and 2-minimal graphs. Recently,
Alzohairi and Boudabbous characterized 3-minimal triangle-free graphs. We characterize the
triangle-free graphs which are minimal for some nonstable 4-vertex subset.
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1. INTRODUCTION AND BASIC NOTATIONS

A graph G is a pair consisting of a finite vertex set V (G) and an edge set E(G) such that
E(G) is a subset of the set of the 2-element subsets of V (G). We denote the edge {u, v} by
uv. Two distinct vertices u and v are adjacent if uv ∈ E(G); otherwise u and v are nonad-
jacent. The set of neighbors of a vertex u, denoted by NG(u), is the set of vertices which are
adjacent to u, and the degree of u, denoted by dG(u), equals |NG(u)|. A vertex subset of a
graph is stable if its elements pairwise are nonadjacent; otherwise it is nonstable. For a subset
A of V (G) and a vertex u outside A, we write u ∼ A if u is adjacent to all or none of A;
otherwise we write u ≁ A. Two distinct edges of a graph are adjacent if they have a common
vertex.

For a positive integer k, the path Pk is the graph whose vertex set is {1, . . . , k} such
that two distinct vertices are adjacent if and only if they are consecutive. For an integer k,

E-mail address: zohairi@ksu.edu.sa.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2015.02.003
1319-5166 c⃝ 2015 The Author. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajmsc.2015.02.003&domain=pdf
mailto:zohairi@ksu.edu.sa
http://dx.doi.org/10.1016/j.ajmsc.2015.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


160 M. Alzohairi

with k ≥ 3, the cycle Ck is the graph whose vertex set is {1, . . . , k} and the edge set is
{i(i + 1) : 1 ≤ i ≤ k − 1} ∪ {1k}.

For distinct vertices u and v of a graph G, a uv-path is a sequence of distinct vertices
v1, . . . , vk such that v1 = u, vk = v, and vivi+1 ∈ E(G) for each i with i ≤ k − 1. A
cycle in a graph G is a sequence of distinct vertices v1, . . . , vk such that k ≥ 3 and {vivi+1, :
1 ≤ i ≤ k − 1} ∪ {v1vk } is a subset of E(G); such a cycle is denoted by (v1, . . . , vk). The
length of a path, respectively cycle, is the number of its edges. A graph is triangle-free if it
has no cycles of length three.

A graph G is connected if there is a uv-path for any distinct vertices u and v of G;
otherwise G is disconnected. A graph with no cycles is acyclic. A tree is a connected acyclic
graph. A leaf of a tree is a vertex of degree 1. The distance between two vertices u and v,
d(u, v), in a connected graph G is the length of a shortest uv-path.

For a vertex subset X of a graph G, the subgraph of G induced by X , G[X], is the graph
whose vertex set is X such that two vertices are adjacent in G[X] if they are adjacent in G.
For a vertex subset X of G, the subgraph of G induced by V (G) − X is denoted by G − X .
For a vertex v of G, the subgraph G − {v} is denoted by G − v.

An isomorphism from a graph G onto a graph H is a bijection f from V (G) onto V (H)
such that for any two vertices u and v of G, u and v are adjacent in G if and only if f(u) and
f(v) are adjacent in H . Two graphs G and H are isomorphic if there is an isomorphism from
G onto H , in which case we write G ∼= H .

In a graph G, a subset M of the vertex set V (G) is a module in G if every vertex outside
M is adjacent to all or none of M . This concept was introduced in [6] and independently
under the name interval in [4] and autonomous set in [5]. The empty set, the singleton sets,
and the full set of vertices are trivial modules. A graph is indecomposable if all its modules
are trivial; indecomposable graphs with at least three vertices are prime graphs. All graphs
with at most two vertices are indecomposable, while all with three vertices are decomposable.

A prime graph G is minimal for a vertex subset U if no proper induced subgraph of G con-
taining U is prime. A graph G is k-minimal if it is minimal for some set of k vertices. Anal-
ogous concepts were introduced by Cournier and Ille [2] for digraphs. They characterized
the 1-minimal and 2-minimal graphs. Recently, Alzohairi and Boudabbous [1] characterized
3-minimal triangle-free graphs.

Our main goal in this paper is to characterize the triangle-free graphs which are minimal
for some nonstable 4-vertex subset. To do so, we distinguish a particular 4-vertex nonstable
subset {x, y, z, w} of a graph G, and determine what structure G must have to be minimal

for {x, y, z, w}. As a corollary, we show that there are exactly [ (n−1)2

12 ] −


n−4
2


+

n−2
2


+


n−4

2


− 1 nonisomorphic n-vertex triangle-free graphs which are minimal for

some nonstable 4-vertex subset when n ≥ 7, where [x] denotes the nearest integer to x, and
⌊x⌋ denotes the floor of x.

