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Abstract. The position vector field is the most elementary and natural geometric object
on a Euclidean submanifold. The purpose of this article is to survey six research topics
in differential geometry in which the position vector field plays very important roles. In
this article we also explain the relationship between position vector fields and mechanics,
dynamics, and D’Arcy Thompson’s law of natural growth in biology.
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1. INTRODUCTION

For an n-dimensional submanifold M in the Euclidean m-space Em, the most elementary
and natural geometric object is the position vector field x of M . The position vector, also
known as location vector or radius vector, is a Euclidean vector x =

−−→
OP that represents the

position of a point P ∈ M in relation to an arbitrary reference origin O.
Among extrinsic invariants of a submanifold, the most natural and important one is the

mean curvature vector H . In physics, the mean curvature vector field is the tension field
imposed on the submanifold arising from the ambient space. In materials science, surface
tension is used for either surface stress or surface free energy. It is well-known that surface
tension is responsible for the shape of liquid droplets.
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The well-known formula of E. Beltrami (1835–1900) provides a simple relationship
between the position vector field x and the mean curvature vector field H of M , namely,

∆x = −nH, (1.1)

where ∆ denotes the Laplacian of M with respect to its induced metric on M (cf. [12,18,29,
33,89]).

A Euclidean submanifold is called a minimal submanifold if its mean curvature vector
vanishes identically. The history of minimal submanifolds goes back to J.L. Lagrange
(1736–1813) who initiated in 1760 the study of minimal surfaces in Euclidean 3-space
(cf. [63]). Since then the theory of minimal surfaces has attracted many mathematicians
for more than two centuries. In particular, minimal surfaces and minimal submanifolds in
Riemannian manifolds of constant curvature have been investigated very extensively since
then (see, e.g. [22,82,84]).

The position vector field also plays important roles in physics, in particular, in mechanics.
In any equation of motion, the position vector x(t) is usually the most sought-after quantity
because the position vector field defines the motion of a particle (i.e. a point mass)—its
location relative to a given coordinate system at some time variable t. The first and the second
derivatives of the position vector field with respect to time t give the velocity and acceleration
of the particle.

The main purpose of this article is to survey six research topics in differential geometry
in which the position vector field plays important roles. In this survey article we also
explain the relationship between position vector fields and mechanics, dynamics, and D’Arcy
Thompson’s law of natural growth in biology.

2. RECTIFYING CURVES

In elementary differential geometry, most geometers describe a curve as a unit speed curve
x = x(s) whose position vector field is expressed in terms of an arc-length parameter s. In
order to define curvature and torsion of a space curve, one needs the well-known Frenet
formulas which can be obtained as follows:

Consider a unit-speed curve x:I → E3, defined on a real interval I = (α, β), that has
at least four continuous derivatives. Put t = x′(s). In general, it is possible that t′(s) = 0
for some s; however, we assume that this never happens. Then we can introduce a unique
vector field n and positive function κ so that t′ = κn. We call t′ the curvature vector field,
n the principal normal vector field, and κ the curvature of the given curve x(t). Since t is
a constant length vector field, n is orthogonal to t. The binormal vector field is defined by
b = t × n which is a unit vector field orthogonal to both t and n. One defines the torsion τ
of the curve by the equation b′ = −τn.

The famous Frenet formulas are given byt′ = κn,
n′ = −κt + τb,
b′ = −τn.

(2.1)

At each point of the curve, the planes spanned by {t,n}, {t,b} and {n,b} are known as
the osculating plane, the rectifying plane, and the normal plane, respectively. A curve in E3

is called a twisted curve if it has nonzero curvature and nonzero torsion. A helix (or curve of
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constant slope) is defined by the property that the tangent makes a constant angle with a fixed
line.

It is well-known in elementary differential geometry that a curve in E3 lies in a plane if its
position vector lies in its osculating plane at each point; and it lies on a sphere if its position
vector lies in its normal plane at each point. In view of these basic facts, the author asked the
following very simple natural geometric question in [17]:

Question. When does the position vector of a space curve x:I → E3 always lie in its
rectifying plane?

For simplicity, we call such a curve a rectifying curve in [17]. Clearly, the position vector
field x of a rectifying curve x:I → E3 satisfies

x(s) = λ(s)t(s) + µ(s)b(s) (2.2)

for some functions λ and µ.
A well known theorem of Lancret [65] states that a twisted curve in E3 is a helix if and

only if the ratio τ :κ is a nonzero constant.
On the other hand, we have the following result for rectifying curves.

Theorem 2.1 ([17]). A twisted curve x:I → E3 is a rectifying curve if and only if the ratio
τ :κ is a nonconstant linear function in arc-length function s.

