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Abstract. Let R be a commutative ring with unity and M be an R-module. We introduce
the total graph of a module M with respect to singular submodule Z(M) of M as an
undirected graph T (Γ (M)) with vertex set as M and any two distinct vertices x and y
are adjacent if and only if x + y ∈ Z(M). We investigate some properties of the total graph
T (Γ (M)) and its induced subgraphs Z(Γ (M)) and Z(Γ (M)). In some aspects, we have
noticed some sort of finiteness.
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1. INTRODUCTION

In 1988, Istvan Beck [10] opened up the fascinating insight which relates a graph with
the algebraic structure ring. He introduced the zero divisor graph of a commutative ring, and
later on, this introduction was slightly modified by D.D. Anderson and M. Naseer in [7].
Further modification to the concept of the zero-divisor graph was made in [6]. Many authors
studied the zero-divisor graph in the sense of Anderson–Livingston as in [6]. Since then,
the concept of the zero divisor graph of ring has been playing a vital rule in its expansion.
Motivating from this well expanded idea of Beck, lots of correspondences of a graph with
algebraic structures have been introduced with a variety of applications. Some of them are
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the comaximal graph of a commutative ring by Sharma and Bhatwadekar [16], the total graph
of commutative ring by Anderson and Badawi [4], the intersection graph of ideals of a ring
by Chakrabarty et al. [11], etc.

In 2008, Anderson and Badawi [4] defined the total graph of a commutative ring R, which
is an undirected graph with vertex set as R with any two vertices are adjacent if and only if its
ring sum is a zero divisor of R. In that paper, they discussed the characteristics of total graph
and its two induced subgraphs by considering two cases, namely, the set of zero divisors Z(R)
of R is an ideal of R and Z(R) is not an ideal of R. Thereafter, Akbari et al. [3] continued
this concept of total graph of commutative rings. Ahmad Abbasi and Shokoofe Habibi [1]
discussed the total graph of a commutative ring with respect to the proper ideals. Anderson
and Badawi [5] interpreted the total graph of a commutative ring without zero element.
In [17], M.H. Shekarriz et al. observed some basic graph theoretic properties of the total
graph of a finite commutative ring. The prospect for total graph of modules is also observed
in recent times. A. Abbasi and S. Habibi [2] investigated the total graph of a commutative
ring with respect to the proper submodules of a module. The total torsion element graph of
a module over a commutative ring was introduced by S. Atani and S. Habibi [8]. The above
module based concepts of total graph extend the work of Anderson and Badawi [4].

In this article, we introduce the notion of singularity of a module over a ring and define
the total graph of a module M with respect to singular submodule Z(M). Before going to
our discussion we recall the following.

Let R be a commutative ring. An element x of R is called a zero-divisor of R if there exists
a non-zero element y of R with xy = 0. The collection of all zero-divisors of R is denoted by
Z(R), and henceforth, we use it. An ideal I of R is an essential ideal if its intersection with
any non-zero ideal of R is non-zero. For the R-modules M and N , a mapping f : M → N
is said to be a module homomorphism if f(x + y) = f(x) + f(y) and f(rx) = rf(x) for all
x, y ∈ M and r ∈ R. If f is also one-one, then it is said to be a module monomorphism. A
one-one and onto module homomorphism is called a module isomorphism.