In order to state our result, we introduce notation of special graphs. For i, j ∈ {1, . . . , k}
with k − 1 > |j − i| > 1, obtain the graph P i,j

k from Pk, respectively Ci,j
k from Ck, by

adding the edge ij.
For positive integers k, m, n with k ≤ m ≤ n, let Sk,m,n be the tree with k + m + n + 1

vertices that is the union of the paths of lengths k, m, and n having common endpoint r. Let
a1, . . . , ak, b1, . . . , bm, and c1, . . . , cn denote the other vertices on these paths, indexed by
their distance from r. (See Fig. 1).
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Fig. 1. Illustrates the graphs Pk , Sk,m,n, P 2,5
k , P 1,5

6 , P i,i+3
k and C2,5

6 .

Our main result is:

Theorem 1.1. Let x, y, z and w be distinct vertices in a triangle-free graph G such that
{x, y, z, w} is a nonstable set of G. The graph G is minimal for {x, y, z, w} if and only if G
and the nonstable set {x, y, z, w} of G have one of the following forms:

(i) G ∼= P4.
(ii) G ∼= Pk with k ≥ 5 such that {x, y, z, w} contains the leaves.

(iii) G ∼= P 1,5
6 such that {x, y, z, w} ∈ {{1, 2, 4, 6}, {1, 4, 5, 6}}.

(iv) G ∼= P 2,5
6 such that {x, y, z, w} ∈ {{1, 2, 3, 5}, {2, 3, 4, 5}}.

(v) G ∼= C2,5
6 such that {x, y, z, w} ∈ {{1, 2, 3, 5}, {2, 3, 4, 5}}.

(vi) G ∼= P 2,5
k with k ≥ 6 such that {x, y, z, w} ∈ {{1, 2, 3, k}, {2, 3, 4, k}, {1, 3, k −

1, k}}.
(vii) G ∼= P i,i+3

k with k ≥ 6 and 2 ≤ i ≤


k−4
2


+ 1 such that {x, y, z, w} =

{1, i + 1, i + 2, k}.
(viii) G ∼= S1,2,2 such that {x, y, z, w} = {r, a1, b1, c1}.

(ix) G ∼= S1,2,n such that {a1, b1, cn} ⊂ {x, y, z, w}.
(x) G ∼= Sk,m,n with m ≥ 2 such that {x, y, z, w} contains the leaves.

Corollary 1.2. The number of nonisomorphic triangle-free graphs which are minimal for
some nonstable 4-vertex subset with n vertices equals:

• 1 if n ∈ {4, 5}.
• 5 if n = 6.
• [ (n−1)2

12 ] −


n−4
2


+


n−2

2


+


n−4

2


− 1 if n ≥ 7.

The following problem remains open:
Open problem. Characterize the triangle-free graphs which are minimal for some stable

4-vertex subset.

2. PROOF OF THEOREM 1.1

First, we recall two essential results, due to Ehrenfeucht and Rozenberg, which are tools
in the main studies of prime graphs.

Theorem 2.1 ([3]). Let X be a vertex subset of a prime graph G such that G[X] is prime.
If G has at least two vertices outside X , then it has two distinct vertices x and y outside X
such that G[X ∪ {x, y}] is prime.
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Theorem 2.1 follows from Proposition 2.2, which uses the following notations.
For a graph G and a vertex subset X such that G[X] is prime, define the following subsets

of V (G) − X .

1. Ext(X) is the set of y outside X such that G[X ∪ {y}] is prime.
2. ⟨X⟩ is the set of y outside X such that X is a module of G[X ∪ {y}].
3. For each u in X , X(u) is the set of y outside X such that {u, y} is a module of G[X ∪ {y}].

Proposition 2.2 ([3]). Let X be a proper vertex subset of a prime graph G such that G[X]
is prime.

(i) The family of nonempty sets among Ext(X), ⟨X⟩ and {X(u): u ∈ X} forms a partition
of V (G) − X .

(ii) For distinct elements y and z of Ext(X), the subgraph G[X ∪ {y, z}] is decomposable
if and only if {y, z} is a module of G[X ∪ {y, z}].

(iii) Given u in X , for y in X(u) and for z outside X ∪ X(u), the subgraph G[X ∪ {y, z}]
is decomposable if and only if {y, u} is a module of G[X ∪ {y, z}].

(iv) For y in ⟨X⟩ and for z outside X ∪ ⟨X⟩, the subgraph G[X ∪ {y, z}] is decomposable
if and only if X ∪ {z} is a module of G[X ∪ {y, z}].