The Frenet equations can be interpreted kinematically as follows: If a moving point
traverses the curve in such a way that s is the time parameter, then the moving frame
{t,n,b} moves in accordance with the Frenet formulas (2.1). It is known in mechanics that
this motion contains, apart from an instantaneous translation, an instantaneous rotation with
angular velocity vector given by the Darboux rotation vector

d = τt + κb. (2.3)

The direction of the Darboux vector is that of the instantaneous axis of rotation, and its length√
κ2 + τ2 is called the angular speed.
By applying (2.2), we know that rectifying curves are exactly space curves whose axis of

instantaneous rotation always passes through the origin of E3.
The fundamental theorem for curves in E3 states that, up to rigid motions, a curve is

uniquely determined by its curvature and torsion given as functions of its arc-length. To
determine the curve, it invokes solving the Frenet equations. A result of S. Lie (1984–1899)
and J.-G. Darboux (1842–1917) shows that solving the Frenet equations is equivalent to
solving the complex Riccati equation:

dw

ds
= i

τ
2
w2 − τ

2
− κw


. (2.4)

In practice, for a space curve with prescribed curvature κ(s) and torsion τ(s), the solutions
of Eq. (2.4) are often impossible to find explicitly. Fortunately, the author is able to determine
explicitly all rectifying curves in E3.

Theorem 2.2 ([17]). A twisted curve x:I → E3 is a rectifying curve if and only if it is given
by

x(t) = a sec(t+ b)y(t), (2.5)
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where a, b are real numbers with a ≠ 0 and y = y(t) is a unit-speed curve in the unit sphere
S2

o(1) centered at the origin o ∈ E3.

For a unit speed curve y = y(t) lying on S2
o(1), let Cy denote the cone with vertex at

O ∈ E3 over the spherical curve y.
We may parametrize the cone Cy as

Cy(t, u) = uy(t), u ∈ R+. (2.6)

A well-known result in differential geometry states that a helix is a geodesic on the cylinder
containing the helix in E3. On the other hand, we have the following result for rectifying
curves.

Theorem 2.3. Each rectifying curve given by (2.5) is a geodesic on the cone Cy.

Proof. For a given positive function ρ = ρ(t) on an interval I , we put

z(t) = ρ(t)y(t). (2.7)

Then z is a regular curve lying on the cone Cy. Consider the integral functional with fixed
end points:

L(z, ρ) =
 t1

t0


ρ2 + ρ′2 dt, (2.8)

with the energy function f(t, ρ, ρ′) =

ρ2 + ρ′2.

A fundamental result from calculus of variations states that the Euler–Lagrange equation
of the functional (2.8) is given by

∂f

∂ρ
− d

dt


∂f

∂ρ′


= 0. (2.9)

Therefore, by using f =

ρ2 + ρ′2, we derive from (2.9) that the Euler–Lagrange equation

of (2.8) is the following differential equation:

ρρ′′ − 2ρ′2 − ρ2 = 0. (2.10)

After solving (2.10), we find

ρ = a sec(t+ b) (2.11)

for some real numbers a ≠ 0 and b. Consequently, by applying Theorem 2.2 we obtain the
theorem. �

For a regular curve x(s) in E3 with positive curvature, the curve given by the Darboux
vector

d = τt + κb (2.12)

is called the centrode of x. The centrodes play some important roles in mechanics and joint
kinematics (see, for instance, [54,55,83,91,93]).

The following result provides a link between centrodes and rectifying curves.
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Theorem 2.4 ([40]). The centrode of a unit speed curve in E3 with constant curvature κ ≠ 0
and non-constant torsion τ is a rectifying curve.

Conversely, every rectifying curve in E3 is the centrode of some unit speed curve with
constant curvature κ ≠ 0 and with non-constant torsion.

Similarly, we also have the following.

Theorem 2.5 ([40]). The centrode of a unit speed curve in E3 with non-constant curvature
κ and constant torsion τ ≠ 0 is a rectifying curve.

Conversely, every rectifying curve in E3 is the centrode of some unit speed curve with
nonconstant curvature and nonzero constant torsion.

Remark 2.1. The centrode of a curve with nonzero constant curvature and nonzero constant
torsion is a point.

Remark 2.2. Theorems 2.4 and 2.5 imply that the curves in E3 with nonzero constant
curvature and the curves with nonzero constant torsion can be related via rectifying curves.

Remark 2.3. Rectifying curves in E3 have many other nice properties, see [17,40]. After
[17,40], there are many articles published which investigate rectifying curves in various
ambient spaces; and many new results in this respect have been obtained (see [59,60,71,
94] among many others).