Throughout this discussion, all graphs are undirected. Let G be an undirected graph with
the vertex set V (G), unless otherwise mentioned. If G contains n vertices then we write
|V (G)| = n. Two graphs G and H are isomorphic if there exists a one-to-one correspondence
between their vertex sets which preserves adjacency. A subgraph of G is a graph having all
of its vertices and edges in G. A spanning subgraph of G contains all vertices of it. For any
set S of vertices of G, the induced subgraph ⟨S⟩ is the maximal subgraph of G with vertex
set S. Thus two points of S are adjacent in ⟨S⟩ if and only if they are adjacent in G. The
degree of a vertex v in a graph G is the number of edges incident with v. The degree of a
vertex v is denoted by deg(v). The vertex v is isolated if deg(v) = 0. A walk in G is an
alternating sequence of vertices and edges, v0x1v1...xnvn in which each edge xi is vi−1vi.
The length of such a walk is n, the number of occurrences of edge in it. A closed walk has
the same first and last vertices. A path is a walk in which all vertices are distinct; a cycle or
circuit is a closed walk with all points distinct (except the first and last). A cycle of length 3 is
called a triangle. An acyclic graph does not contain a cycle. G is connected if there is a path
between every two distinct vertices. A graph which is not connected is called a disconnected
graph. A totally disconnected graph does not contain any edges. For distinct vertices x and
y of G, let d(x, y) be the length of the shortest path from x to y and if there is no such
path we define d(x, y) = ∞. The eccentricity e(v) of a vertex v in a connected graph G
is max d(u, v) for all u in V (G). A vertex with minimum eccentricity is called a center
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of G. The maximum eccentricity of G is called the diameter of G. If in a graph any two
vertices are adjacent, it is called a complete graph, denoted by Kα where α is the number
of vertices of the graph. A complete subgraph of G is called a clique. A maximum clique
of G is a clique with largest number of vertices and the number of vertices of a maximum
clique is called the clique number of G, denoted by ω(G). G is said to be a bipartite graph or
bigraph if its vertex set V can be partitioned into two disjoint subsets V1 and V2 with every
edge of G joining V1 and V2. If |V1| = α and |V2| = β and every vertex of V1 is adjacent to
every vertex of V2, G is called a complete bipartite graph, denoted by Kα,β . We say that two
(induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common vertices and
no vertex of G1 (respectively, G2) is adjacent (in G) to any vertex not in G2 (respectively,
G1). A Hamiltonian cycle is a spanning cycle in a graph. G is called Hamiltonian if it has a
Hamiltonian cycle. Also κ(G) is the smallest number of vertices removal of which makes G
disconnected. The cartesian product of graphs G and H , denoted by G × H , is the graph with
vertex set V (G) × V (H) and two vertices (a, b), (a′, b′) ∈ V (G) × V (H) are adjacent if and
only if (i)a = a′ and b is adjacent to b′, or (ii)b = b′ and a is adjacent to a′. Any undefined
terminology can be found in [9,12–15].

2. TOTAL GRAPH OF A MODULE M WITH RESPECT TO SINGULAR SUBMODULE

Z(M)

Let R be a commutative ring with unity and M be an R-module. Let Z(M) be the set
of those x ∈ M for which the ideal {r ∈ R|xr = 0} is essential in R, i.e. Z(M) = {x ∈
M |xI = 0, for some essential ideal I of R}. Then Z(M) is a submodule of M , called
the singular submodule of M . Let Z(M) = M − Z(M).

We introduce and investigate the total graph of M with respect to Z(M), denoted by
T (Γ (M)), as the (undirected) graph with all elements as vertices, and for distinct x, y ∈ M ,
the vertices x and y are adjacent, written as x adj y if and only if x + y ∈ Z(M). Let
Z(Γ (M)) be the (induced) subgraph of T (Γ (M)), with vertices Z(M), and let Z(Γ (M))
be the (induced) subgraph of T (Γ (M)) with vertices Z(M).

Example 1. Let M = Z4 be the module of integers modulo 4 and R = Z8 be the ring of
integers modulo 8. Then the essential ideals of R are I = {0, 2, 4, 6} and R itself. We have
Z(M) = {0, 2} and therefore Z(M) = {1, 3}.

Let us now observe the graph T (Γ (M)) and its induced subgraphs Z(Γ (M)) and
Z(Γ (M)) from Fig. 1. It is very easy to conclude that Z(Γ (M)) is complete and also disjoint
from Z(Γ (M)).

Fig. 1. The total graph T (Γ (M)) and its induced subgraphs Z(Γ (M)) and Z(Γ (M)).
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We start this section with the monomorphic character of module which depicts the corre-
sponding graphical character. We observe that the monomorphic character of module carries
the graphical character.

Lemma 2.1. Let f : M1 → M2 be a module monomorphism. If x adj y then f(x) adj f(y),
for x, y ∈ M1.

Proof. Let x adj y. Then there exists an essential ideal I of R such that (x + y)I = 0. Then
it is easy see that (f(x) + f(y))I = 0. This completes the proof. �

Theorem 2.1. Let f : M1 → M2 be a module monomorphism. If T (Γ (M1)) is a complete
graph, then so is T (Γ (f(M1))).

Proof. Suppose that T (Γ (M1)) is a complete graph. To show T (Γ (f(M1))) is also a
complete graph. For this, we assume y1, y2 ∈ f(M1). So, y1 = f(x1) and y2 = f(x2)
for the elements x1 and x2 in M1 respectively. As T (Γ (M1)) is a complete graph, therefore
x1 adj x2. Then from the above lemma we get, y1 adj y2. Thus T (Γ (f(M1))) is also a
complete graph. �

Theorem 2.2. Let f : M1 → M2 be a module isomorphism. Then f is also an isomorphism
from T (Γ (M1)) onto T (Γ (M2)).