The following lemma, which will be used in the proof of Lemma 2.4, is contained in
Lemmas 3.1 and 3.3 in [1].

Lemma 2.3 ([1]).

(i) If k ≥ 4, then Pk is prime.
(ii) The graph P 1,5

6 is prime.
(iii) If k ≥ 6, then P 2,5

k is prime.
(iv) Sk,m,n is prime if and only if m ≥ 2.
(v) S1,2,2 is minimal for {a1, b1, c1}.

(vi) S1,2,n is minimal for {a1, b1, cn}.
(vii) If m ≥ 2, then Sk,m,n is minimal for the set of its leaves.

Lemma 2.4. (i) P4 is minimal for its vertex set.
(ii) If k ≥ 5, then Pk is minimal for any 4-element vertex subset containing its leaves.

(iii) P 1,5
6 is minimal for each element of {{1, 2, 4, 6}, {1, 4, 5, 6}}.

(iv) P 2,5
6 is minimal for each element of {{1, 2, 3, 5}, {2, 3, 4, 5}}.

(v) C2,5
6 is minimal for each element of {{1, 2, 3, 5}, {2, 3, 4, 5}}.

(vi) If k ≥ 6, then P 2,5
k is minimal for each element of {{1, 2, 3, k}, {2, 3, 4, k}, {1, 3, k −

1, k}}.
(vii) If k ≥ 6 and 2 ≤ i ≤


n−4

2


+ 1, then P i,i+3

k is minimal for {1, i + 1, i + 2, k}.
(viii) S1,2,2 is minimal for each vertex subset A containing {a1, b1, c1}.

(ix) S1,2,n is minimal for each vertex subset A containing {a1, b1, cn}.
(x) If m ≥ 2, then Sk,m,n is minimal for each vertex subset A containing its leaves.
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Proof. The proofs of parts (i) and (ii) are easy. Moreover, it is clear that if a prime graph G is
minimal for a vertex subset A, then G is minimal for any vertex subset containing A. Thus,
the assertions (viii), (ix) and (x) are immediate consequences of part (vi), (vii) and (viii) of
Lemma 2.3.

(iii) By part (ii) of Lemma 2.3, P 1,5
6 is prime. First, we will prove that P 1,5

6 is minimal for
{1, 2, 4, 6}. Each of the subgraphs P 1,5

6 − 5 and P 1,5
6 − {3, 5} is decomposable because it is

disconnected with at least three vertices. Furthermore, P 1,5
6 − 5 is decomposable because it

is S1,1,2. Therefore, P 1,5
6 is minimal for {1, 2, 4, 6}.

Second, we will prove that P 1,5
6 is minimal for {1, 4, 5, 6}. The subgraphs P 1,5

6 − {2, 3} is
S1,1,1. By part (iv) of Lemma 2.3, P 1,5

6 − {2, 3} is decomposable. Furthermore, each of the
subgraphs P 1,5

6 − 2 and P 1,5
6 − 3 is S1,1,2. By part (iv) of Lemma 2.3, each of the subgraphs

P 1,5
6 − 2 and P 1,5

6 − 3 is decomposable. Therefore, P 1,5
6 is minimal for {1, 4, 5, 6}.

(iv) By part (iii) of Lemma 2.3, P 2,5
6 is prime.

First, we will prove that P 2,5
6 is minimal for {1, 2, 3, 5}. The subgraph P 2,5

6 − {4, 6} is
decomposable because it is S1,1,1. Moreover, the subgraphs P 2,5

6 − 4 and P 2,5
6 − 6 are de-

composable because P 2,5
6 − 4 is S1,1,2, and {3, 5} is a module P 2,5

6 − 6. Therefore, P 2,5
6 is

minimal for {1, 2, 3, 5}.
Second, we will prove that P 2,5

6 is minimal for {2, 3, 4, 5}. The subgraphs P 2,5
6 − {1, 6}

and P 2,5
6 − 1 are decomposable because each has the module {2, 4}. Moreover, the subgraph

P 2,5
6 − 6 is decomposable because it has the module {3, 5}. Therefore, P 2,5

6 is minimal for
{2, 3, 4, 5}.

(v) First, we will prove that C2,5
6 is prime. Denote C2,5

6 by H . Let X = {1, 2, 3, 4, 6}.
Notice that H[X] is prime because H[X] is P5. Clearly, 5 ∉ ⟨X⟩. It is not difficult to verify
that 5 ∉ X(u) for any u ∈ X . Thus, by part (i) of Proposition 2.2, 5 ∈ Ext(X). Therefore,
H is prime.

Second, we will prove that H is minimal for {1, 2, 3, 5}. The subgraph H − {4, 6} is de-
composable because it is S1,1,1. Moreover, the subgraphs H − 4 and H − 6 are decomposable
because {1, 5} is a module of H − 4, and {3, 5} is a module H − 6. Therefore, H is minimal
for {1, 2, 3, 5}.