Remark 2.4. In a recent article [35], the author introduces the notion of rectifying submani-
folds; extending the notion of rectifying curves in a very natural way. Some basic properties
and the complete classification of rectifying submanifolds are obtained in [35]. In particular,
the author proved in [35] that a Euclidean submanifold is a rectifying submanifold if and only
if the tangential component of its position vector field is a concurrent vector field. Further-
more, the author defines rectifying submanifolds in arbitrary Riemannian manifolds in [36].
For results on rectifying submanifolds in this respect, see [36].

3. FINITE TYPE SUBMANIFOLDS

The theory of finite type submanifolds began in the late 1970s through the author’s
attempts to find the best possible estimates of the total mean curvature of a compact
submanifold of Euclidean space, and to find a notion of “degree” for submanifolds of
Euclidean space (cf. [13–15]). The theory of finite type submanifolds is another research
subject in which the position vector field plays an essential role.

Let x:M → Em be an isometric immersion of a Riemannian manifold M into the
Euclidean m-space Em. Denote by ∆ the Laplace operator of M . The immersion x is
said to be of finite type if the position vector field x of M in Em admits a finite spectral
decomposition:

x = c+ x1 + x2 + · · · + xk (3.1)

where c is a constant vector in Em and x1, . . . ,xk are non-constant maps satisfying

∆xi = λixi, i = 1, . . . , k, (3.2)

for some eigenvalues λ1, . . . , λk of ∆.
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If all of the eigenvalues λ1, . . . , λk in (3.2) associated with the spectral decomposition
(3.1) of x are mutually different, then the immersion x (or the submanifold M ) is said to be
of k-type. A submanifold is said to be of infinite type if it is not of finite type.

The family of submanifolds of finite type is huge, it contains many important families
of submanifolds, including all minimal submanifolds of Euclidean space, all minimal
submanifolds of hyperspheres as well as parallel submanifolds and equivariantly immersed
compact homogeneous submanifolds. Furthermore, just like minimal submanifolds,
submanifolds of finite type are characterized by a spectral variation principle, namely critical
points of directional deformations (see [41] for details).

On one hand, the notion of finite type submanifolds provides a very natural way to connect
the theory of spectral geometry with the theory of submanifolds. On the other hand, one can
apply the theory of finite type submanifolds to study the spectral geometry of submanifolds.

The first results on finite type submanifolds as well as on finite type maps were collected
in the author’s books [15,16]. In 1991, a list of twelve open problems and three conjectures
on finite type submanifolds was published in [19]. Also, a detailed survey of the results on
this subject up to 1996 was given in [21]. For the most up-to-date survey on this subject, see
the author’s 2015 book [33].

Two main conjectures on finite type submanifolds are the following (cf. [16,21]).

Conjecture A. The only compact hypersurfaces of finite type in Euclidean space are
ordinary hyperspheres.

Conjecture B. The only finite type surfaces in E3 are minimal surfaces, open portions of
spheres, and open portions of circular cylinders.

Although there are many articles providing affirmative partial supports to these two
conjectures, these two conjectures remain open since 1985.

The theory of finite type submanifolds and its applications remain an active research
subject in recent years. For more important open problems and conjectures on this subject,
we refer to [19,21,32,33].

4. BIHARMONIC SUBMANIFOLDS

A Euclidean submanifold is minimal if and only if its position vector field x is harmonic,
i.e. ∆x = 0 by (1.1). A submanifold M of Em is called bi-harmonic if the position vector
field x satisfies

∆2x = 0. (4.1)

Obviously, every minimal submanifold in Em is trivial biharmonic. Hence the real question
is “when a biharmonic submanifold is minimal”. It follows from (4.1) and Hopf’s lemma that
biharmonic submanifolds in a Euclidean space are always non-compact.

The study of biharmonic submanifolds was initiated by the author in the middle of the
1980s in his program of understanding submanifolds of finite type. The author showed in
1985 that biharmonic surfaces in E3 are minimal (vein independently by Jiang [61] in his
study of Euler–Lagrange’s equation of bi-energy functional). This result was the starting
point of Ivko Dimitrić’s work on his doctoral thesis [47] at Michigan State University. In
fact, I. Dimitrić extended the author’s result on biharmonic surfaces in E3 to biharmonic
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hypersurfaces in En+1, n ≥ 3, with at most two distinct principal curvatures [38,48]. He also
proved that every biharmonic submanifold of finite type in any Euclidean space is minimal.
Moreover, he proved that pseudo-umbilical biharmonic Euclidean submanifolds are minimal.
Also, the author pointed out in [19] that spherical biharmonic submanifolds in Euclidean
spaces are always minimal as well.

