Total graph of a module with respect to singular submodule

Jituparna Goswami ${ }^{\text {a,* }}$, Kukil Kalpa Rajkhowa ${ }^{\text {b }}$, Helen K. Saikia ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Applied Sciences, Gauhati University Institute of Science and Technology, Guwahati-781014, India
${ }^{\mathrm{b}}$ Department of Mathematics, Cotton College State University, Guwahati-781001, India
${ }^{c}$ Department of Mathematics, Gauhati University, Guwahati-781014, India

Received 26 May 2015; received in revised form 13 October 2015; accepted 20 October 2015
Available online 10 November 2015

Abstract

Let R be a commutative ring with unity and M be an R-module. We introduce the total graph of a module M with respect to singular submodule $Z(M)$ of M as an undirected graph $T(\Gamma(M))$ with vertex set as M and any two distinct vertices x and y are adjacent if and only if $x+y \in Z(M)$. We investigate some properties of the total graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\bar{Z}(\Gamma(M))$. In some aspects, we have noticed some sort of finiteness.

2010 Mathematics Subject Classification: 05; C; 25
Keywords: Commutative ring; Module; Singular submodule; Total graph

1. Introduction

In 1988, Istvan Beck [10] opened up the fascinating insight which relates a graph with the algebraic structure ring. He introduced the zero divisor graph of a commutative ring, and later on, this introduction was slightly modified by D.D. Anderson and M. Naseer in [7]. Further modification to the concept of the zero-divisor graph was made in [6]. Many authors studied the zero-divisor graph in the sense of Anderson-Livingston as in [6]. Since then, the concept of the zero divisor graph of ring has been playing a vital rule in its expansion. Motivating from this well expanded idea of Beck, lots of correspondences of a graph with algebraic structures have been introduced with a variety of applications. Some of them are

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2015.10.002
1319-5166 © 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
the comaximal graph of a commutative ring by Sharma and Bhatwadekar [16], the total graph of commutative ring by Anderson and Badawi [4], the intersection graph of ideals of a ring by Chakrabarty et al. [11], etc.

In 2008, Anderson and Badawi [4] defined the total graph of a commutative ring R, which is an undirected graph with vertex set as R with any two vertices are adjacent if and only if its ring sum is a zero divisor of R. In that paper, they discussed the characteristics of total graph and its two induced subgraphs by considering two cases, namely, the set of zero divisors $Z(R)$ of R is an ideal of R and $Z(R)$ is not an ideal of R. Thereafter, Akbari et al. [3] continued this concept of total graph of commutative rings. Ahmad Abbasi and Shokoofe Habibi [1] discussed the total graph of a commutative ring with respect to the proper ideals. Anderson and Badawi [5] interpreted the total graph of a commutative ring without zero element. In [17], M.H. Shekarriz et al. observed some basic graph theoretic properties of the total graph of a finite commutative ring. The prospect for total graph of modules is also observed in recent times. A. Abbasi and S. Habibi [2] investigated the total graph of a commutative ring with respect to the proper submodules of a module. The total torsion element graph of a module over a commutative ring was introduced by S. Atani and S. Habibi [8]. The above module based concepts of total graph extend the work of Anderson and Badawi [4].

In this article, we introduce the notion of singularity of a module over a ring and define the total graph of a module M with respect to singular submodule $Z(M)$. Before going to our discussion we recall the following.

Let R be a commutative ring. An element x of R is called a zero-divisor of R if there exists a non-zero element y of R with $x y=0$. The collection of all zero-divisors of R is denoted by $Z(R)$, and henceforth, we use it. An ideal I of R is an essential ideal if its intersection with any non-zero ideal of R is non-zero. For the R-modules M and N, a mapping $f: M \rightarrow N$ is said to be a module homomorphism if $f(x+y)=f(x)+f(y)$ and $f(r x)=r f(x)$ for all $x, y \in M$ and $r \in R$. If f is also one-one, then it is said to be a module monomorphism. A one-one and onto module homomorphism is called a module isomorphism.

