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Abstract. Let C � P2 be a smooth curve defined over a non-algebraically closed field

K. We study the Lüroth semigroups of C over K, i.e. the set L0(C,K) of all degrees of

finite morphisms C! P1 defined over K and the set L(C,K) of all degrees >0 of some

spanned line bundle on C defined over K. If K is infinite, then L0(C,K) = L(C,K), but

for every prime power q „ 2 there is a smooth plane curve C defined over Fq with

L0ðC; FqÞ# LðC;FqÞ and CðFqÞ–;. If C is a smooth plane curve, then L(C,K) determines

(in several ways) if C(K) „ ;.
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1. INTRODUCTION AND MAIN THEOREM

Let C be a smooth and geometrically connected projective curve defined over a field K.

Let K denote the algebraic closure of K. For any field E ˚ K let C(E) be the set of all

points of C defined over the field E. If C � P2 is a smooth plane curve defined by a

homogeneous equation f 2 K[x0,x1,x2], then CðEÞ :¼ fða1; a2; a3Þ 2 P2ðEÞ : fða1;
a2; a3Þ ¼ 0g. The Lüroth semigroup L(C) of C (or of CðKÞ) is the set of all positive inte-
gers k such that there is a degree k morphism f : C! P1 defined over K, i.e. the set of

all positive integers k such that there is a spanned L 2 PickðCÞðKÞ [2–4]. If we impose
that L is defined over K, then we get the definition of the K-Lüroth semigroup L(C,K)
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of C. If we impose the condition that f is defined over K, then we get another semigroup
L0(C,K) ˝ L(C). It is easy to check that L0(C,K) ˝ L(C,K) (Lemma 2). Obviously
L0(C,K) = L(C,K) if K is algebraically closed. We prove that L0(C,K) = L(C,K) if K
is infinite (Proposition 1).

For any finite field Fq–F2 we give an example with L0ðC; FqÞ(LðC; FqÞ and CðFqÞ–;.
This example is the key point of this note. In the example the curve is a smooth plane
curve of degree q + 2.

The first element gon(C,K) of L0(C,K) is often called the K-gonality of C or the
gonality of C over K [7]. Since L0(C,K) = L(C,K) if K is infinite, gon(C,K) is also
the first element of L(C,K) if K is infinite. Over a finite field Fq we prove that
gonðC; FqÞ is the first element of LðC; FqÞ if CðFqÞ–; (see Proposition 2). Obviously
L0ðC;EÞ ¼ LðC;EÞ ¼ L0ðC;KÞ ¼ LðC;KÞ ¼ LðCÞ for any field E � K.

Concerning smooth plane curves we prove the following result.

Theorem 1. Let C � P2 be a degree d P 4 smooth plane curve defined over a field K. The
following conditions are equivalent:

(a) C(K) = ;.
(b) d � 1 R L(C,K).
(c) gon(C,K) „ d � 1.
(d) d is the first element of L(C,K).
(e) there in an integer x such that 1 6 x < b

ffiffiffi

d
p
c and xd � 1 R L(C,K).

(f) we have xd � 1 R L(C,K) for every integer x such that 1 6 x < b
ffiffiffi

d
p
c.

If C(K) „ ;, then xd � 1 2 L(C,K) for all x P 1 (see the last part of the proof of The-
orem 1). The bound x < b

ffiffiffi

d
p
c in (e) and (f) comes from the application of a theorem of

Max Noether [5, Theorem 2.1], [1, Theorem 3.2.1] on plane curves (see Lemma 1 and
the proof of Theorem 1). The numerical bounds in Noether’s theorem are sharp.

We thank the referees for their precious job.

2. PROOF OF THEOREM 1 AND THE OTHER RESULTS

Lemma 1. Let C � P2 be a degree d P 4 smooth plane curve defined over a field K. Fix
positive integers x,e such that e < (x + 1)(d � x � 1) and e P xd � d + 2. If
e 2 L(C,K), then xd P e and there is a degree xd � e effective divisor on C defined
over K.

Proof. Fix a degree e spanned line bundle L on C defined over K and any effective divi-
sor E defined over K and with L ffi OCðEÞ. Since e < (x + 1)(d � x � 1), we have
h0ðC;OCðxÞð�EÞÞ–0 ([1], first line of the proof of Theorem 3.2.1). Since C is a smooth
plane curve, d � 1 is the first element of L(C) ([5, Theorem 2.1]; see [2] for the
computation of L(C)). Since degðOCðxÞð�EÞÞ ¼ xd� e 6 d� 2, we have
h0ðC;OCðxÞð�EÞÞ ¼ 1, i.e. there is a unique effective divisor Z � C such that
OCðZÞ ffi OCðxÞð�EÞ. Since E and OCðxÞ are defined over K, Z is defined over K. h
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The thesis ’’there is a degree xd � e effective divisor on C defined over K’’ in Lemma
1 is a statement concerning the structure of C(F) for some finite field extensions F of K.
For instance, if x = 1, it says that if d P 9 and 2d � 1 2 L(C,K), then C(K) „ ;. If
d P 8 and 2d � 2 2 L(C,K), the case x = 2 and e = 2d � 2 of Lemma 1 gives the exis-
tence of a degree 2 effective divisor Z of C defined over K. If either char(K) „ 2 or K is
perfect, then either Z= 2P for some P 2 C(K) or there is a degree 2 Galois extension F
of K such that Z = P + r(P) with P 2 C(F)nC(K) and r:F fi F the non-trivial auto-
morphism of F over K. Hence either C(K) „ ; or there is a quadratic extension F of
K with ](C(F)) P 2.