Third, we will prove that H is minimal for {2, 3, 4, 5}. The subgraphs H − {1, 6} and H −1
are decomposable because each of them has the module {2, 4}. Moreover, the subgraph H −6
is decomposable because it has the module {3, 5}. Therefore, H is minimal for {2, 3, 4, 5}.

(vi) Consider an integer k with k ≥ 6. By part (iii) of Lemma 2.3, P 2,5
k is prime.

First, we will prove that P 2,5
k is minimal for {1, 2, 3, k}. For each nonempty subset B of

{5, . . . , k − 1}, the subgraph P 2,5
k − B is decomposable because it is disconnected with at

least three vertices. Moreover, for each subset C of {1, . . . , k} − {1, 2, 3, k} containing 4
the subgraph P 2,5

k − C is decomposable because it has the module {1, 3}. Therefore, P 2,5
k is

minimal for {1, 2, 3, k}.
Second, we will prove that P 2,5

k is minimal for {2, 3, 4, k}. For each nonempty subset B

of {5, . . . , k − 1}, the subgraph P 2,5
k − B is decomposable because it is disconnected with

at least three vertices. Moreover, for each subset C of {1, . . . , k} − {2, 3, 4, k} containing 1
the subgraph P 2,5

k − C is decomposable because it has the module {2, 4}. Therefore, P 2,5
k is

minimal for {2, 3, 4, k}.
Third, we will prove that P 2,5

k is minimal for {1, 3, k − 1, k}. For each nonempty subset B

of {2} ∪ {5, . . . , k − 2}, the subgraph P 2,5
k − B is decomposable because it is disconnected
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with at least three vertices. Moreover, for each subset C of {1, . . . , k} − {1, 3, k − 1, k} con-
taining 4 the subgraph P 2,5

k −C is decomposable because it has the module {1, 3}. Therefore,
P 2,5

k is minimal for {1, 3, k − 1, k}.
(vii) Assume that k ≥ 6 and 2 ≤ i ≤


n−4

2


+1. First, we will prove that P i,i+3

k is prime.
If i = 2, then P i,i+3

k is P 2,5
k and it is prime by part (iii) of Lemma 2.3. Now, assume that

i ≠ 2. Denote P i,i+3
k by H . Let X = V (H) − {i + 1, i + 2}. Notice that H[X] is prime

because it is Pk−2. It is not difficult to verify that for each t ∈ {i + 1, i + 2}, t ∉ ⟨X⟩ and
t ∉ X(u) for any element u in X . Thus, by part (i) of Proposition 2.2, i + 1 ∈ Ext(X) and
i+2 ∈ Ext(X). Since i ≁ {i+1, i+2} in H , {i+1, i+2} is not a module of H . Therefore,
H is prime by part (ii) of Proposition 2.2.

Second, we will prove that H is minimal for {1, i + 1, i + 2, k}. For each nonempty sub-
set B of V (H) − {1, i + 1, i + 2, k}, the subgraph H − B is decomposable because it is
disconnected with at least three vertices. Therefore, H is minimal for {1, i+1, i+2, k}. �

Lemma 2.5. Let A be a 4-vertex nonstable subset in a triangle-free graph G. Then

(i) |E(G[A])| = 4 if and only if G[A] is C4.
(ii) |E(G[A])| = 3 if and only if either G[A] is P4 or G[A] is S1,1,1.

Proof. (i) If G[A] is C4, then |E(G[A])| = 4. Now assume that |E(G[A])| = 4. It is clear
that the number of edges of a 2-vertex graph is at most 1 and the number of edges of a
3-vertex triangle-free graph is at most 2. Thus, G[A] is connected. Hence, it suffices to
prove that dG[A](v) = 2 for each vertex v of G[A].

First, to the contrary, suppose that there is a vertex u of G[A] such that dG[A](u) = 1.
Since G[A − {u}] is a 3-vertex triangle-free graph, the number of edges of G[A − {u}]
is at most 2. Thus, the number of edges of G[A] is 3; which is a contradiction.

Second, to the contrary, suppose that there is a vertex u of G[A] such that dG[A](u) =
3. Since G[A] is a triangle-free graph, G[A − {u}] has no edges. Thus, the number of
edges of G[A] is at most 3; which is a contradiction.