Throughout this discussion, all graphs are undirected. Let G be an undirected graph with the vertex set $V(G)$, unless otherwise mentioned. If G contains n vertices then we write $|V(G)|=n$. Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G is a graph having all of its vertices and edges in G. A spanning subgraph of G contains all vertices of it. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. Thus two points of S are adjacent in $\langle S\rangle$ if and only if they are adjacent in G. The degree of a vertex v in a graph G is the number of edges incident with v. The degree of a vertex v is denoted by $\operatorname{deg}(v)$. The vertex v is isolated if $\operatorname{deg}(v)=0$. A walk in G is an alternating sequence of vertices and edges, $v_{0} x_{1} v_{1} \ldots x_{n} v_{n}$ in which each edge x_{i} is $v_{i-1} v_{i}$. The length of such a walk is n, the number of occurrences of edge in it. A closed walk has the same first and last vertices. A path is a walk in which all vertices are distinct; a cycle or circuit is a closed walk with all points distinct (except the first and last). A cycle of length 3 is called a triangle. An acyclic graph does not contain a cycle. G is connected if there is a path between every two distinct vertices. A graph which is not connected is called a disconnected graph. A totally disconnected graph does not contain any edges. For distinct vertices x and y of G, let $d(x, y)$ be the length of the shortest path from x to y and if there is no such path we define $d(x, y)=\infty$. The eccentricity $e(v)$ of a vertex v in a connected graph G is $\max d(u, v)$ for all u in $V(G)$. A vertex with minimum eccentricity is called a center
of G. The maximum eccentricity of G is called the diameter of G. If in a graph any two vertices are adjacent, it is called a complete graph, denoted by K^{α} where α is the number of vertices of the graph. A complete subgraph of G is called a clique. A maximum clique of G is a clique with largest number of vertices and the number of vertices of a maximum clique is called the clique number of G, denoted by $\omega(G) . G$ is said to be a bipartite graph or bigraph if its vertex set V can be partitioned into two disjoint subsets V_{1} and V_{2} with every edge of G joining V_{1} and V_{2}. If $\left|V_{1}\right|=\alpha$ and $\left|V_{2}\right|=\beta$ and every vertex of V_{1} is adjacent to every vertex of V_{2}, G is called a complete bipartite graph, denoted by $K^{\alpha, \beta}$. We say that two (induced) subgraphs G_{1} and G_{2} of G are disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (respectively, G_{2}) is adjacent (in G) to any vertex not in G_{2} (respectively, G_{1}). A Hamiltonian cycle is a spanning cycle in a graph. G is called Hamiltonian if it has a Hamiltonian cycle. Also $\kappa(G)$ is the smallest number of vertices removal of which makes G disconnected. The cartesian product of graphs G and H, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices $(a, b),\left(a^{\prime}, b^{\prime}\right) \in V(G) \times V(H)$ are adjacent if and only if $(i) a=a^{\prime}$ and b is adjacent to b^{\prime}, or $(i i) b=b^{\prime}$ and a is adjacent to a^{\prime}. Any undefined terminology can be found in [9,12-15].

2. Total graph of a module M with respect to singular submodule $Z(M)$

Let R be a commutative ring with unity and M be an R-module. Let $Z(M)$ be the set of those $x \in M$ for which the ideal $\{r \in R \mid x r=0\}$ is essential in R, i.e. $Z(M)=\{x \in$ $M \mid x I=0$, for some essential ideal I of $R\}$. Then $Z(M)$ is a submodule of M, called the singular submodule of M. Let $\bar{Z}(M)=M-Z(M)$.

We introduce and investigate the total graph of M with respect to $Z(M)$, denoted by $T(\Gamma(M))$, as the (undirected) graph with all elements as vertices, and for distinct $x, y \in M$, the vertices x and y are adjacent, written as x adj y if and only if $x+y \in Z(M)$. Let $Z(\Gamma(M))$ be the (induced) subgraph of $T(\Gamma(M))$, with vertices $Z(M)$, and let $\bar{Z}(\Gamma(M))$ be the (induced) subgraph of $T(\Gamma(M))$ with vertices $\bar{Z}(M)$.

Example 1. Let $M=\mathbb{Z}_{4}$ be the module of integers modulo 4 and $R=\mathbb{Z}_{8}$ be the ring of integers modulo 8 . Then the essential ideals of R are $I=\{0,2,4,6\}$ and R itself. We have $Z(M)=\{0,2\}$ and therefore $\bar{Z}(M)=\{1,3\}$.

Let us now observe the graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\bar{Z}(\Gamma(M))$ from Fig. 1. It is very easy to conclude that $Z(\Gamma(M))$ is complete and also disjoint from $\bar{Z}(\Gamma(M))$.

Fig. 1. The total graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\bar{Z}(\Gamma(M))$.

