

Total graph of a module with respect to singular submodule

JITUPARNA GOSWAMI^{a,*}, KUKIL KALPA RAJKHOWA^b, HELEN K. SAIKIA^c

^a Department of Applied Sciences, Gauhati University Institute of Science and Technology, Guwahati-781014, India

^b Department of Mathematics, Cotton College State University, Guwahati-781001, India ^c Department of Mathematics, Gauhati University, Guwahati-781014, India

Received 26 May 2015; received in revised form 13 October 2015; accepted 20 October 2015 Available online 10 November 2015

Abstract. Let R be a commutative ring with unity and M be an R-module. We introduce the total graph of a module M with respect to singular submodule Z(M) of M as an undirected graph $T(\Gamma(M))$ with vertex set as M and any two distinct vertices x and yare adjacent if and only if $x + y \in Z(M)$. We investigate some properties of the total graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\overline{Z}(\Gamma(M))$. In some aspects, we have noticed some sort of finiteness.

2010 Mathematics Subject Classification: 05; C; 25

Keywords: Commutative ring; Module; Singular submodule; Total graph

1. INTRODUCTION

In 1988, Istvan Beck [10] opened up the fascinating insight which relates a graph with the algebraic structure ring. He introduced the zero divisor graph of a commutative ring, and later on, this introduction was slightly modified by D.D. Anderson and M. Naseer in [7]. Further modification to the concept of the zero-divisor graph was made in [6]. Many authors studied the zero-divisor graph in the sense of Anderson–Livingston as in [6]. Since then, the concept of the zero divisor graph of ring has been playing a vital rule in its expansion. Motivating from this well expanded idea of Beck, lots of correspondences of a graph with algebraic structures have been introduced with a variety of applications. Some of them are

* Corresponding author.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2015.10.002

E-mail addresses: jituparnagoswami18@gmail.com (J. Goswami), kukilrajkhowa@yahoo.com (K.K. Rajkhowa), hsaikia@yahoo.com (H.K. Saikia).

^{1319-5166 © 2015} The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

the comaximal graph of a commutative ring by Sharma and Bhatwadekar [16], the total graph of commutative ring by Anderson and Badawi [4], the intersection graph of ideals of a ring by Chakrabarty et al. [11], etc.

In 2008, Anderson and Badawi [4] defined the total graph of a commutative ring R, which is an undirected graph with vertex set as R with any two vertices are adjacent if and only if its ring sum is a zero divisor of R. In that paper, they discussed the characteristics of total graph and its two induced subgraphs by considering two cases, namely, the set of zero divisors Z(R)of R is an ideal of R and Z(R) is not an ideal of R. Thereafter, Akbari et al. [3] continued this concept of total graph of commutative rings. Ahmad Abbasi and Shokoofe Habibi [1] discussed the total graph of a commutative ring with respect to the proper ideals. Anderson and Badawi [5] interpreted the total graph of a commutative ring without zero element. In [17], M.H. Shekarriz et al. observed some basic graph theoretic properties of the total graph of a finite commutative ring. The prospect for total graph of a commutative ring with respect to the proper submodules of a module. The total torsion element graph of a module over a commutative ring was introduced by S. Atani and S. Habibi [8]. The above module based concepts of total graph extend the work of Anderson and Badawi [4].

In this article, we introduce the notion of singularity of a module over a ring and define the total graph of a module M with respect to singular submodule Z(M). Before going to our discussion we recall the following.

Let R be a commutative ring. An element x of R is called a zero-divisor of R if there exists a non-zero element y of R with xy = 0. The collection of all zero-divisors of R is denoted by Z(R), and henceforth, we use it. An ideal I of R is an essential ideal if its intersection with any non-zero ideal of R is non-zero. For the R-modules M and N, a mapping $f: M \to N$ is said to be a module homomorphism if f(x + y) = f(x) + f(y) and f(rx) = rf(x) for all $x, y \in M$ and $r \in R$. If f is also one-one, then it is said to be a module monomorphism. A one-one and onto module homomorphism is called a module isomorphism.

