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Abstract. Morse Theory on Banach spaces would be a useful tool in nonlinear analysis but
its development is hindered by many technical problems. In this paper we present an approach
based on a new notion of generalized functions called “ultrafunctions” which solves some of
the technical questions involved.
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1. INTRODUCTION

In this paper we start a study of Morse Theory on Banach spaces using the theory of
ultrafunctions [2–5]; the ultrafunctions are a new notion of generalized functions based
on the general ideas of Non Archimedean Mathematics (NAM) of Non Standard Analysis
(NSA).

Based on our experience NAM allows to construct models of the physical world in a more
elegant and simple way, in many circumstances. Contrary to common belief, the ideas behind
NSA and NMA date back to the 1870s, when mathematicians such as Du Bois-Reymond,
Veronese, Hilbert and Levi-Civita investigated it. Since then its development stopped, until

∗ Corresponding author at: Dipartimento di Matematica, Università degli Studi di Pisa, Via F. Buonarroti 1/c, 56127
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the ’60s when Abraham Robinson presented his Non Standard Analysis. For a historical
analysis of these facts we refer to Ehrlich [21] and to Keisler [23] for a very clear exposition
of NSA.

Ultrafunctions are a particular class of functions based on a superreal field R∗ ⊃ R. More
exactly, to any continuous function f : RN → R, we associate in a canonical way an ul-
trafunction f : (R∗)N → R∗ which extends f ; the ultrafunctions are many more than the
functions and among them we can find solutions of functional equations which do not have
any solutions among the real functions or the distributions; this allows to overcome some
difficulties of Morse Theory in Banach spaces.

Many authors have been working on the adaptation of Morse Theory on Banach spaces
[6–8,25,26], but many problems arise: a really important one is the difficulty in defining what
a (weakly) nondegenerate critical point is and how to define its Morse index, since any critical
point of a C2 functional on a Banach space is degenerate and it is not possible to apply the
generalized Morse Lemma (for a reference on the generalized Morse Lemma see [22]).

In recent times, a lot of delicate work has been done in this direction, developing extremely
refined tools and techniques to study problems in nonlinear analysis [9–20,24]. Our approach
is totally different, we avoid many of the difficulties involved in the definitions by using the
properties of hyperfinite function spaces.

We believe that the flexibility of the ultrafunction approach can be fruitful for the develop-
ment of the theory. In this paper we present a foundational basis for this theory; other articles
dealing with applications are to follow.

1.1. Notation

We fix some notation. Since this paper does not deal with application, we use some
function spaces as model spaces for the theory; let Ω be a subset of RN :

• C (Ω) denotes the set of real continuous functions defined on Ω ;
• C0


Ω


denotes the set of real continuous functions on Ω which vanish on ∂Ω ;

• Ck (Ω) denotes the set of functions defined on Ω ⊂ RN which have continuous derivatives
up to the order k;

• Ck
0


Ω


= Ck


Ω


∩ C0


Ω


;

• D (Ω) denotes the set of the infinitely differentiable functions with compact support
defined on Ω ⊂ RN ;

• L2 (Ω) denotes the set of square integrable functions on Ω .

2. PRELIMINARY NOTIONS

In this section we present some background material necessary to follow the following
part. We underline that this material is not original but we cite it in order to make the article
(almost) self contained. We refer to [2–5] for a more detailed treatment.

2.1. Non Archimedean fields

Here, we recall the basic definitions and facts regarding non-Archimedean fields. In the
following, K will denote an ordered field. We recall that such a field contains (a copy of) the
rational numbers. Its elements will be called numbers.
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Definition 1. Let K be an ordered field. Let ξ ∈ K. We say that:

• ξ is infinitesimal if, for all positive n ∈ N, |ξ| < 1
n ;

• ξ is finite if there exists n ∈ N such as |ξ| < n;
• ξ is infinite if, for all n ∈ N, |ξ| > n (equivalently, if ξ is not finite).

Definition 2. An ordered field K is called Non-Archimedean if it contains an infinitesimal
ξ ≠ 0.

It is easily seen that all infinitesimals are finite, that the inverse of an infinite number is
a nonzero infinitesimal number, and that the inverse of a nonzero infinitesimal number is
infinite.

Definition 3. A superreal field is an ordered field K that properly extends R.

It is easy to show, due to the completeness of R, that there are nonzero infinitesimal
numbers and infinite numbers in any superreal field. Infinitesimal numbers can be used to
formalize a new notion of “closeness”:

Definition 4. We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ is infinitesimal.
In this case, we write ξ ∼ ζ.