We start this section with the monomorphic character of module which depicts the corresponding graphical character. We observe that the monomorphic character of module carries the graphical character.

Lemma 2.1. Let $f: M_{1} \rightarrow M_{2}$ be a module monomorphism. If x adj y then $\mathrm{f}(\mathrm{x})$ adj $\mathrm{f}(\mathrm{y})$, for $x, y \in M_{1}$.

Proof. Let x adj y. Then there exists an essential ideal I of R such that $(x+y) I=0$. Then it is easy see that $(f(x)+f(y)) I=0$. This completes the proof.

Theorem 2.1. Let $f: M_{1} \rightarrow M_{2}$ be a module monomorphism. If $T\left(\Gamma\left(M_{1}\right)\right)$ is a complete graph, then so is $T\left(\Gamma\left(f\left(M_{1}\right)\right)\right)$.

Proof. Suppose that $T\left(\Gamma\left(M_{1}\right)\right)$ is a complete graph. To show $T\left(\Gamma\left(f\left(M_{1}\right)\right)\right.$) is also a complete graph. For this, we assume $y_{1}, y_{2} \in f\left(M_{1}\right)$. So, $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ for the elements x_{1} and x_{2} in M_{1} respectively. As $T\left(\Gamma\left(M_{1}\right)\right)$ is a complete graph, therefore x_{1} adj x_{2}. Then from the above lemma we get, y_{1} adj y_{2}. Thus $T\left(\Gamma\left(f\left(M_{1}\right)\right)\right)$ is also a complete graph.

Theorem 2.2. Let $f: M_{1} \rightarrow M_{2}$ be a module isomorphism. Then f is also an isomorphism from $T\left(\Gamma\left(M_{1}\right)\right)$ onto $T\left(\Gamma\left(M_{2}\right)\right)$.

Proof. We need only to show that adjacency relation is preserved. For this, we assume that x adj y, for $x, y \in M_{1}$. Then there exists an essential ideal I of R such that $(x+y) I=0$. It can be easily obtained that $f(x)$ adj $f(y)$. Hence the result.

Theorem 2.3. For any $x, y \in \bar{Z}(M), x$ adj y if and only if every element of $x+Z(M)$ is adjacent to every element of $y+Z(M)$.

Proof. Let $a=x+z_{1} \in x+Z(M), b=y+z_{2} \in y+Z(M)$. If x adj y, then $x+y \in Z(M)$. This gives $\left(\left(a-z_{1}\right)+\left(b-z_{2}\right)\right) \in Z(M)$ i.e. $(a+b)-\left(z_{1}+z_{2}\right) \in Z(M)$. As $Z(M)$ is a submodule of M, so $a+b \in Z(M)$. From this a adj b. Conversely, if a adj b then $a+b \in Z(M)$. From this $\left(x+z_{1}\right)+\left(y+z_{2}\right) \in Z(M)$. Therefore $x+y \in Z(M)$. Hence x adj y.

Theorem 2.4. The following holds:
(1) $\underline{Z}(\Gamma(M))$ is a complete (induced) subgraph of $T(\Gamma(M))$ and $Z(\Gamma(M))$ is disjoint from $\bar{Z}(\Gamma(M))$.
(2) If N is a submodule of M, then $T(\Gamma(N))$ is the (induced) subgraph of $T(\Gamma(M)$).

Theorem 2.5. The following holds:
(1) Assume that G is an induced subgraph of $\bar{Z}(\Gamma(M))$ and let x and y be two distinct $v e r t i c e s ~ o f ~ G ~ t h a t ~ a r e ~ c o n n e c t e d ~ b y ~ a ~ p a t h ~ i n ~ G . ~ T h e n ~ t h e r e ~ e x i s t s ~ a ~ p a t h ~ i n ~ G ~ o f ~ l e n g t h ~ 2 ~$ between x and y. In particular, if $\bar{Z}(\Gamma(M))$ is connected, then $\operatorname{diam}(\bar{Z}(\Gamma(M))) \leq 2$.
(2) Let x and y be distinct elements of $\bar{Z}(\Gamma(M))$ that are connected by a path. If $x+y \notin$ $\underline{Z}(M)$, then $x-(-x)-y$ and $x-(-y)-y$ are paths of length 2 between x and y in $\bar{Z}(\Gamma(M))$.