Throughout this discussion, all graphs are undirected. Let G be an undirected graph with the vertex set V(G), unless otherwise mentioned. If G contains n vertices then we write |V(G)| = n. Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G is a graph having all of its vertices and edges in G. A spanning subgraph of G contains all vertices of it. For any set S of vertices of G, the induced subgraph $\langle S \rangle$ is the maximal subgraph of G with vertex set S. Thus two points of S are adjacent in $\langle S \rangle$ if and only if they are adjacent in G. The degree of a vertex v in a graph G is the number of edges incident with v. The degree of a vertex v is denoted by deg(v). The vertex v is *isolated* if deg(v) = 0. A walk in G is an alternating sequence of vertices and edges, $v_0 x_1 v_1 \dots x_n v_n$ in which each edge x_i is $v_{i-1} v_i$. The length of such a walk is n, the number of occurrences of edge in it. A closed walk has the same first and last vertices. A path is a walk in which all vertices are distinct; a cycle or circuit is a closed walk with all points distinct (except the first and last). A cycle of length 3 is called a triangle. An acyclic graph does not contain a cycle. G is connected if there is a path between every two distinct vertices. A graph which is not connected is called a disconnected graph. A totally disconnected graph does not contain any edges. For distinct vertices x and y of G, let d(x,y) be the length of the shortest path from x to y and if there is no such path we define $d(x,y) = \infty$. The eccentricity e(v) of a vertex v in a connected graph G is max d(u, v) for all u in V (G). A vertex with minimum eccentricity is called a center of G. The maximum eccentricity of G is called the diameter of G. If in a graph any two vertices are adjacent, it is called a complete graph, denoted by K^{α} where α is the number of vertices of the graph. A complete subgraph of G is called a clique. A maximum clique of G is a clique with largest number of vertices and the number of vertices of a maximum clique is called the clique number of G, denoted by $\omega(G)$. G is said to be a bipartite graph or bigraph if its vertex set V can be partitioned into two disjoint subsets V_1 and V_2 with every edge of G joining V_1 and V_2 . If $|V_1| = \alpha$ and $|V_2| = \beta$ and every vertex of V_1 is adjacent to every vertex of V_2 , G is called a complete bipartite graph, denoted by $K^{\alpha,\beta}$. We say that two (induced) subgraphs G_1 and G_2 of G are disjoint if G_1 and G_2 have no common vertices and no vertex of G_1 (respectively, G_2) is adjacent (in G) to any vertex not in G_2 (respectively, G_1). A Hamiltonian cycle is a spanning cycle in a graph. G is called Hamiltonian if it has a Hamiltonian cycle. Also $\kappa(G)$ is the smallest number of vertices removal of which makes G disconnected. The cartesian product of graphs G and H, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices $(a, b), (a', b') \in V(G) \times V(H)$ are adjacent if and only if (i)a = a' and b is adjacent to b', or (ii)b = b' and a is adjacent to a'. Any undefined terminology can be found in [9,12-15].

2. TOTAL GRAPH OF A MODULE M with respect to singular submodule Z(M)

Let R be a commutative ring with unity and M be an R-module. Let Z(M) be the set of those $x \in M$ for which the ideal $\{r \in R | xr = 0\}$ is essential in R, i.e. $Z(M) = \{x \in M | xI = 0, for some essential ideal I of R\}$. Then Z(M) is a submodule of M, called the singular submodule of M. Let $\overline{Z}(M) = M - Z(M)$.

We introduce and investigate the total graph of M with respect to Z(M), denoted by $T(\Gamma(M))$, as the (undirected) graph with all elements as vertices, and for distinct $x, y \in M$, the vertices x and y are adjacent, written as x adj y if and only if $x + y \in Z(M)$. Let $Z(\Gamma(M))$ be the (induced) subgraph of $T(\Gamma(M))$, with vertices Z(M), and let $\overline{Z}(\Gamma(M))$ be the (induced) subgraph of $T(\Gamma(M))$ with vertices $\overline{Z}(M)$.