Clearly, the relation “∼” of infinite closeness is an equivalence relation.

Theorem 5. If K is a superreal field, every finite number ξ ∈ K is infinitely close to a unique
real number r ∼ ξ, called the shadow or the standard part of ξ.

Given a finite number ξ, we denote its shadow as sh(ξ), and we put sh(ξ) = +∞
(sh(ξ) = −∞) if ξ ∈ K is a positive (negative) infinite number.

Definition 6. Let K be a superreal field, and ξ ∈ K a number. The monad of ξ is the set of
all numbers that are infinitely close to it:

mon(ξ) = {ζ ∈ K : ξ ∼ ζ},

and the galaxy of ξ is the set of all numbers that are finitely close to it:

gal(ξ) = {ζ ∈ K : ξ − ζ is finite}.

By definition, it follows that the set of infinitesimal numbers is mon(0) and that the set of
finite numbers is gal(0).

2.2. The Λ-limit

In this section we will introduce a particular superreal field K and we will analyze its main
properties by means of Λ-theory, in particular by means of the notion of Λ-limit (for complete
proofs and for further properties of the Λ-limit, the reader is referred to [1–5]).
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We recall that the superstructure on R is defined as follows:

U =
∞

n=0

Un

where Un is defined by induction as follows:

U0 = R;

Un+1 = Un ∪ P (Un) .

Here P (E) denotes the power set of E. Identifying the couples with the Kuratowski pairs
and the functions and the relations with their graphs, it follows that U contains almost every
usual mathematical object. Now, if we denote by Pω(X) the collection of the finite subsets
of X , we set

L = Pω(U),

and we will refer to L as the “parameter space”. Clearly (L, ⊂) is a directed set2. We add to
L one point at infinity Λ and we define the following family of neighborhoods of infinity:

{Λ ∪ Q | Q ∈ U }

where U is a fine ultrafilter on L, namely it is a filter such that

• if A ∪ B = L, then

A ∈ U or B ∈ U ; (1)

• ∀λ0 ∈ L, {λ ∈ L | λ0 ⊂ λ} ∈ U .

A function ϕ : D → E defined on a directed set will be called a net (with values in E). If
ϕλ is a real net, we have that

lim
λ→Λ

ϕλ = L

if and only if

∀ε > 0, ∃Q ∈ U such that, ∀λ ∈ Q, |ϕλ − L| < ε. (2)

We will refer to the sets in Q as qualified sets.
Notice that this topology on L ∪ {Λ} satisfies this interesting property:

Proposition 7. If the net ϕλ has a converging subnet, then it is a converging net.

Proof. Suppose that the net ϕλ has a converging subnet to L ∈ R. We fix ε > 0 arbitrarily
and we have to prove that Qε ∈ U where

Qε = {λ ∈ L | |ϕλ − L| < ε} .

2 We recall that a directed set is a partially ordered set (D, ≺) such that, ∀a, b ∈ D, ∃c ∈ D such that

a ≺ c and b ≺ c.
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We argue indirectly and we assume that

Qε ∉ U .

Then, by (1), N = L\ (Qε ∩ E) ∈ U and hence

∀λ ∈ N, |ϕλ − L| ≥ ε.

This contradicts the fact that ϕλ has a subnet which converges to L. �

We have the following result:

Theorem 8. There exists a superreal field K ⊃ R and a Hausdorff topology on the space
(L × R) ∪ K such that

1. Every net ϕ : L × R → R has a unique limit

L = lim
λ→Λ

(λ, ϕ(λ)) .

Moreover we assume that every ξ ∈ K is the limit of some net ϕ : L × R → R.
2. If r ∈ R

lim
λ→Λ

(λ, r) = r.

3. For all ϕ,ψ : L → R:

lim
λ→Λ

(λ, ϕ(λ)) + lim
λ→Λ

(λ, ψ(λ)) = lim
λ→Λ

(λ, ϕ(λ) + ψ(λ)) ;

lim
λ→Λ

(λ, ϕ(λ)) · lim
λ→Λ

(λ, ψ(λ)) = lim
λ→Λ

(λ, ϕ(λ) · ψ(λ)) .

Idea of the proof. The proof of this theorem is in [5]. We will now sketch it for the sake of
the reader. We set

I = {ϕ ∈ F (L,R) | ϕ(x) = 0 in a qualified set} .

It is not difficult to prove that I is a maximal ideal in F (L,R) ; then

K :=
F (L,R)

I

is a field. In the following, we shall identify a real number c ∈ R with the equivalence class
of the constant net [c]I .