Proof. (1) It is enough to show that if x_{1}, x_{2}, x_{3}, and x_{4} are distinct vertices of G and there is a path $x_{1}-x_{2}-x_{3}-x_{4}$ from x_{1} to x_{4}, then x_{1} and x_{4} are adjacent. So $x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4} \in Z(M)$ gives $x_{1}+x_{4}=\left(x_{1}+x_{2}\right)-\left(x_{2}+x_{3}\right)+\left(x_{3}+x_{4}\right) \in Z(M)$, since $Z(M)$ is a submodule of M. Thus x_{1} adj x_{4}. So, if $\bar{Z}(\Gamma(M))$ is connected, then $\operatorname{diam}(\bar{Z}(\Gamma(M))) \leq 2$.
(2) Since $x+y \in \bar{Z}(\Gamma(M))$ and $x+y \notin Z(M)$, there exists $z \in \bar{Z}(\Gamma(M))$ such that $x-z-y$ is a path of length 2 by part (1) above. Thus $x+z, z+y \in Z(M)$, and hence $x-y=(x+z)-(z+y) \in Z(M)$. Also, since $x+y \notin Z(M)$, we must have $x \neq-x$ and $y \neq-x$. Thus $x-(-x)-y$ and $x-(-y)-y$ are paths of length 2 between x and y in $\bar{Z}(\Gamma(M))$.

Theorem 2.6. The following statements are equivalent.
(1) $\bar{Z}(\Gamma(M))$ is connected.
(2) Either $x+y \in Z(M)$ or $x-y \in Z(M)$ for all $x, y \in \bar{Z}(M)$.
(3) Either $x+y \in Z(M)$ or $x+2 y \in Z(M)$ for all $x, y \in \bar{Z}(M)$. In particular, either $2 x \in Z(M)$ or $3 x \in Z(M)$ (but not both) for all $x \in \bar{Z}(M)$.

Proof. $(1) \Rightarrow(2)$ Let $x, y \in \bar{Z}(M)$ be such that $x+y \notin Z(M)$. If $x=y$, then $x, y \in \bar{Z}(M)$. Otherwise, $x-(-y)-y$ is a path from x and y by Theorem 2.5(2), and hence $x-y \in Z(M)$.
$(2) \Rightarrow(3)$ Let $x, y \in \bar{Z}(M)$, and suppose that $x+y \notin Z(M)$. By assumption, since $(x+y)-y=x \notin Z(M)$, we conclude that $x+2 y=(x+y)+y \in Z(M)$. In particular, if $x \in \bar{Z}(M)$, then either $2 x \in Z(M)$ or $3 x \in Z(M)$. Both $2 x$ and $3 x$ cannot be in $Z(M)$ since then $x=3 x-2 x \in Z(M)$, a contradiction.
$(3) \Rightarrow(1)$ Let $x, y \in \bar{Z}(M)$ be distinct elements of M such that $x+y \notin Z(M)$. By hypothesis, since $x+2 y \in Z(M)$, we get $2 y \notin Z(M)$. Thus $3 y \in Z(M)$ by hypothesis. Since $x+y \notin Z(M)$ and $3 y \in Z(M)$, we conclude $x \neq 2 y$, and hence $x-2 y-y$ is a path from x to y in $\bar{Z}(M)$.

Example 2. Let $R=Z_{4}$ denote the ring of integers modulo 4 and $M=Z_{8}$ be the ring of integers modulo 8 . Then M is an R-module with the usual operations, and $Z(M)=$ $\{0,2,4,6\}$. Thus $\bar{Z}(M)=\{1,3,5,7\}$. By Theorem 2.6, we conclude that $\bar{Z}(\Gamma(M))$ is connected which can be observed from Fig. 2.

$\overline{\mathrm{Z}}(\Gamma(\mathrm{M}))$
Fig. 2. The induced subgraph $\bar{Z}(\Gamma(M))$.

Theorem 2.7. Let $|Z(M)|=\alpha$ and $|M / Z(M)|=\beta$.
(1) If $2 \in Z(R)$ then $\bar{Z}(\Gamma(M))$ is the union $\beta-1$ disjoint K^{α} 's.
(2) If $2 \notin Z(R)$ then $\bar{Z}(\Gamma(M))$ is the union of $(\beta-1) / 2$ disjoint $K^{\alpha, \alpha}$'s.