Proof of Theorem 1. The line bundle OCð1Þ is a degree d spanned line bundle defined
over any field containing K. Hence td 2 L(C,K) for all integers t P 1. We recall that
gon(C) = d � 1 and that any pencil computing the gonality of C over the algebraically
closed field K is of the form OCð1Þð�PÞ with P a uniquely determined element of CðKÞ
([5, Theorem 2.1]; if d P 6, then use [1], case d = 0, i.e. C smooth and e 6 d � 1; if
d = 4, then use xC ffi OCð1Þ and Riemann–Roch). Since OCð1Þ is defined over K, the
line bundle OCð1Þð�PÞ is defined over K if and only if P 2 C(K). Hence (a), (b), (c) and
(d) are equivalent.

Fix an integer x such that 1 6 x < b
ffiffiffi

d
p
c. Since (x + 1)2 6 d, we have

xd � 1 < (x + 1)(d � x � 1). The case e = xd � 1 of Lemma 1 shows that (a) implies
(f). Obviously (f) implies (e). Now assume C(K) „ ;. Fix P 2 C(K) and an integer x P 1.
Since OCðxÞ is very ample, the line bundle OCðxÞð�PÞ is spanned. Hence (e) implies
(a). h

Lemma 2. Let C be a smooth and geometrically connected curve defined over a field K.
Then L0(C,K) ˝ L(C,K).

Proof. Fix a positive integer d and a degree d morphism f : C! P1 defined over K.
Since OP1ð1Þ is a degree 1 spanned line bundle defined over K, f�ðOP1ð1ÞÞ is a degree
d spanned line bundle on C defined over K. h

Proposition 1. Let C be a smooth and geometrically connected curve defined over an infi-
nite field K. Then L0(C,K) = L(C,K).

Proof. By Lemma 2 it is sufficient to prove the inclusion L0(C,K) ˚ L(C,K). Fix a posi-
tive integer d 2 L(C,K) and take a spanned R 2 Picd(C)(K). Set r:¼ h0(C,R) � 1. Since
R is spanned and defined over K, the complete linear system ŒRŒ induces a morphism
f : C! Pr defined over K and with deg(f) Æ deg(f(C)) = d. If r = 1, then we are done.
Hence we may assume r P 2. Let G(r � 2,r) be the Grassmannian of all (r � 2)-dimen-
sional linear subspaces of Pr. Since G(r � 2,r) is a K-rational variety and K is infinite,
G(r � 2,r)(K) is Zariski dense in Gðr� 2; rÞðKÞ. Set X :¼ fV 2 Gðr� 2; rÞðKÞ :
V \ fðCÞðKÞ ¼ ;g. X is a non-empty open subset of G(r � 2,r) defined over K, because
f(C) is defined over K. Hence X(K) „ ;. Composing f with the linear projection from
any V 2 X(K) we obtain a degree d morphism w : C! P1 defined over K. h
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Example 1. Fix a prime power q> 2. There is a smooth degree q + 2 curve C � P2

defined over Fq and such that CðFqÞ ¼ P2ðFqÞ (see [6] for a complete classification of

all such curves). The spanned line bundle OCð1Þ gives qþ 2 2 LðC; FqÞ. Let R be any

spanned line bundle of degree q + 2 on C defined over K. Since q > 2, we have
q + 2 < 2(q + 2 � 2). We look at the proof of Lemma 1 with d = e = q + 2 and

x = 1 and get h0ðC;OCð1Þ � R_Þ > 0. Since degðRÞ ¼ degðOCð1ÞÞ, we get R ffi OCð1Þ.
Hence the line bundle OCð1Þ is the unique spanned line bundle on C with degree

q + 2 over any field E � Fq. Notice that h0ðC;OCð1ÞÞ ¼ 3. Hence there is a bijection

between the morphisms h : CðFqÞ ! P1ðFqÞ with deg(h) = q + 2 and the two-dimen-

sional linear subspaces Vh � H0ðC;OCð1ÞÞðFqÞ ¼ H0ðP2;OCð1ÞÞðFqÞ such that Vh spans

OCð1Þ. Moreover, his defined over Fq if and only if Vh is defined over Fq. Each two-

dimensional linear subspace of H0ðP2;OP2ð1ÞÞðFqÞ is uniquely determined by an ele-

ment of P2ðFqÞ and a linear subspace V is defined over Fq if and only if the associated

point PV 2 P2ðFqÞ is contained in P2ðFqÞ. Since CðFqÞ ¼ P2ðFqÞ, V does not span OCð1Þ
at the point PV 2 CðFqÞ.

Proposition 2. Fix a prime power q. Let C be a geometrically connected smooth curve

defined over Fq. If CðFqÞ–;, then the first element of LðC; FqÞ is the first element,

gonðC; FqÞ, of L0ðC; FqÞ. Moreover, every spanned L 2 PicðCÞðFqÞ such that

degðLÞ ¼ gonðC; FqÞ has h0(C,L) = 2.

Proof. Let d be the first element of LðC; FqÞ. Fix P 2 CðFqÞ and any spanned

L 2 PicdðCÞðFqÞ. To prove all the statements of Proposition 2 it is sufficient to see that

h0(C,L) = 2. Since d > 0 and L is spanned, we have h0(C,L) P 2. Assume
a:¼h0(C,L) P 3. Since L is spanned, we have h0(C,L(�P)) = a � 1 P 2. Let R be
the subsheaf of L(�P) spanned by H0(C,L(�P)). Since h0(C,L(�P)) P 2, R is a posi-
tive degree spanned line bundle. Since L and P are defined over Fq, L(�P) is defined
over Fq. Hence the vector space H0(C,L(�P)) is defined over Fq. Hence R is defined

over Fq. Since deg(R) 6 a � 1 < a, we obtained a contradiction. h
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