Now, we equip (L × R) ∪ K with the following topology τ . A basis of neighborhoods of
[ϕ]I is given by

Nϕ,Q := {(λ, ϕ(λ)) | λ ∈ Q} ∪ {[ϕ]I } , Q ∈ U . �

From now on, in order to simplify the notation we will write

lim
λ↑Λ

ϕ(λ) := lim
λ→Λ

(λ, ϕ(λ)) ,

and we call it a Λ-limit.
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2.3. Natural extension of sets and functions

The notion of a Λ-limit can be extended to sets and functions in the following way:

Definition 9. Let Eλ, λ ∈ L, be a family of sets in RN and let

lim
λ↑Λ

Eλ :=


lim
λ↑Λ

ψ(λ) | ψ(λ) ∈ Eλ


.

A set which is a Λ-limit is called internal. In particular, if ∀λ ∈ L, Eλ = E, we set
limλ↑Λ Eλ = E∗, namely

E∗ :=


lim
λ↑Λ

ψ(λ) | ψ(λ) ∈ E


.

E∗ is called the natural extension of E.

Notice that, while the Λ-limit of a sequence of numbers with constant value r ∈ R is r,
the Λ-limit of a constant sequence of sets with value E ⊆ R gives a larger set, namely E∗. In
general, the inclusion E ⊆ E∗ is proper.

This definition, combined with axiom (Λ-1), entails that

K = R∗.

Given any set E, we can associate to it two sets: its natural extension E∗ and the set Eσ ,
where

Eσ = {x∗ | x ∈ E} . (3)

Clearly Eσ is a copy of E; however it might be different as a set since, in general, x∗ ≠ x.
Moreover Eσ ⊂ E∗ since every element of Eσ can be regarded as the Λ-limit of a constant
sequence.

Definition 10. Let

fλ : Eλ → R, λ ∈ L,

be a family of functions. We define a function

f :


lim
λ↑Λ

Eλ


→ R∗

as follows: for every ξ ∈ (limλ↑Λ Eλ) let

f (ξ) := lim
λ↑Λ

fλ (ψ(λ)) ,

where ψ(λ) is a net of numbers such that

ψ(λ) ∈ Eλ and lim
λ↑Λ

ψ(λ) = ξ.
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A function which is a Λ-limit is called internal. In particular if, ∀λ ∈ L,

fλ = f, f : E → R,

we set

f∗ = lim
λ↑Λ

fλ.

f∗ : E∗ → R∗ is called the natural extension of f .

The Λ-limit can be extended to a larger family of nets; let us consider a net

ϕ : L → Un. (4)

We will define limλ↑Λ ϕ(λ) by induction on n. For n = 0, limλ↑Λ ϕ(λ) is defined by
Theorem 8; so by induction we may assume that the limit is defined for n − 1 and we define
it for the net (4) as follows:

lim
λ↑Λ

ϕ(λ) =


lim
λ↑Λ

ψ(λ) | ψ : L → Un−1 and ∀λ ∈ L, ψ(λ) ∈ ϕ(λ)

. (5)

Definition 11. A mathematical entity (number, set, function or relation) which is the Λ-limit
of a net is called internal.

Let us note that, if (fλ), (Eλ) are, respectively, a net of functions and a net of sets, the
Λ-limit of these nets defined by (5) coincides with the Λ-limit given by Definitions 9 and 10.
The following theorem is a fundamental tool in using the Λ-limit:

Theorem 12. (Leibniz Principle) Let R be a relation in Un for some n ≥ 0 and let
ϕ,ψ : L → Un. If

∀λ ∈ L, ϕ(λ)Rψ(λ)

then 
lim
λ↑Λ

ϕ(λ)


R∗


lim
λ↑Λ

ψ(λ)

.

When R is ∈ or = we will not use the symbol ∗ to denote their extensions, since their
meaning is unaltered in universes constructed over R∗. To give an example of how Leibniz
Principle can be used to prove facts about internal entities, let us prove that if K ⊆ R is a
compact set and (fλ) is a net of continuous functions then f = lim

λ↑Λ
fλ has a maximum on

K∗. For every λ let ξλ be the maximum value attained by fλ on K, and let xλ ∈ K be such
that fλ(xλ) = ξλ. For every λ, for every yλ ∈ K we have that fλ(yλ) ≤ fλ(xλ). By Leibniz
Principle, setting

x = lim
λ↑Λ

xλ
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we have that

∀y ∈ K f(y) ≤ f(x),

so ξ = limλ↑Λ ξλ is the maximum of f on K and it is attained at x.