Proof. (1) It is obvious that $x+Z(M) \subseteq \bar{Z}(M)$ for every $x \notin Z(M)$. Let $x+x_{1}, x+x_{2} \in$ $x+Z(M)$, where $x_{1}, x_{2} \in Z(M)$. Since $Z(M)$ is a submodule of M, so $\left(x+x_{1}\right)+\left(x+x_{2}\right)=$ $2 x+x_{1}+x_{2} \in Z(M)$. Thus the coset $x+Z(M)$ is a complete subgraph of $\bar{Z}(M)$. Again any two distinct cosets form disjoint subgraphs of $\bar{Z}(M)$. If not, suppose $x+x_{1}$ is adjacent to $y+x_{2}$ for some $x, y \in \bar{Z}(M)$ and $x_{1}, x_{2} \in Z(M)$ then $x-y=(x+y)-2 y \in Z(M)$ since $Z(M)$ is submodule of M and $2 y \in Z(M)$. From this we get $x+Z(M)=y+Z(M)$, a contradiction. Hence $\bar{Z}(\Gamma(M))$ is a union of $\beta-1$ disjoint (induced) subgraphs $x+Z(M)$, each of which is a K^{α}, where $\alpha=|Z(M)|=|x+Z(M)|$.
(2) Let $x \in \bar{Z}(M)$ and $2 \notin Z(R)$. Then no two distinct elements of $x+Z(M)$ are adjacent, because, if $x+x_{1}$ is adjacent to $x+x_{2}, x_{1}, x_{2} \in Z(M) ; 2 x \in Z(M)$. This implies that for some essential ideal I of R we have $2 x I=0$. Now, we have for every non-zero ideal K of $R, I \cap K \neq 0$, i.e. there exists a non-zero $x \in R$ with $x \in I \cap K$. From this we get $x+x=2 x \in I$ and $2 x \in K$. But $2 \notin Z(R)$, therefore $2 x \neq 0$. Thus $2 x$ is a non-zero element with $2 x \in 2 I \cap K$ leading onto $2 I$ is an essential ideal of R. This will imply that $x \in Z(M)$, as $x(2 I)=0$, which is a contradiction. Also, since $2 x \notin Z(M)$, two cosets $x+Z(M)$ and $-x+Z(M)$ are disjoint. Moreover, it is easy to observe that every element of $x+Z(M)$ is adjacent to every element of $-x+Z(M)$. Thus $(x+Z(M)) \cup(-x+Z(M))$ is a complete bipartite (induced) subgraph of $\bar{Z}(\Gamma(M))$. Again, if $x+x_{1}$ is adjacent to $y+x_{2}$ for some $x, y \in \bar{Z}(M)$ and $x_{1}, x_{2} \in Z(M)$, then $x+y \in Z(M)-0$, and so $x+Z(M)=-y+Z(M)$. Hence $\bar{Z}(\Gamma)$ is the union of $(\beta-1) / 2$ disjoint (induced) subgraphs $(x+Z(M))=(-y+Z(M))$, each of which is a $K^{\alpha, \alpha}$, where $\alpha=|Z(M)|=|x+Z(M)|$.

Theorem 2.8. Let $M-Z(M) \neq \phi$.
(1) If $\bar{Z}(\Gamma(M))$ is complete then either $|M / Z(M)|=2$ or $|M / Z(M)|=|M|=3$.
(2) If $\bar{Z}(\Gamma(M))$ is connected then either $|M / Z(M)|=2$ or $|M / Z(M)|=3$.
(3) If $\bar{Z}(\Gamma(M))$ (and hence $Z(\Gamma(M))$ and $T(\Gamma(M))$) is totally disconnected then either $Z(M)=0$ or $2 \in Z(R)$.

Proof. Suppose that $|M / Z(M)|=\beta$ and $|Z(M)|=\alpha$.
(1) First we assume $\bar{Z}(\Gamma(M))$ is complete. This implies that $\bar{Z}(\Gamma(M))$ is a single K^{α} or $K^{1,1}$, by Theorem 2.7. If $2 \in Z(R)$, then $\beta-1=1$ i.e. $\beta=2$ and thus $|M / Z(M)|=2$. Again, if $2 \notin Z(R)$ then $\alpha=1$ and $(\beta-1) / 2=1$. Hence $Z(M)=0$ and $\beta=3$; thus $3=\beta=|M / Z(M)|=|M|$.
(2) Suppose that $\bar{Z}(\Gamma(M))$ is connected. This implies that $\bar{Z}(\Gamma(M))$ is a single K^{α} or $K^{\alpha, \alpha}$, by Theorem 2.7. If $2 \in Z(R)$, then $\beta-1=1$ i.e. $\beta=2$ and thus $|M / Z(M)|=2$. Again, if $2 \notin Z(R)$ then $(\beta-1) / 2=1$ i.e. $\beta=3$ and thus $|M / Z(M)|=3$.
(3) $\bar{Z}(\Gamma(M))$ is totally disconnected if and only if it is a disjoint union of K^{1},s. Thus by Theorem 2.7 we have $|Z(M)|=1$ and $|M / Z(M)|=1$, and hence the result.