Nowadays, the study of biharmonic submanifolds is a very active research subject. In
particular, biharmonic submanifolds have received growing attention with much progress
done since the beginning of this century.

The following conjecture was proposed by the author about 25 years ago.

Biharmonic Conjecture ([19]). The only biharmonic submanifolds of Euclidean space are
the minimal ones.

In order to state major results of this conjecture, we give some definitions.

Definition 4.1. An immersed submanifoldM of a Riemannian manifold M̃ is called properly
immersed if the immersion of M is a proper map, i.e., the preimage of each compact set in
M̃ is compact in M . A hypersurface of a Euclidean space is called weakly convex if it has
non-negative principal curvatures.

Definition 4.2. Let M be a submanifold of a Riemannian manifold with inner product ⟨ , ⟩.
Then M is called ϵ-superbiharmonic if its mean curvature vector H satisfies

⟨∆H,H⟩ ≥ (ϵ − 1)|∇H|2, (4.2)

where ϵ ∈ [0, 1] is a constant.

Definition 4.3. For a complete Riemannian manifold (M, g) and α ≥ 0, if the sectional
curvature K of M satisfies

K ≥ −L(1 + distM ( · , q0)2)α/2

for some L > 0 and q0 ∈ M , then we say that K has a polynomial growth bound of order α
from below.

Let M be a Riemannian n-manifold. Denote by K(π) the sectional curvature of a plane
section π ⊂ TpM , p ∈ M . For any orthonormal basis e1, . . . , en of TpM , the scalar curvature
τ at p is

τ(p) =

i<j

K(ei ∧ ej).

Let L be a r-subspace of TpM with r ≥ 2 and let {e1, . . . , er } be an orthonormal basis of
L. The scalar curvature τ(L) of L is defined by

τ(L) =

α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (4.3)

For given integers n ≥ 3, k ≥ 1, we denote by S(n, k) the finite set consisting of k-tuples
(n1, . . . , nk) of integers satisfying 2 ≤ n1, . . . , nk < n and

k
j=1 ni ≤ n.
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Put S(n) = ∪k≥1 S(n, k). For each k-tuple (n1, . . . , nk) ∈ S(n), the author introduced
in the 1990s the Riemannian invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ(p) − inf{τ(L1) + · · · + τ(Lk)}, p ∈ M,

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that dimLj =
nj , j = 1, . . . , k (cf. [20,23,29] for details).

For an n-dimensional submanifold of Em and for a k-tuple (n1, . . . , nk) ∈ S(n), the
author proved the following general sharp inequality [23,29]:

δ(n1, . . . , nk) ≤ n2(n+ k − 1 −

nj)

2(n+ k −

nj)

∥H∥2, (4.4)

where ∥H∥2 = ⟨H,H⟩ denotes the squared mean curvature of M .

Definition 4.4. A submanifold M of Em is called δ(n1, . . . , nk)-ideal if it satisfies the
equality case of (2.9) identically.

Roughly speaking, ideal submanifolds are submanifolds which receive the least possible
tension from their ambient space. For the most recent survey on δ-invariants and ideal
immersions, see [29,30] for details.

The following results provide strong supports to the biharmonic conjecture.

(1) Biharmonic hypersurface in E4 [57].
(2) Biharmonic hypersurface with 3 distinct principal curvatures in En+1 [52].
(3) δ(2)-ideal and δ(3)-ideal biharmonic hypersurfaces in En+1 [44].
(4) Properly immersed biharmonic submanifolds [72].
(5) Biharmonic submanifolds which are complete and proper [2].
(6) Weakly convex biharmonic submanifolds [70].
(7) Biharmonic submanifolds satisfying the decay condition at infinity

lim
ρ→∞

1
ρ2


f −1(Bρ)

∥H∥2dv = 0,

where f is the immersion, Bρ is a geodesic ball of N with radius ρ [92].

Remark 4.1. Y.-L. Ou showed in [85] that the Biharmonic Conjecture cannot be generalized
to biharmonic conformal submanifolds in Euclidean spaces.

Remark 4.2. The Biharmonic Conjecture is false if the ambient Euclidean space is replaced
by a pseudo-Euclidean space [42,43].

Remark 4.3. The Biharmonic Conjecture remains open after 25 years.

The following is an extension of the Biharmonic Conjecture made in [9] by R. Caddeo,
S. Montaldo and C. Oniciuc.

Generalized Chen’s Conjecture. Every biharmonic submanifold of a Riemannian manifold
with non-positive sectional curvature is minimal.
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Y.-L. Ou and L. Tang [87] proved that the Generalized Chen Conjecture is false in
general by constructing foliations of proper biharmonic hyperplanes in some conformally flat
5-manifolds with negative sectional curvature (see, also [69]).