Example 1. Let $M = \mathbb{Z}_4$ be the module of integers modulo 4 and $R = \mathbb{Z}_8$ be the ring of integers modulo 8. Then the essential ideals of R are $I = \{0, 2, 4, 6\}$ and R itself. We have $Z(M) = \{0, 2\}$ and therefore $\overline{Z}(M) = \{1, 3\}$.

Let us now observe the graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\overline{Z}(\Gamma(M))$ from Fig. 1. It is very easy to conclude that $Z(\Gamma(M))$ is complete and also disjoint from $\overline{Z}(\Gamma(M))$.

Fig. 1. The total graph $T(\Gamma(M))$ and its induced subgraphs $Z(\Gamma(M))$ and $\overline{Z}(\Gamma(M))$.

We start this section with the monomorphic character of module which depicts the corresponding graphical character. We observe that the monomorphic character of module carries the graphical character.

Lemma 2.1. Let $f : M_1 \to M_2$ be a module monomorphism. If x adj y then f(x) adj f(y), for $x, y \in M_1$.

Proof. Let x adj y. Then there exists an essential ideal I of R such that (x + y)I = 0. Then it is easy see that (f(x) + f(y))I = 0. This completes the proof. \Box

Theorem 2.1. Let $f : M_1 \to M_2$ be a module monomorphism. If $T(\Gamma(M_1))$ is a complete graph, then so is $T(\Gamma(f(M_1)))$.

Proof. Suppose that $T(\Gamma(M_1))$ is a complete graph. To show $T(\Gamma(f(M_1)))$ is also a complete graph. For this, we assume $y_1, y_2 \in f(M_1)$. So, $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for the elements x_1 and x_2 in M_1 respectively. As $T(\Gamma(M_1))$ is a complete graph, therefore x_1 adj x_2 . Then from the above lemma we get, y_1 adj y_2 . Thus $T(\Gamma(f(M_1)))$ is also a complete graph. \Box

Theorem 2.2. Let $f : M_1 \to M_2$ be a module isomorphism. Then f is also an isomorphism from $T(\Gamma(M_1))$ onto $T(\Gamma(M_2))$.

Proof. We need only to show that adjacency relation is preserved. For this, we assume that x adj y, for $x, y \in M_1$. Then there exists an essential ideal I of R such that (x + y)I = 0. It can be easily obtained that f(x) adj f(y). Hence the result. \Box

Theorem 2.3. For any $x, y \in \overline{Z}(M)$, x adj y if and only if every element of x + Z(M) is adjacent to every element of y + Z(M).

Proof. Let $a = x + z_1 \in x + Z(M)$, $b = y + z_2 \in y + Z(M)$. If x adj y, then $x + y \in Z(M)$. This gives $((a - z_1) + (b - z_2)) \in Z(M)$ i.e. $(a + b) - (z_1 + z_2) \in Z(M)$. As Z(M) is a submodule of M, so $a + b \in Z(M)$. From this a adj b. Conversely, if a adj b then $a + b \in Z(M)$. From this $(x + z_1) + (y + z_2) \in Z(M)$. Therefore $x + y \in Z(M)$. Hence x adj y. \Box

Theorem 2.4. *The following holds:*

- (1) $Z(\Gamma(M))$ is a complete (induced) subgraph of $T(\Gamma(M))$ and $Z(\Gamma(M))$ is disjoint from $\overline{Z}(\Gamma(M))$.
- (2) If N is a submodule of M, then $T(\Gamma(N))$ is the (induced) subgraph of $T(\Gamma(M))$.

Theorem 2.5. The following holds:

- (1) Assume that G is an induced subgraph of $\overline{Z}(\Gamma(M))$ and let x and y be two distinct vertices of G that are connected by a path in G. Then there exists a path in G of length 2 between x and y. In particular, if $\overline{Z}(\Gamma(M))$ is connected, then $diam(\overline{Z}(\Gamma(M))) \leq 2$.
- (2) Let x and y be distinct elements of $\overline{Z}(\Gamma(M))$ that are connected by a path. If $x + y \notin Z(M)$, then x (-x) y and x (-y) y are paths of length 2 between x and y in $\overline{Z}(\Gamma(M))$.

