The Lüroth semigroups of a curve over a non-algebraically closed field

E. BALLICO *

Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy

Received 1 October 2011; revised 29 December 2012; accepted 15 January 2013 Available online 30 January 2013

Abstract. Let $C \subset \mathbb{P}^2$ be a smooth curve defined over a non-algebraically closed field K. We study the Lüroth semigroups of C over K, i.e. the set L'(C,K) of all degrees of finite morphisms $C \to \mathbb{P}^1$ defined over K and the set L(C,K) of all degrees >0 of some spanned line bundle on C defined over K. If K is infinite, then L'(C,K) = L(C,K), but for every prime power $q \neq 2$ there is a smooth plane curve C defined over \mathbb{F}_q with $L'(C, \mathbb{F}_q) \subseteq L(C, \mathbb{F}_q)$ and $C(\mathbb{F}_q) \neq \emptyset$. If C is a smooth plane curve, then L(C,K) determines (in several ways) if $C(K) \neq \emptyset$.

Mathematics Subject Classification: 14H50; 14G25

Keywords: Lüroth semigroup; Plane curve; Curve over a finite field; Non-algebraically closed field

1. INTRODUCTION AND MAIN THEOREM

Let *C* be a smooth and geometrically connected projective curve defined over a field *K*. Let \overline{K} denote the algebraic closure of *K*. For any field $E \supseteq K$ let C(E) be the set of all points of *C* defined over the field *E*. If $C \subset \mathbb{P}^2$ is a smooth plane curve defined by a homogeneous equation $f \in K[x_0, x_1, x_2]$, then $C(E) := \{(a_1, a_2, a_3) \in \mathbb{P}^2(E) : f(a_1, a_2, a_3) = 0\}$. The Lüroth semigroup L(C) of *C* (or of $C(\overline{K})$) is the set of all positive integers *k* such that there is a degree *k* morphism $f : C \to \mathbb{P}^1$ defined over \overline{K} , i.e. the set of all positive integers *k* such that there is a spanned $L \in \operatorname{Pic}^k(C)(\overline{K})$ [2–4]. If we impose that *L* is defined over *K*, then we get the definition of the *K*-Lüroth semigroup L(C, K)

* Tel.: +39 0461281646; fax: +39 04611624.

E-mail address: ballico@science.unitn.it

Peer review under responsibility of King Saud University.

20192333332	
and the second	
5-5-62-02	
Eille	
ELSEVIER	

Production and hosting by Elsevier

^{1319-5166 © 2013} King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2013.01.002

of C. If we impose the condition that f is defined over K, then we get another semigroup $L'(C,K) \subseteq L(C)$. It is easy to check that $L'(C,K) \subseteq L(C,K)$ (Lemma 2). Obviously L'(C,K) = L(C,K) if K is algebraically closed. We prove that L'(C,K) = L(C,K) if K is infinite (Proposition 1).

For any finite field $\mathbb{F}_q \neq \mathbb{F}_2$ we give an example with $L'(C, \mathbb{F}_q) \subsetneq L(C, \mathbb{F}_q)$ and $C(\mathbb{F}_q) \neq \emptyset$. This example is the key point of this note. In the example the curve is a smooth plane curve of degree q + 2.

The first element gon(C,K) of L'(C,K) is often called the K-gonality of C or the gonality of C over K [7]. Since L'(C,K) = L(C,K) if K is infinite, gon(C,K) is also the first element of L(C,K) if K is infinite. Over a finite field \mathbb{F}_q we prove that $gon(C, \mathbb{F}_q)$ is the first element of $L(C, \mathbb{F}_q)$ if $C(\mathbb{F}_q) \neq \emptyset$ (see Proposition 2). Obviously $L'(C, E) = L(C, E) = L'(C, \overline{K}) = L(C, \overline{K}) = L(C)$ for any field $E \supseteq \overline{K}$.

Concerning smooth plane curves we prove the following result.

Theorem 1. Let $C \subset \mathbb{P}^2$ be a degree $d \ge 4$ smooth plane curve defined over a field K. The following conditions are equivalent:

- (a) $C(K) = \emptyset$.
- (b) $d 1 \notin L(C, K)$.
- (c) $gon(C,K) \neq d-1$.
- (d) d is the first element of L(C,K).
- (e) there in an integer x such that $1 \le x < \lfloor \sqrt{d} \rfloor$ and $xd 1 \notin L(C,K)$.
- (f) we have $xd 1 \notin L(C,K)$ for every integer x such that $1 \leqslant x < \lfloor \sqrt{d} \rfloor$.

If $C(K) \neq \emptyset$, then $xd - 1 \in L(C,K)$ for all $x \ge 1$ (see the last part of the proof of Theorem 1). The bound $x < \lfloor \sqrt{d} \rfloor$ in (e) and (f) comes from the application of a theorem of Max Noether [5, Theorem 2.1], [1, Theorem 3.2.1] on plane curves (see Lemma 1 and the proof of Theorem 1). The numerical bounds in Noether's theorem are sharp.

We thank the referees for their precious job.