On the other hand, there are many partial results since the early 2000s which support the
Generalized Chen Conjecture under some additional conditions on the ambient spaces (see,
for instance, [3,7,9,74,73,77–79,86,92]).

5. CONSTANT-RATIO SUBMANIFOLDS

D’Arcy Thompson (1860–1948) was a pioneer of mathematical biology. His most famous
work is his book “On Growth and Form” published in 1917 (see [90]). Many other editions
were published since 1917. The theory of growth and form of Thompson provides a very nice
link between biology and differential geometry of position vector fields.

The central theme of Thompson’s book is that biologists of his time overemphasized
evolution as the fundamental determinant of the form and structure of living organisms,
and underemphasized the roles of physical laws and mechanics. Hence, he advocated
structuralism as an alternative to survival of the fittest in governing the form of species.

On the concept of allometry, the study of the relationship of body size and shape,
Thompson wrote: “An organism is so complex a thing, and growth so complex a phenomenon,
that for growth to be so uniform and constant in all the parts as to keep the whole shape
unchanged would indeed be an unlikely and an unusual circumstance. Rates vary, proportions
change, and the whole configuration alters accordingly.”

In the section ‘The Equiangular Spiral in its Dynamical Aspect’ of Thompson’s book, he
wrote: “In mechanical structures, curvature is essentially a mechanical phenomenon. It is
found in flexible structures as a result of bending, or it may be introduced into construction
for the purpose of resisting such a bending-moment. But neither shell nor tooth nor claw are
flexible structures; they have not been bent into their peculiar curvature, they have grown into
it.

We may for a moment, however, regard the equiangular or logarithmic spiral of our shell
from the dynamic point of view, by looking at growth itself as the force concerned. In the
growing structure, let growth at a point P be resolved into a force F acting along the line
joining P to a pole O, and a force T acting in a direction perpendicular to OP ; and let
the magnitude of these forces (or of these rates of growth) remain constant. It follows that
the resultant of the forces F and T (as PQ) makes a constant angle with the radius vector
[position vector]. But a constant angle between tangent and radius vector [position vector] is
a fundamental property of the “equiangular” spiral: the very property with which Descartes
started his investigation, and that which gives its alternative name to the curve.

In such a spiral, radial growth and growth in the direction of the curve bear a constant
ratio to one another. For, if we consider a consecutive radius vector OP ′, whose increment as
compared with OP is dr, while ds is the small arc PP ′, then dr/ds = cosα = constant.

In the growth of a shell, we can conceive no simpler law than this, that it shall widen and
lengthen in the same unvarying proportions: and this simplest of laws is that which Nature
tends to follow. The shell, like the creature within it, grows in size but does not change its
shape; and the existence of this constant relativity of growth, or constant similarity of form,
is of the essence, and may be made the basis of a definition, of the equiangular spiral.”
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Accidentally or not, Thompson’s law of natural growth has a natural link1 to the author’s
constant-ratio submanifolds in his study of position vector fields done in [24].

Let x:M → Em be an isometric immersion of a Riemannian manifold M into the
Euclidean m-space. Let us denote by x the position vector field of M as before.

For each given submanifoldM in Em, there is an orthogonal decomposition of the position
vector x at each point on M :

x = xT + x⊥, (5.1)

where xT and x⊥ denote the tangential and normal components of x at the point, respectively.
Let ∥xT ∥ and ∥x⊥ ∥ be the length of xT and x⊥, respectively.

Definition 5.1 ([24,26]). A submanifold M of a Euclidean space (or more generally, of a
pseudo-Euclidean space) is called a constant-ratio submanifold if the ratio ∥xT ∥:∥x⊥ ∥ is a
constant on M .

Remark 5.1. Constant-ratio curves in a plane are exactly the equiangular curves in the sense
of Thompson. Hence, constant-ratio submanifolds can be regarded as a higher dimensional
version of Thompson’s equiangular curves. For this reason, constant-ratio submanifolds are
also known in some literature as equiangular submanifold (see [56]; see also [52,76]).

Remark 5.2. Constant-ratio curves also relate to the motion in a central force field which
obeys the inverse-cube law. In fact, the trajectory of a mass particle subject to a central force
of attraction located at the origin which obeys the inverse-cube law is a curve of constant-
ratio.

Remark 5.3. The inverse-cube law originated with Sir Isaac Newton (1642–1727) in his
letter sent on December 13, 1679 to Robert Hooke (1635–1703). This letter is of great
historical importance since it reveals the state of Newton’s development of dynamics at
that time (see, for instance, [8], [64, pages 266–271], [80] and [81, Book I, Section II,
Proposition IX]).