Proof. (1) It is enough to show that if x_1, x_2, x_3 , and x_4 are distinct vertices of G and there is a path $x_1 - x_2 - x_3 - x_4$ from x_1 to x_4 , then x_1 and x_4 are adjacent. So $x_1+x_2, x_2+x_3, x_3+x_4 \in Z(M)$ gives $x_1+x_4 = (x_1+x_2)-(x_2+x_3)+(x_3+x_4) \in Z(M)$, since Z(M) is a submodule of M. Thus x_1 adj x_4 . So, if $\overline{Z}(\Gamma(M))$ is connected, then $diam(\overline{Z}(\Gamma(M))) \leq 2$.

(2) Since $x + y \in \overline{Z}(\Gamma(M))$ and $x + y \notin Z(M)$, there exists $z \in \overline{Z}(\Gamma(M))$ such that x - z - y is a path of length 2 by part (1) above. Thus $x + z, z + y \in Z(M)$, and hence $x - y = (x + z) - (z + y) \in Z(M)$. Also, since $x + y \notin Z(M)$, we must have $x \neq -x$ and $y \neq -x$. Thus x - (-x) - y and x - (-y) - y are paths of length 2 between x and y in $\overline{Z}(\Gamma(M))$. \Box

Theorem 2.6. The following statements are equivalent.

- (1) $\overline{Z}(\Gamma(M))$ is connected.
- (2) Either $x + y \in Z(M)$ or $x y \in Z(M)$ for all $x, y \in \overline{Z}(M)$.
- (3) Either $x + y \in Z(M)$ or $x + 2y \in Z(M)$ for all $x, y \in \overline{Z}(M)$. In particular, either $2x \in Z(M)$ or $3x \in Z(M)$ (but not both) for all $x \in \overline{Z}(M)$.

Proof. (1) \Rightarrow (2) Let $x, y \in \overline{Z}(M)$ be such that $x + y \notin Z(M)$. If x = y, then $x, y \in \overline{Z}(M)$. Otherwise, x - (-y) - y is a path from x and y by Theorem 2.5(2), and hence $x - y \in Z(M)$.

 $(2) \Rightarrow (3)$ Let $x, y \in \overline{Z}(M)$, and suppose that $x + y \notin Z(M)$. By assumption, since $(x + y) - y = x \notin Z(M)$, we conclude that $x + 2y = (x + y) + y \in Z(M)$. In particular, if $x \in \overline{Z}(M)$, then either $2x \in Z(M)$ or $3x \in Z(M)$. Both 2x and 3x cannot be in Z(M) since then $x = 3x - 2x \in Z(M)$, a contradiction.

 $(3) \Rightarrow (1)$ Let $x, y \in \overline{Z}(M)$ be distinct elements of M such that $x + y \notin Z(M)$. By hypothesis, since $x + 2y \in Z(M)$, we get $2y \notin Z(M)$. Thus $3y \in Z(M)$ by hypothesis. Since $x + y \notin Z(M)$ and $3y \in Z(M)$, we conclude $x \neq 2y$, and hence x - 2y - y is a path from x to y in $\overline{Z}(M)$. \Box

Example 2. Let $R = Z_4$ denote the ring of integers modulo 4 and $M = Z_8$ be the ring of integers modulo 8. Then M is an R-module with the usual operations, and $Z(M) = \{0, 2, 4, 6\}$. Thus $\overline{Z}(M) = \{1, 3, 5, 7\}$. By Theorem 2.6, we conclude that $\overline{Z}(\Gamma(M))$ is connected which can be observed from Fig. 2.

Fig. 2. The induced subgraph $\overline{Z}(\Gamma(M))$.

Theorem 2.7. Let $|Z(M)| = \alpha$ and $|M/Z(M)| = \beta$.