2.4. Ultrafunction theory

Let Ω be a set in RN and let V (Ω) be a (real or complex) vector space such that
D(Ω) ⊆ V (Ω) ⊆ L2(Ω) ∩ C(Ω).

Definition 13. Given the function space V (Ω) we set

VΛ(Ω) := lim
λ↑Λ

Vλ(Ω),

where

Vλ(Ω) = Span(V (Ω) ∩ λ).

VΛ(Ω) will be called the space of ultrafunctions generated by V (Ω).

Using the above definition, if V (Ω), Ω ⊂ RN , is a real function space then we can
associate to it three function spaces of hyperreal functions, namely V (Ω)σ , VΛ(Ω) and
V (Ω)∗:

V (Ω)σ = {f∗ | f ∈ V (Ω)} , (6)

VΛ(Ω) =


lim
λ↑Λ

fλ | fλ ∈ Vλ(Ω)

, (7)

V (Ω)∗ =


lim
λ↑Λ

fλ | fλ ∈ V (Ω)

. (8)

Clearly we have

V (Ω)σ ⊂ VΛ(Ω) ⊂ V (Ω)∗.

Let us see the relations of the space of ultrafunctions VΛ(Ω) with the space of “standard
functions” V (Ω)σ and the space of internal functions V (Ω)∗. Given any vector space of
functions V (Ω), the space of ultrafunction generated by V (Ω) is a vector space of hyperfinite
dimension that includes V (Ω)σ , and the ultrafunctions are Λ-limits of functions in Vλ. Hence
the ultrafunctions are particular internal functions

u : (R∗)N → C∗.

Since VΛ(Ω) ⊂

L2(R)

∗
, it can be equipped with the following scalar product

(u, v) =
 ∗

u(x)v(x) dx,

where
 ∗ is the natural extension of the Lebesgue integral considered as a functional

: L1(Ω) → C.
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Notice that the Euclidean structure of VΛ(Ω) is the Λ-limit of the Euclidean structure of every
Vλ given by the usual L2 scalar product. The norm of an ultrafunction will be given by

∥u∥ =
 ∗

|u(x)|2 dx
 1

2

.

2.5. Morse theory

Let M be a finite dimensional Riemannian manifold and let

J : M → R

be a functional of class C2.
A point u ∈ M, is called a critical point of J if dJ(u) = 0. A number c ∈ R is a called

a critical value of J if there is a critical point u ∈ M such that J(u) = c. A critical point is
called nondegenerate if HJ(u) is nonsingular, namely if

[∀ϕ ∈ TuM, HJ(u) [ψ,ϕ] = 0] ⇒ ψ = 0.

If a, b ∈ R, we set

Jb = {u ∈ M|J(u) ≤ b}
Jb

a = Jb\Ja = {u ∈ M|a < J(u) ≤ b}
Kb

a =

u ∈ Jb

a |dJ(u) = 0

.

The Morse index of a quadratic form a [ϕ] is the number of negative eigenvalues of any
matrix representation of a [ϕ]. The Morse index of a critical point u, denoted by m(u), is the
Morse index of the Hessian quadratic form HJ(u) [ϕ]. If u is a nondegenerate critical point,
we define the polynomial Morse index of u as follows

it(u) = tm(u).

We have introduced the notion of polynomial Morse index because this notion allows to
define the index of any isolated critical point, even if it is degenerate; the definition is the
following:

it(u) =
N

k=0

dim

Hk(Jc, Jc\ {u})


tk, c = J(u)

where N is the dimension of the manifold M, Hk(A,B) is the kth Alexander–Spanier coho-
mology group of the couple (A,B) with real coefficients and we denote by dim


Hk(A,B)


the dimension of Hk(A,B) regarded as real vector space. It is a well known fact of Morse
theory that, if u is a nondegenerate critical point, the two definitions of it(u) agree.

We define the Morse polynomial of Jb
a as follows:

Mt(Jb
a) =


u∈Kb

a

it(u).

Thus M(t) is a polynomial with coefficients in N ∪ {+∞}. If all the critical points in Kb
a are

not degenerate, M(1) is the cardinality of Kb
a, namely the number of the critical points of J
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in Jb
a. If some critical point is degenerate, then M(1) is the number of critical points counted

with their multiplicity where the multiplicity of a critical point u is given by i1(u).
The Betti (or Poincaré) polynomial of Jb

a is a topological invariant defined as follows:

Pt(Jb
a) =

N
k=0

dim

Hk(Jb, Ja)


tk.