2. PROOF OF THEOREM 1 AND THE OTHER RESULTS

Lemma 1. Let $C \subset \mathbb{P}^2$ be a degree $d \ge 4$ smooth plane curve defined over a field K. Fix positive integers x, e such that e < (x + 1)(d - x - 1) and $e \ge xd - d + 2$. If $e \in L(C,K)$, then $xd \ge e$ and there is a degree xd - e effective divisor on C defined over K.

Proof. Fix a degree *e* spanned line bundle *L* on *C* defined over *K* and any effective divisor *E* defined over *K* and with $L \cong \mathcal{O}_C(E)$. Since e < (x + 1)(d - x - 1), we have $h^0(C, \mathcal{O}_C(x)(-E)) \neq 0$ ([1], first line of the proof of Theorem 3.2.1). Since *C* is a smooth plane curve, d - 1 is the first element of L(C) ([5, Theorem 2.1]; see [2] for the computation of L(C)). Since $\deg(\mathcal{O}_C(x)(-E)) = xd - e \leq d - 2$, we have $h^0(C, \mathcal{O}_C(x)(-E)) = 1$, i.e. there is a unique effective divisor $Z \subset C$ such that $\mathcal{O}_C(Z) \cong \mathcal{O}_C(x)(-E)$. Since *E* and $\mathcal{O}_C(x)$ are defined over *K*, *Z* is defined over *K*.

The thesis "there is a degree xd - e effective divisor on *C* defined over *K*" in Lemma 1 is a statement concerning the structure of C(F) for some finite field extensions *F* of *K*. For instance, if x = 1, it says that if $d \ge 9$ and $2d - 1 \in L(C,K)$, then $C(K) \ne \emptyset$. If $d \ge 8$ and $2d - 2 \in L(C,K)$, the case x = 2 and e = 2d - 2 of Lemma 1 gives the existence of a degree 2 effective divisor *Z* of *C* defined over *K*. If either char(K) $\ne 2$ or *K* is perfect, then either Z = 2P for some $P \in C(K)$ or there is a degree 2 Galois extension *F* of *K* such that $Z = P + \sigma(P)$ with $P \in C(F) \setminus C(K)$ and $\sigma: F \rightarrow F$ the non-trivial automorphism of *F* over *K*. Hence either $C(K) \ne \emptyset$ or there is a quadratic extension *F* of *K* with $\sharp(C(F)) \ge 2$.

Proof of Theorem 1. The line bundle $\mathcal{O}_C(1)$ is a degree *d* spanned line bundle defined over any field containing *K*. Hence $td \in L(C,K)$ for all integers $t \ge 1$. We recall that gon(C) = d - 1 and that any pencil computing the gonality of *C* over the algebraically closed field \overline{K} is of the form $\mathcal{O}_C(1)(-P)$ with *P* a uniquely determined element of $C(\overline{K})$ ([5, Theorem 2.1]; if $d \ge 6$, then use [1], case $\delta = 0$, i.e. *C* smooth and $e \le d - 1$; if d = 4, then use $\omega_C \cong \mathcal{O}_C(1)$ and Riemann–Roch). Since $\mathcal{O}_C(1)$ is defined over *K*, the line bundle $\mathcal{O}_C(1)(-P)$ is defined over *K* if and only if $P \in C(K)$. Hence (a), (b), (c) and (d) are equivalent.

Fix an integer x such that $1 \le x < \lfloor \sqrt{d} \rfloor$. Since $(x + 1)^2 \le d$, we have xd - 1 < (x + 1)(d - x - 1). The case e = xd - 1 of Lemma 1 shows that (a) implies (f). Obviously (f) implies (e). Now assume $C(K) \ne \emptyset$. Fix $P \in C(K)$ and an integer $x \ge 1$. Since $\mathcal{O}_C(x)$ is very ample, the line bundle $\mathcal{O}_C(x)(-P)$ is spanned. Hence (e) implies (a). \Box

Lemma 2. Let C be a smooth and geometrically connected curve defined over a field K. Then $L'(C,K) \subseteq L(C,K)$.

Proof. Fix a positive integer *d* and a degree *d* morphism $f: C \to \mathbb{P}^1$ defined over *K*. Since $\mathcal{O}_{\mathbb{P}^1}(1)$ is a degree 1 spanned line bundle defined over *K*, $f^*(\mathcal{O}_{\mathbb{P}^1}(1))$ is a degree *d* spanned line bundle on *C* defined over *K*. \Box

Proposition 1. Let C be a smooth and geometrically connected curve defined over an infinite field K. Then L'(C,K) = L(C,K).