(1) If $2 \in Z(R)$ then $\overline{Z}(\Gamma(M))$ is the union $\beta - 1$ disjoint K^{α} 's.

(2) If $2 \notin Z(R)$ then $\overline{Z}(\Gamma(M))$ is the union of $(\beta - 1)/2$ disjoint $K^{\alpha,\alpha}$'s.

Proof. (1) It is obvious that $x + Z(M) \subseteq \overline{Z}(M)$ for every $x \notin Z(M)$. Let $x + x_1, x + x_2 \in x+Z(M)$, where $x_1, x_2 \in Z(M)$. Since Z(M) is a submodule of M, so $(x+x_1)+(x+x_2) = 2x + x_1 + x_2 \in Z(M)$. Thus the coset x + Z(M) is a complete subgraph of $\overline{Z}(M)$. Again any two distinct cosets form disjoint subgraphs of $\overline{Z}(M)$. If not, suppose $x + x_1$ is adjacent to $y + x_2$ for some $x, y \in \overline{Z}(M)$ and $x_1, x_2 \in Z(M)$ then $x - y = (x + y) - 2y \in Z(M)$ since Z(M) is submodule of M and $2y \in Z(M)$. From this we get x + Z(M) = y + Z(M), a contradiction. Hence $\overline{Z}(\Gamma(M))$ is a union of $\beta - 1$ disjoint (induced) subgraphs x + Z(M), each of which is a K^{α} , where $\alpha = |Z(M)| = |x + Z(M)|$.

(2) Let $x \in \overline{Z}(M)$ and $2 \notin Z(R)$. Then no two distinct elements of x + Z(M) are adjacent, because, if $x + x_1$ is adjacent to $x + x_2$, $x_1, x_2 \in Z(M)$; $2x \in Z(M)$. This implies that for some essential ideal I of R we have 2xI = 0. Now, we have for every non-zero ideal K of R, $I \cap K \neq 0$, i.e. there exists a non-zero $x \in R$ with $x \in I \cap K$. From this we get $x + x = 2x \in I$ and $2x \in K$. But $2 \notin Z(R)$, therefore $2x \neq 0$. Thus 2x is a non-zero element with $2x \in 2I \cap K$ leading onto 2I is an essential ideal of R. This will imply that $x \in Z(M)$, as x(2I) = 0, which is a contradiction. Also, since $2x \notin Z(M)$, two cosets x + Z(M) and -x + Z(M) are disjoint. Moreover, it is easy to observe that every element of x + Z(M) is adjacent to every element of -x + Z(M). Thus $(x + Z(M)) \cup (-x + Z(M))$ is a complete bipartite (induced) subgraph of $\overline{Z}(\Gamma(M))$. Again, if $x + x_1$ is adjacent to $y + x_2$ for some $x, y \in \overline{Z}(M)$ and $x_1, x_2 \in Z(M)$, then $x + y \in Z(M) - 0$, and so x + Z(M) = -y + Z(M). Hence $\overline{Z}(\Gamma)$ is the union of $(\beta - 1)/2$ disjoint (induced) subgraphs (x + Z(M)) = (-y + Z(M)), each of which is a $K^{\alpha,\alpha}$, where $\alpha = |Z(M)| = |x + Z(M)|$.

Theorem 2.8. Let $M - Z(M) \neq \phi$.

- (1) If $\overline{Z}(\Gamma(M))$ is complete then either |M/Z(M)| = 2 or |M/Z(M)| = |M| = 3.
- (2) If $\overline{Z}(\Gamma(M))$ is connected then either |M/Z(M)| = 2 or |M/Z(M)| = 3.
- (3) If $\overline{Z}(\Gamma(M))$ (and hence $Z(\Gamma(M))$ and $T(\Gamma(M))$) is totally disconnected then either Z(M) = 0 or $2 \in Z(R)$.

Proof. Suppose that $|M/Z(M)| = \beta$ and $|Z(M)| = \alpha$.