Let ρ denote the distance function of M in Em, i.e., ρ = ∥x∥. It was proved in [28] that
the Euclidean submanifold M is of constant-ratio if and only if the gradient of the distance
function ρ has constant length.

Constant ratio hypersurfaces in a Euclidean space were completely classified as follows.

Theorem 5.1 ([24]). Let x:M → En+1 be an isometric immersion of a Riemannian
n-manifold into a Euclidean (n+ 1)-space. Then M is of constant-ratio if and only if one of
the following three cases occurs:

(a) M is an open portion of a hypersphere Sn(r) of En+1 centered at the origin.
(b) M is an open portion of a cone with vertex at the origin.

1 The author thanks professor Leopold Verstraelen who pointed out this nice link to the author several years after
the appearance of [24].
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(c) There exists a local coordinate system {s, u2, . . . , un} on M such that the immersion x
is given by

x(s, u2, . . . , un) = (cs)Y (s, u2, . . . , un),

where Y (s, u2, . . . , un) is a parametrization of the unit hypersphere Sn(1) centered at
the origin which satisfies the following two conditions:
(c.1) Ys is perpendicular to Yu2 , . . . , Yun

and
(c.2) |Ys| =

√
1 − c2/(cs).

A submanifold M of the complex Euclidean m-space Cm is called a totally real
submanifold if the complex structure J of Cn maps each tangent space TpM, p ∈ M , into
the corresponding normal space T⊥

p M , i.e., J(TpM) ⊂ T⊥
p M .

Totally real constant-ratio submanifolds in Cm were classified as follows.

Theorem 5.2 ([31]). Let x:M → Cm be a totally real immersion of a Riemannian
n-manifold M into Cm. Then M is of constant-ratio if and only if one of the following
four statements holds:

(1) M is an open portion of a totally real cone with vertex at the origin.
(2) Up to a suitable dilation, x:M → Cm is given by

x(t, u2, . . . , un) = eitφ(u2, . . . , un),

where φ is an (n− 1)-dimensional C-totally real submanifold of the Sasakian S2m−1(1).
(3) Up to a suitable dilation, M is an anti-invariant submanifold of the Sasakian S2m−1(1)

with ξ ∉ TM , where ξ is the Reeb vector field.
(4) Up to a suitable dilation, x:M → Cm is given by

x(s, u2, . . . , un) = bsψ(s, u2, . . . , un), s ≠ 0,

where b is a positive number < 1 and ψ:M → S2m−1(1) is an immersion satisfying
(4.a) ⟨ψs, ψs⟩ = (1 − b2)/(b2s2),
(4.b) ⟨ψ, iψui

⟩ = −s ⟨ψs, iψui
⟩, and

(4.c)

ψui , iψuj


=


ψs, ψuj


= 0,

for i, j = 2, . . . , n.

Remark 5.4. Constant ratio submanifolds in pseudo-Euclidean space with arbitrary codi-
mension were classified in [27].

Remark 5.5. Constant ratio submanifolds are related to the notion of convolution manifolds
introduced by the author in [25,28] as well.

Remark 5.6. It was known in [24] that the tangential component xT of the position vector
field x of a constant-ratio hypersurface in En+1 defines a principal direction. In [52], Y. Fu
and M.I. Munteanu call a surface in E3 satisfying this property on xT a generalized constant-
ratio surface. They proved in [53] that a generalized constant-ratio surface in E3 can be
parametrized as

x(s, t) = s(cosu(s)f(t) + sinu(s)f(t) × f ′(t)),

where f(t) is a unit speed curve on the unit 2-sphere centered at the origin and u(s) = s
t−1 cot θ(t)dt for a function θ(s) ∈ (0, π

2 ).
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6. RICCI SOLITONS

A vector field η on a Riemannian manifold (M, g) is said to define a Ricci soliton if it
satisfies the Ricci soliton equation:

1
2

Lηg +Ric = λg, (6.1)

where Lηg denotes the Lie-derivative of the metric tensor g with respect to ξ,Ric is the Ricci
tensor of (M, g) and λ is a constant (see, e.g., [34,38,46]).

We denote a Ricci soliton by (M, g, η, λ). The vector field η is called the potential
field. A Ricci soliton (M, g, η, λ) is said to be shrinking, steady or expanding according to
λ > 0, λ = 0, or λ < 0, respectively. A trivial Ricci soliton is one for which the potential
field ξ is zero or Killing, in which case the metric is Einsteinian.

Compact Ricci solitons are the fixed points of the Ricci flow:

∂g(t)
∂t

= −2Ric(g(t))

projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings,
and often arise as blow-up limits for the Ricci flow on compact manifolds. Further, Ricci
solitons model the formation of singularities in the Ricci flow and they correspond to self-
similar solutions (cf. [75]).