Proof. We need only to show that adjacency relation is preserved. For this, we assume that
x adj y, for x, y ∈ M1. Then there exists an essential ideal I of R such that (x + y)I = 0. It
can be easily obtained that f(x) adj f(y). Hence the result. �

Theorem 2.3. For any x, y ∈ Z(M), x adj y if and only if every element of x + Z(M) is
adjacent to every element of y + Z(M).

Proof. Let a = x+z1 ∈ x+Z(M), b = y+z2 ∈ y+Z(M). If x adj y, then x+y ∈ Z(M).
This gives ((a − z1) + (b − z2)) ∈ Z(M) i.e. (a + b) − (z1 + z2) ∈ Z(M). As Z(M)
is a submodule of M , so a + b ∈ Z(M). From this a adj b. Conversely, if a adj b then
a + b ∈ Z(M). From this (x + z1) + (y + z2) ∈ Z(M). Therefore x + y ∈ Z(M). Hence
x adj y. �

Theorem 2.4. The following holds:

(1) Z(Γ (M)) is a complete (induced) subgraph of T (Γ (M)) and Z(Γ (M)) is disjoint from
Z(Γ (M)).

(2) If N is a submodule of M , then T (Γ (N)) is the (induced) subgraph of T (Γ (M)).

Theorem 2.5. The following holds:

(1) Assume that G is an induced subgraph of Z(Γ (M)) and let x and y be two distinct
vertices of G that are connected by a path in G. Then there exists a path in G of length 2
between x and y. In particular, if Z(Γ (M)) is connected, then diam(Z(Γ (M))) ≤ 2.

(2) Let x and y be distinct elements of Z(Γ (M)) that are connected by a path. If x + y ∉
Z(M), then x − (−x) − y and x − (−y) − y are paths of length 2 between x and y in
Z(Γ (M)).
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Proof. (1) It is enough to show that if x1, x2, x3, and x4 are distinct vertices of G and
there is a path x1 − x2 − x3 − x4 from x1 to x4, then x1 and x4 are adjacent. So
x1+x2, x2+x3, x3+x4 ∈ Z(M) gives x1+x4 = (x1+x2)−(x2+x3)+(x3+x4) ∈ Z(M),
since Z(M) is a submodule of M . Thus x1 adj x4. So, if Z(Γ (M)) is connected, then
diam(Z(Γ (M))) ≤ 2.

(2) Since x + y ∈ Z(Γ (M)) and x + y ∉ Z(M), there exists z ∈ Z(Γ (M)) such that
x − z − y is a path of length 2 by part (1) above. Thus x + z, z + y ∈ Z(M), and hence
x − y = (x + z) − (z + y) ∈ Z(M). Also, since x + y ∉ Z(M), we must have x ≠ −x
and y ≠ −x. Thus x − (−x) − y and x − (−y) − y are paths of length 2 between x and y in
Z(Γ (M)). �

Theorem 2.6. The following statements are equivalent.

(1) Z(Γ (M)) is connected.
(2) Either x + y ∈ Z(M) or x − y ∈ Z(M) for all x, y ∈ Z(M).
(3) Either x + y ∈ Z(M) or x + 2y ∈ Z(M) for all x, y ∈ Z(M). In particular, either

2x ∈ Z(M) or 3x ∈ Z(M) (but not both) for all x ∈ Z(M).

Proof. (1) ⇒ (2) Let x, y ∈ Z(M) be such that x+y ∉ Z(M). If x = y, then x, y ∈ Z(M).
Otherwise, x − (−y) − y is a path from x and y by Theorem 2.5(2), and hence x − y ∈ Z(M).

(2) ⇒ (3) Let x, y ∈ Z(M), and suppose that x + y ∉ Z(M). By assumption, since
(x + y) − y = x ∉ Z(M), we conclude that x + 2y = (x + y) + y ∈ Z(M). In particular,
if x ∈ Z(M), then either 2x ∈ Z(M) or 3x ∈ Z(M). Both 2x and 3x cannot be in Z(M)
since then x = 3x − 2x ∈ Z(M), a contradiction.

(3) ⇒ (1) Let x, y ∈ Z(M) be distinct elements of M such that x + y ∉ Z(M). By
hypothesis, since x + 2y ∈ Z(M), we get 2y ∉ Z(M). Thus 3y ∈ Z(M) by hypothesis.
Since x + y ∉ Z(M) and 3y ∈ Z(M), we conclude x ≠ 2y, and hence x − 2y − y is a path
from x to y in Z(M). �

Example 2. Let R = Z4 denote the ring of integers modulo 4 and M = Z8 be the ring
of integers modulo 8. Then M is an R-module with the usual operations, and Z(M) =
{0, 2, 4, 6}. Thus Z(M) = {1, 3, 5, 7}. By Theorem 2.6, we conclude that Z(Γ (M)) is
connected which can be observed from Fig. 2.