(1) First we assume $\overline{Z}(\Gamma(M))$ is complete. This implies that $\overline{Z}(\Gamma(M))$ is a single K^{α} or $K^{1,1}$, by Theorem 2.7. If $2 \in Z(R)$, then $\beta - 1 = 1$ i.e. $\beta = 2$ and thus |M/Z(M)| = 2. Again, if $2 \notin Z(R)$ then $\alpha = 1$ and $(\beta - 1)/2 = 1$. Hence Z(M) = 0 and $\beta = 3$; thus $3 = \beta = |M/Z(M)| = |M|$.

(2) Suppose that $\overline{Z}(\Gamma(M))$ is connected. This implies that $\overline{Z}(\Gamma(M))$ is a single K^{α} or $K^{\alpha,\alpha}$, by Theorem 2.7. If $2 \in Z(R)$, then $\beta - 1 = 1$ i.e. $\beta = 2$ and thus |M/Z(M)| = 2. Again, if $2 \notin Z(R)$ then $(\beta - 1)/2 = 1$ i.e. $\beta = 3$ and thus |M/Z(M)| = 3.

(3) $\overline{Z}(\Gamma(M))$ is totally disconnected if and only if it is a disjoint union of K^1 's. Thus by Theorem 2.7 we have |Z(M)| = 1 and |M/Z(M)| = 1, and hence the result. \Box

Theorem 2.9. Let x be a vertex of the graph $T(\Gamma(M))$. Then

$$deg(x) = \begin{cases} |Z(M)| - 1, & \text{if } 2 \in Z(R) \text{ and } x \in Z(M) \\ |Z(M)|, & \text{otherwise.} \end{cases}$$

Proof. If $x_i \in Z(M)$, the vertex $x \in M$ is adjacent to vertices $x_i - x$. Then deg(x) = |Z(M)| - 1 if and only if $x = x_i - x$ for some $x_i \in Z(M)$ i.e. if and only if $2x \in Z(M)$. If $2x \notin Z(M)$, then deg(x) = |Z(M)|. If $2 \in Z(R)$, then $2x \in Z(M)$ for all $x \in M$, thus deg(x) = |Z(M)| - 1 i.e. all vertices of the graph $T(\Gamma(M))$ are of degree |Z(M)| - 1. Again, if $2 \notin Z(R)$, then two cases arise.

Case-1—If $x \in Z(M)$, then deg(x) = |Z(M)| - 1. Case-2—If $x \notin Z(M)$, then deg(x) = |Z(M)|. It follows that $deg(x) = \begin{cases} |Z(M)| - 1, & \text{if } 2 \in Z(R) \text{ and } x \in Z(M) \\ |Z(M)|, & \text{otherwise.} \end{cases}$

Theorem 2.10. Let M_1 and M_2 be two finite modules over a finite ring R. Then the following holds.

If T(Γ(M₁)) is a Hamiltonian graph, then so is T(Γ(M₁ × M₂)).
If Z(Γ(M₁)) is a Hamiltonian graph, then so is Z(Γ(M₁ × M₂)).

Proof. (i) Let $M_1 = \{m_1, m_2, \ldots, m_s\}$ and $M_2 = \{m'_1, m'_2, \ldots, m'_t\}$ be such that the sequence m_1, m_2, \ldots, m_s is a Hamiltonian cycle. Then $m_1 + m_s \in Z(M_1)$. Thus we get the Hamiltonian cycle in $T(\Gamma(M_1 \times M_2))$ as

 $\begin{array}{l} (m_1, m_1'), (m_2, m_1'), \dots, (m_s, m_1'), (m_1, m_2'), \dots, (m_s, m_2'), \dots, (m_1, m_t'), \dots, (m_s, m_t').\\ (\text{ii) Suppose that } \overline{Z}(M_1) = \{m_1, m_2, \dots, m_s\} \text{ and } \overline{Z}(M_2) = \{m_1', m_2', \dots, m_t'\}. \text{ The above Hamiltonian cycle is also a Hamiltonian cycle for } \overline{Z}(\Gamma(M_1 \times M_2)). \quad \Box \end{array}$

Theorem 2.11. Let $M = M_1 \times M_2$ be finite module. Then $\kappa(T(\Gamma(M))) \ge |M_1| + |M_2| - 4$.