Theorem 2.9. Let x be a vertex of the graph $T(\Gamma(M))$. Then

$$
\operatorname{deg}(x)= \begin{cases}|Z(M)|-1, & \text { if } 2 \in Z(R) \text { and } x \in Z(M) \\ |Z(M)|, & \text { otherwise }\end{cases}
$$

Proof. If $x_{i} \in Z(M)$, the vertex $x \in M$ is adjacent to vertices $x_{i}-x$. Then $\operatorname{deg}(x)=$ $|Z(M)|-1$ if and only if $x=x_{i}-x$ for some $x_{i} \in Z(M)$ i.e. if and only if $2 x \in Z(M)$. If $2 x \notin Z(M)$, then $\operatorname{deg}(x)=|Z(M)|$. If $2 \in Z(R)$, then $2 x \in Z(M)$ for all $x \in M$, thus $\operatorname{deg}(x)=|Z(M)|-1$ i.e. all vertices of the graph $T(\Gamma(M))$ are of degree $|Z(M)|-1$. Again, if $2 \notin Z(R)$, then two cases arise.

Case-1—If $x \in Z(M)$, then $\operatorname{deg}(x)=|Z(M)|-1$.
Case-2-If $x \notin Z(M)$, then $\operatorname{deg}(x)=|Z(M)|$.
It follows that $\operatorname{deg}(x)= \begin{cases}|Z(M)|-1, & \text { if } 2 \in Z(R) \text { and } x \in Z(M) \\ \text { otherwise. }\end{cases}$ otherwise.

Theorem 2.10. Let M_{1} and M_{2} be two finite modules over a finite ring R. Then the following holds.
(1) If $T\left(\Gamma\left(M_{1}\right)\right)$ is a Hamiltonian graph, then so is $T\left(\Gamma\left(M_{1} \times M_{2}\right)\right)$.
(2) If $\bar{Z}\left(\Gamma\left(M_{1}\right)\right)$ is a Hamiltonian graph, then so is $\bar{Z}\left(\Gamma\left(M_{1} \times M_{2}\right)\right)$.

Proof. (i) Let $M_{1}=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$ and $M_{2}=\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{t}^{\prime}\right\}$ be such that the sequence $m_{1}, m_{2}, \ldots, m_{s}$ is a Hamiltonian cycle. Then $m_{1}+m_{s} \in Z\left(M_{1}\right)$. Thus we get the Hamiltonian cycle in $T\left(\Gamma\left(M_{1} \times M_{2}\right)\right)$ as
$\left(m_{1}, m_{1}^{\prime}\right),\left(m_{2}, m_{1}^{\prime}\right), \ldots,\left(m_{s}, m_{1}^{\prime}\right),\left(m_{1}, m_{2}^{\prime}\right), \ldots,\left(m_{s}, m_{2}^{\prime}\right), \ldots,\left(m_{1}, m_{t}^{\prime}\right), \ldots,\left(m_{s}, m_{t}^{\prime}\right)$.
(ii) Suppose that $\bar{Z}\left(M_{1}\right)=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$ and $\bar{Z}\left(M_{2}\right)=\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{t}^{\prime}\right\}$. The above Hamiltonian cycle is also a Hamiltonian cycle for $\bar{Z}\left(\Gamma\left(M_{1} \times M_{2}\right)\right)$.