(ii) If G[A] is P4 or G[A] is S1,1,1, then |E(G[A])| = 3. Now assume that |E(G[A])| = 3.
Since G[A] is a triangle-free graph, G[A] is a acyclic. Thus, G[A] is a tree because G[A]
is a 4-vertex acyclic graph with 3 edges. Therefore, G[A] is P4 or G[A] is S1,1,1. �

Remark 2.6. The sufficient condition of Theorem 1.1 is given by Lemma 2.4. In order to
prove the necessary condition of Theorem 1.1, we consider a nonstable 4-vertex subset A in a
triangle-free graph G and we assume that G is minimal for A. Clearly, if G[A] is P4, then G
is P4 and then G satisfies the first condition of Theorem 1.1. Therefore, using Lemma 2.5, to
prove that G satisfies one of the conditions of Theorem 1.1, we will distinguish the following
cases: G[A] is C4, G[A] is S1,1,1, E(G[A]) consists of two adjacent edges, E(G[A]) consists
of two nonadjacent edges, and E(G[A]) consists of a single edge. These cases are studied in
Lemmas 2.7–2.11.

In each case, we will prove that there exists a vertex subset X including A such that the
induced subgraph G[X] satisfies one of the conditions of Theorem 1.1; which implies that
G = G[X] because G is minimal for A.

Lemma 2.7. Let A be a 4-vertex subset in a triangle-free graph G such that G[A] is C4. If
G is minimal for A, then G satisfies the fourth or the fifth condition of Theorem 1.1.
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Proof. Let A = {x, y, z, w}. We may assume that (x, y, z, w) is C4. Since {x, z} is a module
of G[A] and is not a module of G, there is a vertex u outside A such that u ≁ {x, z} in G.
We may assume that u is adjacent to x and nonadjacent to z. Since G is a triangle-free
graph, u is nonadjacent to either y or w. Since {y, w} is a module of G[A ∪ {u}] and is not
a module of G, there is a vertex v outside A ∪ {u} such that v ≁ {y, w} in G. We may
assume that v is adjacent to y and is nonadjacent to w. Since G is a triangle-free graph, v is
nonadjacent to either x or z. Let H denote the subgraph of G induced by A ∪ {u, v}. Thus,
H is C2,5

6 when u is adjacent to v with A = {2, 3, 4, 5} or H is P 2,5
6 when u is adjacent to

v with A = {2, 3, 4, 5}. Therefor, H satisfies the fourth condition or the fifth condition of
Theorem 1.1. �

Lemma 2.8. Let A be a 4-vertex subset in a triangle-free graph G such that G[A] is S1,1,1.
If G is minimal for A, then G satisfies one of the conditions (iii), (iv), (v) and (viii) of The-
orem 1.1.

Proof. Let A = {x, y, z, w} such that G[A] is S1,1,1. We may assume that dG[A](x) = 3.
Since {y, z, w} is a module of G[A] and is not a module of G, there is a vertex u outside A
such that u ≁ {y, z, w}. Thus, dG[A](u) ∈ {1, 2}. We may assume that dG[A](u) is maximum
over all u outside A such that u ≁ {y, z, w}.

To begin, assume that dG[A](u) = 1. We may assume that u is adjacent to y. Since G is
a triangle-free graph, u is nonadjacent to x. Since {z, w} is a module of G[A ∪ {u}] and is
not a module of G, there is a vertex v outside A ∪ {u} such that v ≁ {z, w} in G. We may
assume that v is adjacent to z and is nonadjacent to w. Since G is a triangle-free graph, v
is nonadjacent to x. Since v ≁ {y, z, w} and |dG[A](u)| is maximum over all u outside A
such that u ≁ {y, z, w}, v is nonadjacent to y. Let H denote the subgraph of G induced by
A ∪ {u, v}. Thus, NH(v) ∈ {{z}, {z, u}}. Thus, H is S1,2,2 with A = {r, a1, b1, c1} when
NH(v) = {z} or H is P 1,5

6 with A = {1, 4, 5, 6} when NH(v) = {z, u}. Therefore, H
satisfies the condition (iii) or the condition (iii) of Theorem 1.1.

Finally, assume that dG[A](u) = 2. We may assume that u is adjacent to y and z. Since
G is a triangle-free graph, u is nonadjacent to x. Since {y, z} is a module of G[A ∪ {u}]
and is not a module of G, there is a vertex v outside A ∪ {u} such that v ≁ {y, z}. We may
assume that v is adjacent to y and is nonadjacent to z. Since G is a triangle-free graph, v is
nonadjacent to either x or u. Let K denote the subgraph of G induced by A ∪ {u, v}. Thus,
NK(v) ∈ {{y}, {y, w}}. Hence, K is P 2,5

6 with A = {1, 2, 3, 5} when NK(v) = {y} or K
is C2,5

6 with A = {1, 2, 3, 5} when NK(v) = {y, w}. Therefore, K satisfies the condition
(iv) or the condition (v) of Theorem 1.1. �

Lemma 2.9. Let A be a 4-vertex subset in a triangle-free graph G such that E(G[A])
consists of two adjacent edges. If G is minimal for A, then G satisfies one of the
conditions (ii), (vi) and (ix) of Theorem 1.1.