The integer dim

Hk(Jb, Ja)


is called the kth Betti number of Jb

a.
In the rest of the paper, we shall use the following important result in Morse theory.

Theorem 14. Let us assume that

• Jb
a is compact (or more generally J satisfies the Palais–Smale conditions in [a, b]),

• Kb
a is a finite set.

Then both Mt(Jb
a) and Pt(Jb

a) are finite and there exists a polynomial Q with coefficients
in N such that

Mt(Jb
a) = Pt(Jb

a) + (1 + t)Q(t).

We will define our own generalized version of the Palais–Smale conditions in the present
paper; for a classical definition refer to [7].

3. MORSE THEORY FOR ULTRAFUNCTIONS

3.1. Basic results

Let V ⊂ C1(Ω) be a Banach space and let

J : V → R

be a functional of class C2. In the applications, we will assume that J has the following
structure:

J (u) =

F (x, u, ∇u) dx. (9)

As we emphasized in the introduction, the main difficulty for the development of Morse
Theory in Banach spaces is to define the right concept of nondegeneracy and of Morse index
for a critical point.

We will be interested in Morse theory for the functional

JΛ : VΛ → R∗

where VΛ is a space of ultrafunctions and JΛ is the restriction of J∗ to VΛ. For example, a
suitable space for the functional (9) is VΛ(Ω) := [C2(Ω) ∩ C1

0 (Ω)]Λ.
Now let us describe the main objects of Morse theory in the ultrafunctions framework.

Definition 15. An ultrafunction u ∈ VΛ is called a critical point of JΛ : VΛ → R∗ if

∀ϕ ∈ VΛ, dJΛ(u) [ϕ] = 0

where dJ is the differential of J.
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In particular, if J is the functional (9), we have that u ∈ VΛ = [C2(Ω) ∩ C1
0 (Ω)]Λ is a

critical point if

∀ϕ ∈ VΛ(Ω),
 

∂F

∂ (∇u)
· ∇ϕ+

∂F

∂u
ϕ


dx = 0.

Here ∂F
∂(∇u) denotes the vector


∂F

∂ux1
, . . . , ∂F

∂uxN


.

The Hessian quadratic form HJ ∗ (u) of J∗ is defined on V ∗ × V ∗; we will denote by
HJΛ

(u) its restriction to VΛ × VΛ. A critical point of JΛ is called nondegenerate if

∀ϕ ∈ VΛ, HJΛ
(u) [ψ,ϕ] = 0 ⇒ ψ = 0.

Since HJΛ(u) is a quadratic form defined on a hyperfinite space VΛ, its Morse index is well
defined and hence also the Morse index mΛ(u) of u is well defined.

Given two hyperreal numbers a < b, we set

Jb
Λ = {u ∈ VΛ|JΛ(u) ≤ b}

[Jb
a]Λ = Jb

Λ\Ja
Λ = {u ∈ VΛ|a < JΛ(u) ≤ b}

[Kb
a]Λ =


u ∈ Jb

a |dJΛ(u) = 0

.

Next we must define the Morse index, the Morse polynomial and the Betti polynomial in
the frame of ultrafunctions. We could define them intrinsically as we have done for the above
notions. However it seems easier to define them by means of a Λ-limit.

We set

Mt([Jb
a]Λ) = lim

λ↑Λ
Mt(Jbλ

aλ
∩ Vλ)

where aλ and bλ are two real nets such that

lim
λ↑Λ

aλ = a, lim
λ↑Λ

bλ = b. (10)

Analogously, we define the “generalized” Betti polynomial as follows:

Pt([Jb
a]Λ) = lim

λ↑Λ
Pt(Jbλ

aλ
∩ Vλ).

Now it is possible to state an abstract theorem for Morse theory in the framework of
ultrafunctions:

Theorem 16. Let

J : V → R

be a C2-functional and

JΛ : VΛ → R∗

be the restriction of J∗ to VΛ. Let a, b ∈ R∗ satisfy (10) and assume that

• for almost every λ ∈ L, Jbλ
aλ is compact (or J satisfies (PS) in [aλ, bλ]),

• for almost every λ ∈ L, Kbλ
aλ

is finite.
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Then Mt([Jb
a]Λ), Pt([Jb

a]Λ) ∈ pol(N)∗ where

pol(N) = {polynomials with coefficients in N}

and there exists a polynomial Q ∈ pol(N)∗ such that

Mt([Jb
a]Λ) = Pt([Jb

a]Λ) + (1 + t)Q(t).