Proof. By Lemma 2 it is sufficient to prove the inclusion $L'(C,K) \supseteq L(C,K)$. Fix a positive integer $d \in L(C,K)$ and take a spanned $R \in \text{Pic}^d(C)(K)$. Set $r := h^0(C,R) - 1$. Since R is spanned and defined over K, the complete linear system |R| induces a morphism $f: C \to \mathbb{P}^r$ defined over K and with $\deg(f) \cdot \deg(f(C)) = d$. If r = 1, then we are done. Hence we may assume $r \ge 2$. Let G(r - 2, r) be the Grassmannian of all (r - 2)-dimensional linear subspaces of \mathbb{P}^r . Since G(r - 2, r) is a K-rational variety and K is infinite, G(r - 2, r)(K) is Zariski dense in $G(r - 2, r)(\overline{K})$. Set $\Omega := \{V \in G(r - 2, r)(\overline{K}) : V \cap f(C)(\overline{K}) = \emptyset\}$. Ω is a non-empty open subset of G(r - 2, r) defined over K, because f(C) is defined over K. Hence $\Omega(K) \neq \emptyset$. Composing f with the linear projection from any $V \in \Omega(K)$ we obtain a degree d morphism $\psi : C \to \mathbb{P}^1$ defined over K. \square

Example 1. Fix a prime power q > 2. There is a smooth degree q + 2 curve $C \subset \mathbb{P}^2$ defined over \mathbb{F}_q and such that $C(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q)$ (see [6] for a complete classification of all such curves). The spanned line bundle $\mathcal{O}_C(1)$ gives $q + 2 \in L(C, \mathbb{F}_q)$. Let R be any spanned line bundle of degree q + 2 on C defined over \overline{K} . Since q > 2, we have q + 2 < 2(q + 2 - 2). We look at the proof of Lemma 1 with d = e = q + 2 and x = 1 and get $h^0(C, \mathcal{O}_C(1) \otimes R^{\vee}) > 0$. Since $\deg(R) = \deg(\mathcal{O}_C(1))$, we get $R \cong \mathcal{O}_C(1)$. Hence the line bundle $\mathcal{O}_C(1)$ is the unique spanned line bundle on C with degree q + 2 over any field $E \supseteq \mathbb{F}_q$. Notice that $h^0(C, \mathcal{O}_C(1)) = 3$. Hence there is a bijection between the morphisms $h : C(\overline{\mathbb{F}_q}) \to \mathbb{P}^1(\overline{\mathbb{F}_q})$ with $\deg(h) = q + 2$ and the two-dimensional linear subspaces $V_h \subset H^0(C, \mathcal{O}_C(1))(\overline{\mathbb{F}_q}) = H^0(\mathbb{P}^2, \mathcal{O}_C(1))(\overline{\mathbb{F}_q})$ such that V_h spans $\mathcal{O}_C(1)$. Moreover, h is defined over \mathbb{F}_q if and only if V_h is defined over \mathbb{F}_q . Each two-dimensional linear subspace of $H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))(\overline{\mathbb{F}_q})$ is uniquely determined by an element of $\mathbb{P}^2(\overline{\mathbb{F}_q})$ and a linear subspace V is defined over \mathbb{F}_q if and only if the associated point $P_V \in \mathbb{P}^2(\overline{\mathbb{F}_q})$.

Proposition 2. Fix a prime power q. Let C be a geometrically connected smooth curve defined over \mathbb{F}_q . If $C(\mathbb{F}_q) \neq \emptyset$, then the first element of $L(C, \mathbb{F}_q)$ is the first element, $gon(C, \mathbb{F}_q)$, of $L'(C, \mathbb{F}_q)$. Moreover, every spanned $L \in Pic(C)(\mathbb{F}_q)$ such that $deg(L) = gon(C, \mathbb{F}_q)$ has $h^0(C, L) = 2$.

Proof. Let *d* be the first element of $L(C, \mathbb{F}_q)$. Fix $P \in C(\mathbb{F}_q)$ and any spanned $L \in \operatorname{Pic}^d(C)(\mathbb{F}_q)$. To prove all the statements of Proposition 2 it is sufficient to see that $h^0(C,L) = 2$. Since d > 0 and *L* is spanned, we have $h^0(C,L) \ge 2$. Assume $a:=h^0(C,L) \ge 3$. Since *L* is spanned, we have $h^0(C,L(-P)) = a - 1 \ge 2$. Let *R* be the subsheaf of L(-P) spanned by $H^0(C,L(-P))$. Since $h^0(C,L(-P)) \ge 2$, *R* is a positive degree spanned line bundle. Since *L* and *P* are defined over \mathbb{F}_q . Hence the vector space $H^0(C,L(-P))$ is defined over \mathbb{F}_q . Hence *R* is defined over \mathbb{F}_q . Since $\deg(R) \le a - 1 < a$, we obtained a contradiction. \Box

ACKNOWLEDGEMENTS

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra 145 (1992) 209-218.
- M. Coppens, The existence of base point free linear systems on smooth plane curves, J. Algebraic Geom. 4 (1) (1995) 1–15.
- [3] S. Greco, G. Raciti, The Lüroth semigroup of plane algebraic curves, Pacific J. Math. 151 (1) (1991) 43– 56.
- [4] S. Greco, G. Raciti, Gap orders of rational functions on plane curves with few singular points, Manuscripta Math. 70 (4) (1991) 441–447.
- [5] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986) 375–386.

- [6] M. Homma, S.J. Kim, Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: supplement to a work of Tallini, Linear Algebra Appl. 438 (2013) 969–985.
- [7] R. Pellikaan, On the gonality of curves, abundant codes and decoding, in: Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math. vol. 1518, Springer, Berlin, 1992, pp. 132–144.