Proof. Let A = {x, y, z, w}. We may assume that y is adjacent to x and z. Denote x by v1, y
by v2 and z by v3. Thus, v1, v2, v3 is an x, z-path. Let u1, u2, . . . , uq be a shortest w, vi-path
where q ≥ 3 and i is the least index such that d(w, vi) = min{d(w, vj) : 1 ≤ j ≤ 3}.
From the definition of i, the vertices uj and vt are nonadjacent for each element (j, t) of
{1, . . . , q − 2} × {1, 2, 3}, and the vertices uq−1 and vt are nonadjacent for each t with t < i.
Let H denote the subgraph of G induced by {v1, v2, v3, u1, u2, . . . , uq−1}.
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First, assume that i = 2. Since G is a triangle-free graph, uq−1 is adjacent neither to x nor
to z. Since {x, z} is a module of H and is not a module of G, there is a vertex b outside V (H)
such that b ≁ {x, z} in G. We may assume that b is adjacent to x and is nonadjacent to z.
Since G is a triangle-free graph, b is nonadjacent to y. From the definition of i, the vertex b is
nonadjacent to uj where j ≤ q − 2. Let K denote the subgraph of G induced by V (H) ∪ {b}.
Thus, NK(b) ∈ {{x}, {x, uq−1}}.

Thus, K is S1,2,q−1 with A = {r, a1, b1, cq−1} when NK(b) = {x} or K is P 2,5
q+3 with

A = {1, 2, 3, q + 3} when NK(b) = {x, uq−1}. Since q ≥ 3, K satisfies the condition (ix)
or (vi) of Theorem 1.1.

Second, assume that i = 1. Since G is a triangle-free graph, NH(uq−1) ∈ {{x}, {x, z}}.
If NH(uq−1) = {x}, then H is Pq+2 with A = {1, 2, 3, q + 2}. Since q ≥ 3, H satisfies

the condition (ii) of Theorem 1.1.
Now, assume that NH(uq−1) = {x, z}. Since {x, z} is a module of H and is not a mod-

ule of G, there is a vertex a outside V (H) such that a ≁ {x, z} in G. We may assume
that a is adjacent to x and is nonadjacent to z. Since G is a triangle-free graph, a is non-
adjacent to either y or uq−1. Let K denote the subgraph of G induced by V (H) ∪ {a}.
Since u1, u2, . . . , uq is a shortest w, v1-path, a is nonadjacent to uj where j ≤ q − 3. Thus,
NK(a) ∈ {{x}, {x, uq−2}}.

First, assume NK(a) = {x}. Therefore, K is P 2,5
q+3 such that A = {2, 3, 4, q + 3}. Since

q ≥ 3, K satisfies the condition (vi) of Theorem 1.1.
Second, assume NK(a) = {x, uq−2}. We will prove that q = 3. To the contrary, suppose

that q ≥ 4. Thus, K − uq−1 is Pt with t ≥ 5. Hence, K − uq−1 is a prime proper induced
subgraph of G containing A; which contradicts the fact that G is minimal for A. Thus, K is
P 2,5

6 with A = {2, 3, 4, 6}. Therefore, K satisfies the condition (vi) of Theorem 1.1.
Finally, assume that i = 3. Clearly, H is Pq+2 with A = {1, 2, 3, q + 2}. Since q ≥ 3, H

satisfies the condition (ii) of Theorem 1.1. �

Lemma 2.10. Let A be a 4-vertex subset in a triangle-free graph G such that E(G[A])
consists of two nonadjacent edges. If G is minimal for A, then G satisfies the
condition (ii) of Theorem 1.1.

Proof. Let A = {x, y, z, w}. We may assume that xy and zw are the edges of G[A] and
dG(x, z) ≤ dG(y, z). Let v1, v2, . . . , vk be a shortest z, x-path, where k ≥ 3. Since G is
triangle-free, y is nonadjacent to vk−1. Also, y is nonadjacent to vj where j ∈ {2, . . . , k − 2}
because dG(x, z) ≤ dG(y, z). Thus, z, v2 . . . , vk−1, x, y is a z, y-path.

To begin, assume that v2 = w, then k ≥ 4 and G[{z, w . . . , vk−1, x, y}] is Pk+1 with
A = {1, 2, k, k + 1}. Since k ≥ 4, H satisfies the condition (ii) of Theorem 1.1.