Proof. Let (x, y) and (x', y') be two distinct elements of M. If $x \neq x', y' \neq \pm y, \lambda \notin \{y, -y, y', -y'\}$, then consider the paths $(x, y), (-x, \lambda), (-x', -\lambda), (-x', -y')$ for $\lambda \in M_2$. If $\eta \in M_1$ and $(x, y) \neq (\eta, -y)$ and $(x', y') \neq (-\eta, -y')$, then consider the paths $(x, y), (\eta, -y), (-\eta, -y'), (x', y')$. If $(x, y) \neq (\eta, -y)$ and $(x', y') = (-\eta, -y')$, then consider the paths $(x, y), (\eta, -y), (x', y')$. If $(x, y) = (\eta, -y)$ and $(x', y') \neq (-\eta, -y')$, then consider the paths $(x, y), (\eta, -y), (x', y')$. If $(x, y) = (\eta, -y)$ and $(x', y') \neq (-\eta, -y')$, then consider the paths $(x, y), (-\eta, -y'), (x', y')$. If $(x, y) = (\eta, -y)$ and $(x', y') = (-\eta, -y')$, then consider the paths $(x, y), (-\eta, -y'), (x', y')$. If $(x, y) = (\eta, -y)$ and $(x', y') = (-\eta, -y')$, for some η , then consider the paths (x, y), (x', y'). If $(x, y) = (\eta, -y)$ and (x', y') for some $\eta \neq x$. So there are at least $|M_1| + |M_2| - 4$ disjoint paths from (x, y) to (x', y').

Let $x \neq x', y' \neq y$ and y' = -y. Then the paths $(x, y), (-x, \lambda), (-x', -\lambda), (x', -y)$ for $\lambda \in M_2 - \{\pm b\}$ and the paths $(x, y), (\eta, -y), (-\eta, y), (x', -y)$ for $\eta \in M_1 - \{-x, x'\}$ are $|M_1| + |M_2| - 4$ disjoint paths. Let $x \neq x', y' = y$. Consider the paths $(x, y), (-x, \lambda), (-x', -\lambda), (x', -y)$ for $\lambda \in M_2 - \{y, -y\}$ and the paths $(x, y), (\eta, -y), (x', y)$ for $\eta \in M_1 - \{x, x'\}$. If x = x', since (x, y) and (x', y') are distinct, then $y \neq y'$ and the proof is the same as the case $x \neq x'$ and y = y'. \Box

ACKNOWLEDGMENTS

The authors would like to thank the referees for their careful reading of the article and valuable suggestions to improve the article.

REFERENCES

 A. Abbasi, S. Habibi, On the total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012) 85–98. 1.

- [2] A. Abbasi, S. Habibi, On the total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (3) (2012).
- [3] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebr. 213 (2009) 2224–2228.
- [4] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706–2719.
- [5] D.F. Anderson, A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (4) (2012) 1250074. (18 pages). http://dx.doi.org/10.1142/S0219498812500740.
- [6] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
- [7] D.D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993) 500-514.
- [8] S.E. Atani, S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant 19 (1) (2011) 23–34.
- [9] R. Balkrishnan, K. Ranganathan, A Text Book of Graph Theory, Springer-verlag New York, Inc., 2008, Reprint.
- [10] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
- [11] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009) 5381–5392.
- [12] K.R. Goodearl, Ring Theory, Marcel Dekker, 1976.
- [13] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Inc., Reading, Mass, 1969.
- [14] I. Kaplansky, Commutative Rings, Revised ed., University of Chicago Press, Chicago, 1974.
- [15] J. Lambeck, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
- [16] P.K. Sharma, S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995) 124–127.
- [17] M.H. Shekarriz, M.H.S. Haghighi, H. Sharif, On the total graph of a finite commutative ring, Comm. Algebra 40 (2012) 2798–2807.