Fig. 2. The induced subgraph Z(Γ (M)).

Theorem 2.7. Let |Z(M)| = α and |M/Z(M)| = β.

(1) If 2 ∈ Z(R) then Z(Γ (M)) is the union β − 1 disjoint Kα’s.
(2) If 2 ∉ Z(R) then Z(Γ (M)) is the union of (β − 1)/2 disjoint Kα,α’s.
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Proof. (1) It is obvious that x + Z(M) ⊆ Z(M) for every x ∉ Z(M). Let x + x1, x + x2 ∈
x+Z(M), where x1, x2 ∈ Z(M). Since Z(M) is a submodule of M , so (x+x1)+(x+x2) =
2x + x1 + x2 ∈ Z(M). Thus the coset x + Z(M) is a complete subgraph of Z(M). Again
any two distinct cosets form disjoint subgraphs of Z(M). If not, suppose x + x1 is adjacent
to y + x2 for some x, y ∈ Z(M) and x1, x2 ∈ Z(M) then x − y = (x + y) − 2y ∈ Z(M)
since Z(M) is submodule of M and 2y ∈ Z(M). From this we get x+Z(M) = y +Z(M),
a contradiction. Hence Z(Γ (M)) is a union of β − 1 disjoint (induced) subgraphs x+Z(M),
each of which is a Kα, where α = |Z(M)| = |x + Z(M)|.
(2) Let x ∈ Z(M) and 2 ∉ Z(R). Then no two distinct elements of x + Z(M) are
adjacent, because, if x + x1 is adjacent to x + x2, x1, x2 ∈ Z(M); 2x ∈ Z(M). This
implies that for some essential ideal I of R we have 2xI = 0. Now, we have for every
non-zero ideal K of R, I ∩ K ≠ 0, i.e. there exists a non-zero x ∈ R with x ∈ I ∩ K.
From this we get x + x = 2x ∈ I and 2x ∈ K. But 2 ∉ Z(R), therefore 2x ≠ 0.
Thus 2x is a non-zero element with 2x ∈ 2I ∩ K leading onto 2I is an essential ideal of
R. This will imply that x ∈ Z(M), as x(2I) = 0, which is a contradiction. Also, since
2x ∉ Z(M), two cosets x + Z(M) and −x + Z(M) are disjoint. Moreover, it is easy
to observe that every element of x + Z(M) is adjacent to every element of −x + Z(M).
Thus (x + Z(M)) ∪ (−x + Z(M)) is a complete bipartite (induced) subgraph of Z(Γ (M)).
Again, if x + x1 is adjacent to y + x2 for some x, y ∈ Z(M) and x1, x2 ∈ Z(M), then
x+y ∈ Z(M) − 0, and so x+Z(M) = −y +Z(M). Hence Z(Γ ) is the union of (β − 1)/2
disjoint (induced) subgraphs (x + Z(M)) = (−y + Z(M)), each of which is a Kα,α, where
α = |Z(M)| = |x + Z(M)|. �

Theorem 2.8. Let M − Z(M) ≠ φ.

(1) If Z(Γ (M)) is complete then either |M/Z(M)| = 2 or |M/Z(M)| = |M | = 3.
(2) If Z(Γ (M)) is connected then either |M/Z(M)| = 2 or |M/Z(M)| = 3.
(3) If Z(Γ (M)) (and hence Z(Γ (M)) and T (Γ (M))) is totally disconnected then either

Z(M) = 0 or 2 ∈ Z(R).

Proof. Suppose that |M/Z(M)| = β and |Z(M)| = α.

(1) First we assume Z(Γ (M)) is complete. This implies that Z(Γ (M)) is a single Kα or
K1,1, by Theorem 2.7. If 2 ∈ Z(R), then β − 1 = 1 i.e. β = 2 and thus |M/Z(M)| = 2.
Again, if 2 ∉ Z(R) then α = 1 and (β − 1)/2 = 1. Hence Z(M) = 0 and β = 3; thus
3 = β = |M/Z(M)| = |M |.
(2) Suppose that Z(Γ (M)) is connected. This implies that Z(Γ (M)) is a single Kα or Kα,α,
by Theorem 2.7. If 2 ∈ Z(R), then β − 1 = 1 i.e. β = 2 and thus |M/Z(M)| = 2. Again, if
2 ∉ Z(R) then (β − 1)/2 = 1 i.e. β = 3 and thus |M/Z(M)| = 3.