Theorem 2.11. Let $M=M_{1} \times M_{2}$ be finite module. Then $\kappa(T(\Gamma(M))) \geq\left|M_{1}\right|+\left|M_{2}\right|-4$.
Proof. Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be two distinct elements of M. If $x \neq x^{\prime}, y^{\prime} \neq \pm y, \lambda \notin$ $\left\{y,-y, y^{\prime},-y^{\prime}\right\}$, then consider the paths $(x, y),(-x, \lambda),\left(-x^{\prime},-\lambda\right),\left(-x^{\prime},-y^{\prime}\right)$ for $\lambda \in M_{2}$. If $\eta \in M_{1}$ and $(x, y) \neq(\eta,-y)$ and $\left(x^{\prime}, y^{\prime}\right) \neq\left(-\eta,-y^{\prime}\right)$, then consider the paths $(x, y),(\eta,-y),\left(-\eta,-y^{\prime}\right),\left(x^{\prime}, y^{\prime}\right)$. If $(x, y) \neq(\eta,-y)$ and $\left(x^{\prime}, y^{\prime}\right)=\left(-\eta,-y^{\prime}\right)$, then consider the paths $(x, y),(\eta,-y),\left(x^{\prime}, y^{\prime}\right)$. If $(x, y)=(\eta,-y)$ and $\left(x^{\prime}, y^{\prime}\right) \neq\left(-\eta,-y^{\prime}\right)$, then consider the paths $(x, y),\left(-\eta,-y^{\prime}\right),\left(x^{\prime}, y^{\prime}\right)$. If $(x, y)=(\eta,-y)$ and $\left(x^{\prime}, y^{\prime}\right)=\left(-\eta,-y^{\prime}\right)$ for some η, then consider the paths $(x, y),\left(x^{\prime}, y^{\prime}\right)$ and $(x, y),(\eta,-y),\left(x^{\prime}, y^{\prime}\right)$ for some $\eta \neq x$. So there are at least $\left|M_{1}\right|+\left|M_{2}\right|-4$ disjoint paths from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$.

Let $x \neq x^{\prime}, y^{\prime} \neq y$ and $y^{\prime}=-y$. Then the paths $(x, y),(-x, \lambda),\left(-x^{\prime},-\lambda\right),\left(x^{\prime},-y\right)$ for $\lambda \in M_{2}-\{ \pm b\}$ and the paths $(x, y),(\eta,-y),(-\eta, y),\left(x^{\prime},-y\right)$ for $\eta \in M_{1}-$ $\left\{-x, x^{\prime}\right\}$ are $\left|M_{1}\right|+\left|M_{2}\right|-4$ disjoint paths. Let $x \neq x^{\prime}, y^{\prime}=y$. Consider the paths $(x, y),(-x, \lambda),\left(-x^{\prime},-\lambda\right),\left(x^{\prime},-y\right)$ for $\lambda \in M_{2}-\{y,-y\}$ and the paths $(x, y),(\eta,-y)$, $\left(x^{\prime}, y\right)$ for $\eta \in M_{1}-\left\{x, x^{\prime}\right\}$. If $x=x^{\prime}$, since (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are distinct, then $y \neq y^{\prime}$ and the proof is the same as the case $x \neq x^{\prime}$ and $y=y^{\prime}$.

Acknowledgments

The authors would like to thank the referees for their careful reading of the article and valuable suggestions to improve the article.

References

[1] A. Abbasi, S. Habibi, On the total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012) 85-98. 1.
[2] A. Abbasi, S. Habibi, On the total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (3) (2012).
[3] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebr. 213 (2009) 2224-2228.
[4] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.
[5] D.F. Anderson, A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (4) (2012) 1250074. (18 pages). http://dx.doi.org/10.1142/S0219498812500740.
[6] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[7] D.D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993) 500-514.
[8] S.E. Atani, S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant 19 (1) (2011) 23-34.
[9] R. Balkrishnan, K. Ranganathan, A Text Book of Graph Theory, Springer-verlag New York, Inc., 2008, Reprint.
[10] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[11] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009) 5381-5392.
[12] K.R. Goodearl, Ring Theory, Marcel Dekker, 1976.
[13] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Inc., Reading, Mass, 1969.
[14] I. Kaplansky, Commutative Rings, Revised ed., University of Chicago Press, Chicago, 1974.
[15] J. Lambeck, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
[16] P.K. Sharma, S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995) 124-127.
[17] M.H. Shekarriz, M.H.S. Haghighi, H. Sharif, On the total graph of a finite commutative ring, Comm. Algebra 40 (2012) 2798-2807.

[^0]: * Corresponding author.

 E-mail addresses: jituparnagoswami18@gmail.com (J. Goswami), kukilrajkhowa@yahoo.com (K.K. Rajkhowa), hsaikia@yahoo.com (H.K. Saikia).
 Peer review under responsibility of King Saud University.