Finally, assume that v2 ≠ w. Denote H the subgraph of G induced by
{w, z, v2, . . . , vk−1, x, y}. If |NH(w)| ≥ 2, then consider the largest index j where j ∈
{2, . . . , k − 1} such that vj ∈ NH(w). Hence, H − {v2, . . . , vj−1} is Pt with t ≥ 5. Thus,
H − {v2, . . . , vj−1} is a proper prime induced subgraph of G containing A; which contra-
dicts the fact that G is minimal for A. Therefore, H is Pk+2 with leaves contained in A. Since
k ≥ 3, H satisfies the condition (ii) of Theorem 1.1. �

Lemma 2.11. Let A be a 4-vertex subset in a triangle-free graph G such that E(G[A])
consists of a single edge. If G is minimal for A, then G satisfies one of the
conditions (ii), (vi), (vii), (ix) and (x) Theorem 1.1.



Triangle-free graphs which are minimal for some nonstable 4-vertex subset 167

Proof. Let A = {x, y, z, w}. We may assume that xy is the edge of G[A] and dG(x, z) ≤
dG(y, z). Let v1, v2, . . . , vt be a shortest z, x-path, where t ≥ 3. Since G is triangle-free,
y is nonadjacent to vt−1. Also, y is nonadjacent to vj where j ∈ {2, . . . , t − 2} because
dG(x, z) ≤ dG(y, z). Thus, G[{z, v2 . . . , vt−1, x, y}] is Pt+1.

If w ∈ {vj : 2 ≤ j ≤ t − 1}, then G[{z, v2 . . . , vt−1, x, y}] is Pt+1 with leaves y and z.
Thus, G[{z, v2 . . . , vt−1, x, y}] satisfies the condition (ii) of Theorem 1.1.

Now assume that w ∉ {vj : 2 ≤ j ≤ t − 1}. Denote y by vt+1 and denote by H
the subgraph of G induced by {w, z, v2, . . . , vt−1, x, y}. Since xy is the unique edge of
G[A], NH(w) ⊂ {v2, . . . , vt−1}. We distinguish the following two cases depending on the
neighborhood of w.

To begin, assume that NH(w) ∩ {v2, . . . , vt−1} ̸= ∅. We will prove that |NH(w)| = 1.
To the contrary, suppose that |NH(w)| ≥ 2. Consider the least index i and the largest
index j in {2, . . . , t − 1} such that vi and vj are in NH(w). Since G is triangle-free, w
is nonadjacent to vi+1. Thus, j > i + 1. Hence, H − {vi+1, . . . , vj−1} is Pk with k ≥ 6.
Therefore, H − {vi+1, . . . , vj−1} is a prime proper induced subgraph of G containing A;
which contradicts the fact that G is minimal for A.

First, assume that NH(w) ≠ {v2}. Thus H is S1,m,n with m ≥ 2 such that A contains the
leaves. Therefore, H satisfies the condition (x) of Theorem 1.1.

Second, assume that NH(w) = {v2}. Since {z, w} is a module of H and is not a module
of G, there is a vertex a outside V (H) such that a ≁ {y, z} in G. We may assume that
a is adjacent to z and is nonadjacent to w. Denote by K the subgraph of G induced by
V (H) ∪ {a}.

If |NK(a)| = 1, then K is S1,2,n such that A = {a1, b1, cn−1, cn} where n = t − 1.
Therefore, H satisfies the condition (ix) of Theorem 1.1.

Now assume that |NK(a)| ≥ 2. Since G is a triangle-free graph, v2 ∉ NK(a). Let j be
the largest index in {3, . . . , t + 1} such that vj ∈ NK(a).

• If t = 3, then j ∈ {3, 4} and NK(a) = {z, vj } because G is a triangle-free graph. If
j = 3, then K is P 2,5

6 with A = {1, 3, 5, 6}, and thus K satisfies the condition (vi) of
Theorem 1.1. If j = 4, then K is P 1,5

6 with A = {1, 2, 4, 6}, and thus K satisfies the
condition (iii) of Theorem 1.1.

• If t ≥ 4 and j = 3, then K is P 2,5
t+3 with A = {1, 3, t + 2, t + 3}. Therefore, H satisfies

the condition (vi) of Theorem 1.1.
• If t ≥ 4 and 4 ≤ j ≤ t, then K − {v3, . . . , vj−1} is Pm where m ≥ 6. Therefore,

K − {v3, . . . , vj−1} is a prime proper induced subgraph of G containing A; which
contradicts the fact that G is minimal for A.

• If t ≥ 4 and j = t + 1, then x ∉ NK(a) because G is a triangle-free graph. Thus,
G[{w, v2, z, a, y, x}] is P6. Therefore, G[{w, v2, z, a, y, x}] is a prime proper induced
subgraph of G containing A; which contradicts the fact that G is minimal for A.