(3) Z(Γ (M)) is totally disconnected if and only if it is a disjoint union of K1’s. Thus by
Theorem 2.7 we have |Z(M)| = 1 and |M/Z(M)| = 1, and hence the result. �

Theorem 2.9. Let x be a vertex of the graph T (Γ (M)). Then

deg(x) =


|Z(M)| − 1, if 2 ∈ Z(R) and x ∈ Z(M)
|Z(M)|, otherwise.
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Proof. If xi ∈ Z(M), the vertex x ∈ M is adjacent to vertices xi − x. Then deg(x) =
|Z(M)| − 1 if and only if x = xi − x for some xi ∈ Z(M) i.e. if and only if 2x ∈ Z(M).
If 2x ∉ Z(M), then deg(x) = |Z(M)|. If 2 ∈ Z(R), then 2x ∈ Z(M) for all x ∈ M , thus
deg(x) = |Z(M)| − 1 i.e. all vertices of the graph T (Γ (M)) are of degree |Z(M)| − 1.
Again, if 2 ∉ Z(R), then two cases arise.

Case-1—If x ∈ Z(M), then deg(x) = |Z(M)| − 1.
Case-2—If x ∉ Z(M), then deg(x) = |Z(M)|.
It follows that deg(x) =


|Z(M)| − 1, if 2 ∈ Z(R) and x ∈ Z(M)
|Z(M)|, otherwise. �

Theorem 2.10. Let M1 and M2 be two finite modules over a finite ring R. Then the following
holds.

(1) If T (Γ (M1)) is a Hamiltonian graph, then so is T (Γ (M1 × M2)).
(2) If Z(Γ (M1)) is a Hamiltonian graph, then so is Z(Γ (M1 × M2)).

Proof. (i) Let M1 = {m1, m2, . . . ,ms} and M2 = {m′
1, m

′
2, . . . ,m

′
t} be such that the

sequence m1, m2, . . . ,ms is a Hamiltonian cycle. Then m1 +ms ∈ Z(M1). Thus we get the
Hamiltonian cycle in T (Γ (M1 × M2)) as
(m1, m

′
1), (m2, m

′
1), . . . , (ms, m

′
1), (m1, m

′
2), . . . , (ms, m

′
2), . . . , (m1, m

′
t), . . . , (ms, m

′
t).

(ii) Suppose that Z(M1) = {m1, m2, . . . ,ms} and Z(M2) = {m′
1, m

′
2, . . . ,m

′
t}. The above

Hamiltonian cycle is also a Hamiltonian cycle for Z(Γ (M1 × M2)). �

Theorem 2.11. Let M = M1 × M2 be finite module. Then κ(T (Γ (M))) ≥ |M1| + |M2| − 4.

Proof. Let (x, y) and (x′, y′) be two distinct elements of M . If x ≠ x′, y′ ≠ ±y, λ ∉
{y, −y, y′, −y′ }, then consider the paths (x, y), (−x, λ), (−x′, −λ), (−x′, −y′) for λ ∈ M2.
If η ∈ M1 and (x, y) ≠ (η, −y) and (x′, y′) ≠ (−η, −y′), then consider the paths
(x, y), (η, −y), (−η, −y′), (x′, y′). If (x, y) ≠ (η, −y) and (x′, y′) = (−η, −y′), then
consider the paths (x, y), (η, −y), (x′, y′). If (x, y) = (η, −y) and (x′, y′) ≠ (−η, −y′), then
consider the paths (x, y), (−η, −y′), (x′, y′). If (x, y) = (η, −y) and (x′, y′) = (−η, −y′)
for some η, then consider the paths (x, y), (x′, y′) and (x, y), (η, −y), (x′, y′) for some η ≠ x.
So there are at least |M1| + |M2| − 4 disjoint paths from (x, y) to (x′, y′).

Let x ≠ x′, y′ ≠ y and y′ = −y. Then the paths (x, y), (−x, λ), (−x′, −λ), (x′, −y)
for λ ∈ M2 − {±b} and the paths (x, y), (η, −y), (−η, y), (x′, −y) for η ∈ M1 −
{−x, x′ } are |M1| + |M2| − 4 disjoint paths. Let x ≠ x′, y′ = y. Consider the paths
(x, y), (−x, λ), (−x′, −λ), (x′, −y) for λ ∈ M2 − {y, −y} and the paths (x, y), (η, −y),
(x′, y) for η ∈ M1 − {x, x′ }. If x = x′, since (x, y) and (x′, y′) are distinct, then y ≠ y′ and
the proof is the same as the case x ≠ x′ and y = y′. �
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