Proof. For almost every λ ∈ L, Jbλ
aλ is compact and Kbλ

aλ
is finite; then by Theorem 14,

Mt(Jbλ
aλ

) and Pt(Jbλ
aλ

) ∈ pol(N) and there exists a polynomial Qλ ∈ pol(N) such that

Mt(Jbλ
aλ

) = Pt(Jbλ
aλ

) + (1 + t)Qλ(t).

The theorem follows by taking the Λ-limit. �

3.2. Ultrafunctions versus Sobolev spaces

Usually, the critical points of functional of type (9) are studied in the Sobolev space
W 1,p

0 (Ω) provided that the functional J can be extended to W 1,p
0 (Ω) as a C1 functional.

In this section, we will investigate some relation between the ultrafunction and the Sobolev
space approach.

So we will assume that J can be extended to a C1-functional in a Banach space W ⊂
L1(Ω) (with some abuse of notation we will denote this extension by the same letter J):

J : W → R.

So

V σ ⊂ Wσ ⊂ VΛ.

In the following, to simplify the notation, we will identify V σ and V as well as Wσ and
W.

The next theorems will establish some relations between the critical points of JΛ in VΛ

and the critical points of J in W.
The first result in this direction is (almost) trivial:

Theorem 17. Under the same framework and the same assumptions of Theorem 16 every
critical point of J in W is a critical point of JΛ in VΛ.

Proof. Let u ∈ W be a critical point of J ; we will use the fact that V (Ω)σ ⊂ VΛ(Ω) to
prove the thesis.

Let uλ be the constant net uλ = u; then

lim
λ↑Λ

uλ = u∗ ∈ V (Ω)σ ⊂ VΛ(Ω),

and let Jλ be the constant net Jλ = J ; then

dJλ(uλ)[φλ] = 0

for every φλ ∈ Vλ(Ω); therefore, taking the Λ-limit of a constant net we have the thesis. �
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The above theorem cannot be inverted in the sense that it is false that every critical point
of JΛ is a critical point of J in W . However, there are conditions which insure the existence
of critical point of J in W . More precisely the next theorem states that, under suitable
conditions, “infinitely close” to any critical point of JΛ there is a critical point of J .

This theorem exploits a compactness condition which is a variant of the usual Palais–
Smale condition (PS) [7]. We recall the Palais–Smale condition is a basic tool for Morse
theory in infinite dimensional manifolds (see e.g. [7]). Here it is used only to relate some
critical points of JΛ with the critical points of J .

Definition 18 (Palais–Smale condition for ultrafunctions (PSU).). We say that the functional

J : W → R

satisfies (PSU) in the interval [a, b] ⊂ R if for every net {uλ}λ∈L such that

(A) ∀λ ∈ L, J(uλ) ∈ [a, b]
(B) ∀λ ∈ L, ∀v ∈ Vλ, dJ(uλ) [v] = 0

there is a converging subnet {uλ}λ∈D (D ⊂ L) in the topology of W , such that

lim
λ→Λ

uλ ∈ W.

Remark 19. Notice that, by Proposition 7, the sequence {uλ}λ∈L itself is converging.

Theorem 20. Let us assume that W is a Banach space and that V ⊂ W ⊂ VΛ. Let

J : W → R

be a C1-functional which satisfies (PSU) in the interval [a, b]. Then, if ū is a critical point
of

JΛ : VΛ → R∗

with JΛ (ū) ∈ [a, b]∗
, there exists w ∈ Kb

a such that

∥ū − w∗ ∥W ∗ ∼ 0.

Remark 21. Notice that in the above theorem, it is possible that ū = w∗. Obviously, this
fact always occurs if W is a Hilbert space and all the critical values of J in [a, b] are not
degenerate.

Proof of Theorem 20. Let

ū = lim
λ↑Λ

uλ;

Then, since (PSU) holds, there is a function w ∈ W and a subnet of uλ such that

∥uλ − w∥W → 0.
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By Proposition 7, ∥uλ − w∥ is a converging net, and hence, for every ε > 0, exists Q ∈ U
such that ∀λ ∈ Q,

∥uλ − w∥W ≤ ε.

If you take the Λ-limit of the above inequality, you get that

∥ū − w∗ ∥W ∗ ≤ ε.

Since ε is arbitrary, we conclude that

∥ū − w∗ ∥W ∗ ∼ 0. �
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