Finally, assume that NH(w) ∩ {v2, . . . , vt−1} = ∅.
Let u1, u2, . . . , uq be a shortest w, vi-path where q ≥ 3 and i is the least index such

that d(w, vi) = min{d(w, vj) : 1 ≤ j ≤ t + 1}. Since G is triangle-free, uq−1 is
nonadjacent to vi+1 when i ≤ t. From the definition of i, the vertices uj and vr are
nonadjacent for each element (j, r) of {1, . . . , q − 2} × {1, . . . , t + 1}, and the vertices
uq−1 and vr are nonadjacent for each r with r < i. Denote by K the subgraph of G induced
by {v1, . . . , vt+1, u1, u2, . . . , uq−1}.

We will prove that either NK(uq−1) = {vi} or (i < t and NK(uq−1) = {vi, vi+2}).
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If i ∈ {t, t + 1}, then NH(uq−1) = {vi}. If i = t − 1, then NK(uq−1) ∈
{{vt−1}, {vt−1, vt+1}}. Now assume that i ≤ t − 2 and |NK(uq−1)| ≥ 2. Consider the
largest index j such that uq−1vj ∈ E(G). Hence, v1, . . . , vi, uq−1, vj , vj+1, . . . , vt is a
z, x-path of G. Thus, j = i + 2 because v1, . . . , vt is a shortest z, x-path of G. Therefore,
NK(uq−1) = {vi, vi+2}.

First, assume that NK(uq−1) = {vi}.
If i ∈ {1, t + 1}, then K is Pk with k ≥ 6 such that A contains the leaves. Therefore, K

satisfies the condition (ii) of Theorem 1.1.
If i ∉ {1, t+1}, then K is Sk,m,n with m ≥ 2 such that A contains the leaves. Therefore,

K satisfies the condition (x) of Theorem 1.1.
Second, assume that i < t and NK(uq−1) = {vi, vi+2}. If 2 ≤ i ≤ t − 2, then K − vi+1 is

Sk,m,n with m ≥ 2. Therefore, K − vi+1 is a prime proper induced subgraph of G containing
A; which contradicts the fact that G is minimal for A. Therefore, i ∈ {1, t − 1}.

Now assume that i = 1. If q ≥ 4, then K − v2 is S1,m,n with m ≥ 2. Therefore, K − v2

is a prime proper induced subgraph of G containing A; which contradicts the fact that G is
minimal for A. Thus, q = 3. Therefore, K is P 2,5

k with k ≥ 6 such that A = {1, 3, k − 1, k}
where k = t + 3. Therefore, K satisfies the condition (vi) of Theorem 1.1.

Third, assume that i = t − 1. Let j be the minimum of t − 1 and q − 1. Clearly,
2 ≤ j ≤


t+q−4

2


+ 1 and K is P j,j+3

t+q such that A = {1, j + 1, j + 2, t + q}. Therefore, K
satisfies the condition (vii) of Theorem 1.1. �

Proof of Corollary 1.2. It is not difficult to verify that there are no two isomorphic different
graphs in the union {P 1,5

6 } ∪ {Pk : k ≥ 4} ∪ {C2,5
6 } ∪ {{P i,i+3

k : i ∈ {2, . . . ,


k−4
2


+1}} :

k ≥ 6} ∪ {Sk,m,n : m ≥ 2}.
If n = 4, then the result holds because P4 is the unique prime graph with four vertices.

By Theorem 1.1, P5 is the unique 5-vertex triangle-free prime graph which is minimal for
some nonstable 4-vertex subset, and the only nonisomorphic 6-vertex triangle-free graphs
which are minimal for some nonstable 4-vertex subset are P6, P 1,5

6 , P 2,5
6 , C2,5

6 and S1,2,2.
Therefore, the result holds for n ∈ {4, 5, 6}.

Now, assume that n ≥ 7. By Theorem 1.1, the nonisomorphic n-vertex triangle-free
graphs which are minimal for some nonstable 4-vertex subset are Pn, P i,i+3

n where 2 ≤
i ≤


k−4
2


+ 1, and the family of Sk,m,t, where k ≤ m ≤ t, m ≥ 2, and k + m + t + 1 = n.

From the proof of Corollary 1.2 in [1], the number of nonisomorphic such Sk,m,t equals

[ (n−1)2

12 ] −


n−4
2


+


n−2

2


− 2.

Therefore, there are exactly [ (n−1)2

12 ] −


n−4
2


+


n−2

2


+


n−4

2


− 1 nonisomorphic

n-vertex triangle-free graphs which are minimal for some nonstable 4-vertex subset when
n ≥ 7. �
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