A Ricci soliton (M, g, η, λ) is called gradient if its potential field η is the gradient of some
function f on M . For a gradient Ricci soliton the soliton equation can be expressed as

Ricf = λg, (6.2)

where

Ricf := Ric+Hess(f) (6.3)

is known as the Bakry–Émery curvature, where Hess(f) denotes the Hessian of f . Hence
a gradient Ricci soliton has constant Bakry–Émery curvature, a similar role as an Einstein
manifold.

During the last two decades, the geometry of Ricci solitons has been the focus of attention
of many mathematicians. In particular, it has become more important after Perelman applied
Ricci solitons to solve the long standing Poincaré conjecture.

Clearly, the most natural tangent vector field on a Euclidean submanifold M is the
tangential component xT of the position vector field x of M . In this section, we discuss
a Ricci soliton whose potential field is the tangential component xT of the position vector
field.

In this respect, we have the following results of the author and S. Deshmukh.

Proposition 6.1. ([39]) If (Mn, g,xT , λ) is a Ricci soliton on a hypersurface of Mn of
En+1, then Mn has at most two distinct principal curvatures given by

κ1, κ2 =
nα+ ρ ±


(nα+ ρ)2 + 4 − 4λ

2
, (6.4)

where α is the mean curvature and ρ is the support function of Mn, i.e., ρ = ⟨x, N⟩ and
H = αN with N being a unit normal vector field.
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Theorem 6.1 ([39]). Let (Mn, g,xT , λ) be a shrinking Ricci soliton on a hypersurface of
Mn of En+1 with λ = 1. Then Mn is an open portion of one of the following hypersurfaces
of En+1:

(1) A hyperplane through the origin.
(2) A hypersphere centered at the origin.
(3) A flat hypersurface generated by lines through the origin of En+1.
(4) A spherical hypercylinder Sk(

√
k − 1) × En−k, 2 ≤ k ≤ n − 1.

By applying 6.1 the next theorem was proved.

Theorem 6.2 ([37]). Let (Mn, g,xT , λ) be a Ricci soliton on a hypersurface of Mn of
En+1. Then Mn is one of the following hypersurfaces of En+1:

(1) A hyperplane through the origin.
(2) A hypersphere centered at the origin.
(3) An open part of a flat hypersurface generated by lines through the origin.
(4) An open part of a circular hypercylinder S1(r) × En−1, r > 0.
(5) An open part of a spherical hypercylinder Sk(

√
k − 1) × En−k, 2 ≤ k ≤ n − 1.

For further results in this respect, see [4].

7. SELF-SHRINKERS IN MEAN CURVATURE FLOW

Finally, we discuss self-shrinkers in mean curvature flow. Self-shrinkers are also closely
related with the position vector field of a Euclidean submanifold. The study of self-shrinkers
has become a very active research topic in recent years.

Let us consider the mean curvature flow for an isometric immersion x:M → Em,
i.e., consider a one-parameter family xt = x( · , t) of immersions xt:M → Em such that

d

dt
x(p, t) = H(p, t), x(p, 0) = x(p), p ∈ M, (7.1)

is satisfied, where H(p, t) is the mean curvature vector of Mt in Em at x(p, t).
An important class of solutions to the mean curvature flow equations is self-similar

shrinkers which satisfy a system of quasi-linear elliptic PDEs of the second order, namely,

H = −xN ,

where xN is the normal component of the position vector field of x:M → Em as before.
Self-shrinkers play an important role in the study of the mean curvature flow because they
describe all possible blow up at a given singularity of a mean curvature flow.

The following are some known results on self-shrinkers.
U. Abresch and J. Langer classified in [1] all smooth closed self-shrinker curves in E2.

They showed that circles are the only embedded self-shrinkers in E2. G. Huisken studied
compact self-shrinkers in [58]. He proved that if a compact self-shrinker hypersurface in
En+1 has non-negative mean curvature ∥H∥, then it is a hypersphere Sn(

√
n) with radius√

n.
Compact embedded self-shrinker S1 × Sn−1(

√
n − 1) in En+1 was constructed by

S.B. Angenent in [5]. A. Kleene and N.M. Moller proved in [62] that a complete embedded
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self-shrinking hypersurface of revolution in En+1 is isometric to En, Sn(
√
n), R ×

Sn−1(
√
n − 1), or S1 × Sn−1(

√
n − 1).

Let M be a complete Riemannian manifold and p ∈ M . Then M is said to have at most
polynomial volume growth if there exists a nonnegative integer s such that vol(Bρ(p)) ≤
Cρs, whereBρ(p) is the geodesic ball centered at p with radius ρ and C is a positive constant
independent of ρ.

N.Q. Le and N. Sesum proved in [66] that if M is a complete embedded self-shrinker
hypersurface in En+1 with polynomial volume growth and ∥h∥ < 1, then h = 0; and thus M
is isometric to the hyperplane, where h denotes the second fundamental form.

H.-D. Cao and H. Li proved in [10] that if a complete self-shrinker hypersurface in En+1

has polynomial volume growth and ∥h∥ < 1, then it is isometric to either the hyperplane En,
the hypersphere Sn(

√
n), or a hypercylinder Sk(

√
k) × En−k with 1 ≤ k ≤ n − 1. In [45],

Q.-M. Cheng and G. Wei improved Cao and Li’s result by showing that the same result also
holds when the condition ∥h∥ < 1 is replaced by ∥h∥2 ≤ 1 + 3

7 .
In recent years, there also exist many articles studying self-shrinkers in the mean curvature

flow in arbitrary codimension (see, for instance [6,10,11,49–51,67,68,88] among others).
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[75] J. Morgan, G. Tian, Ricci Flow and The Poincaré Conjecture, in: Clay Mathematics Monographs, vol. 5, 2014,

Cambridge, MA.
[76] M.I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51 (2010) 073507. 9 pages.
[77] N. Nakauchi, H. Urakawa, Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci

curvature, Ann. Global Anal. Geom. 40 (2011) 125–131.
[78] N. Nakauchi, H. Urakawa, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature,

Results Math. 63 (2013) 467–471.
[79] N. Nakauchi, H. Urakawa, S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive

curvature, Geom. Dedicata 169 (2014) 263–272.
[80] M. Nauenberg, Newton’s early computational method for dynamics, Arch. Hist. Exact Sci. 46 (1994) 221–252.
[81] I. Newton, Principia, Motte’s Translation Revised, University of California, Berkeley, 1947.
[82] J. Nitsche, Lectures on Minimal Surfaces, Cambridge University Press, 1989.

http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref50
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref51
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref52
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref53
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref54
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref55
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref56
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref57
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref58
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref59
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref60
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref61
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref62
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref63
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref64
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref65
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref66
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref67
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref68
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref69
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref70
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref71
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref72
http://arxiv.org/1305.7065v1
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref74
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref75
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref76
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref77
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref78
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref79
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref80
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref81
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref82


Topics in differential geometry associated with position vector fields on Euclidean submanifolds 17

[83] N.G. Ogston, G.J. King, S.D. Gertzbein, M. Tile, A. Kapasouri, J.D. Rubenstein, Centrode patterns in the
lumbar spine-base-line studies in normal subjects, Spine 11 (1986) 591–595.

[84] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand, New York, 1969.
[85] Y.-L. Ou, On conformal biharmonic immersions, Ann. Global Anal. Geom. 36 (2009) 133–142.
[86] Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010) 217–232.
[87] Y.-L. Ou, L. Tang, On the generalized Chen’s conjecture on biharmonic submanifolds, Michigan Math. J. 61

(2012) 531–542.
[88] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not. (48)

(2005) 2983–3004.
[89] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380–385.
[90] D. Thompson, On Growth and Form, Cambridge University Press, 1942.
[91] P.J. Weiler, R.E. Bogoch, Kinematics of the distal radioulnar joint in rheumatoid-arthritis-an in-vivo study

using centrode analysis, J. Hand Surgery 20A (1995) 937–943.
[92] G. Wheeler, Chen’s conjecture and ϵ-superbiharmonic submanifolds of Riemannian manifolds, Internat. J.

Math. 24 (4) (2013) 1350028. 6 pages.
[93] H. Yeh, J.I. Abrams, Principles of Mechanics of Solids and Fluids, vol. 1, McGraw-Hall, New York, 1960.
[94] B. Yilmaz, I. Gök, Y. Yayli, Extended rectifying curves in Minkowski 3-space, Adv. Appl. Clifford Algebr. 26

(2) (2016) 861–872.

http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref83
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref84
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref85
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref86
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref87
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref88
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref89
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref90
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref91
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref92
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref93
http://refhub.elsevier.com/S1319-5166(16)30023-8/sbref94

	Topics in differential geometry associated with position vector fields on Euclidean submanifolds
	Introduction
	Rectifying curves
	Finite type submanifolds
	Biharmonic submanifolds
	Constant-ratio submanifolds
	Ricci solitons
	Self-shrinkers in mean curvature flow
	Acknowledgments
	References


