The Lüroth semigroups of a curve over a non-algebraically closed field

E. Ballico *
Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy
Received 1 October 2011; revised 29 December 2012; accepted 15 January 2013
Available online 30 January 2013

Abstract

Let $C \subset \mathbb{P}^{2}$ be a smooth curve defined over a non-algebraically closed field \boldsymbol{K}. We study the Lüroth semigroups of \boldsymbol{C} over \boldsymbol{K}, i.e. the set $\boldsymbol{L}^{\prime}(\boldsymbol{C}, \boldsymbol{K})$ of all degrees of finite morphisms $C \rightarrow \mathbb{P}^{1}$ defined over \boldsymbol{K} and the set $\boldsymbol{L}(\boldsymbol{C}, \boldsymbol{K})$ of all degrees >0 of some spanned line bundle on \boldsymbol{C} defined over \boldsymbol{K}. If \boldsymbol{K} is infinite, then $\boldsymbol{L}^{\prime}(\boldsymbol{C}, \boldsymbol{K})=\boldsymbol{L}(\boldsymbol{C}, \boldsymbol{K})$, but for every prime power $\boldsymbol{q} \neq 2$ there is a smooth plane curve \boldsymbol{C} defined over \mathbb{F}_{q} with $L^{\prime}\left(C, \mathbb{F}_{q}\right) \subseteq L\left(C, \mathbb{F}_{q}\right)$ and $C\left(\mathbb{F}_{q}\right) \neq \emptyset$. If \boldsymbol{C} is a smooth plane curve, then $\boldsymbol{L}(\boldsymbol{C}, \boldsymbol{K})$ determines (in several ways) if $\boldsymbol{C}(\boldsymbol{K}) \neq \emptyset$.

Mathematics Subject Classification: 14H50; 14G25
Keywords: Lüroth semigroup; Plane curve; Curve over a finite field; Non-algebraically closed field

1. Introduction and main theorem

Let C be a smooth and geometrically connected projective curve defined over a field K. Let \bar{K} denote the algebraic closure of K. For any field $E \supseteq K$ let $C(E)$ be the set of all points of C defined over the field E. If $C \subset \mathbb{P}^{2}$ is a smooth plane curve defined by a homogeneous equation $f \in K\left[x_{0}, x_{1}, x_{2}\right]$, then $C(E):=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{P}^{2}(E): f\left(a_{1}\right.\right.$, $\left.\left.a_{2}, a_{3}\right)=0\right\}$. The Lüroth semigroup $L(C)$ of C (or of $C(\bar{K})$) is the set of all positive integers k such that there is a degree k morphism $f: C \rightarrow \mathbb{P}^{1}$ defined over \bar{K}, i.e. the set of all positive integers k such that there is a spanned $L \in \operatorname{Pic}^{k}(C)(\bar{K})$ [2-4]. If we impose that L is defined over K, then we get the definition of the K-Lüroth semigroup $L(C, K)$

[^0]

1319-5166 © 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2013.01.002
of C. If we impose the condition that f is defined over K, then we get another semigroup $L^{\prime}(C, K) \subseteq L(C)$. It is easy to check that $L^{\prime}(C, K) \subseteq L(C, K)$ (Lemma 2). Obviously $L^{\prime}(C, K)=L(C, K)$ if K is algebraically closed. We prove that $L^{\prime}(C, K)=L(C, K)$ if K is infinite (Proposition 1).

For any finite field $\mathbb{F}_{q} \neq \mathbb{F}_{2}$ we give an example with $L^{\prime}\left(C, \mathbb{F}_{q}\right) \subsetneq L\left(C, \mathbb{F}_{q}\right)$ and $C\left(\mathbb{F}_{q}\right) \neq \emptyset$. This example is the key point of this note. In the example the curve is a smooth plane curve of degree $q+2$.

The first element gon (C, K) of $L^{\prime}(C, K)$ is often called the K-gonality of C or the gonality of C over K [7]. Since $L^{\prime}(C, K)=L(C, K)$ if K is infinite, gon (C, K) is also the first element of $L(C, K)$ if K is infinite. Over a finite field \mathbb{F}_{q} we prove that $\operatorname{gon}\left(C, \mathbb{F}_{q}\right)$ is the first element of $L\left(C, \mathbb{F}_{q}\right)$ if $C\left(\mathbb{F}_{q}\right) \neq \emptyset$ (see Proposition 2). Obviously $L^{\prime}(C, E)=L(C, E)=L^{\prime}(C, \bar{K})=L(C, \bar{K})=L(C)$ for any field $E \supseteq \bar{K}$.

Concerning smooth plane curves we prove the following result.
Theorem 1. Let $C \subset \mathbb{P}^{2}$ be a degree $d \geqslant 4$ smooth plane curve defined over a field K. The following conditions are equivalent:
(a) $C(K)=\emptyset$.
(b) $d-1 \notin L(C, K)$.
(c) $\operatorname{gon}(C, K) \neq d-1$.
(d) d is the first element of $L(C, K)$.
(e) there in an integer x such that $1 \leqslant x<\lfloor\sqrt{d}\rfloor$ and $x d-1 \notin L(C, K)$.
(f) we have $x d-1 \notin L(C, K)$ for every integer x such that $1 \leqslant x<\lfloor\sqrt{d}\rfloor$.

If $C(K) \neq \emptyset$, then $x d-1 \in L(C, K)$ for all $x \geqslant 1$ (see the last part of the proof of Theorem 1). The bound $x<\lfloor\sqrt{d}\rfloor$ in (e) and (f) comes from the application of a theorem of Max Noether [5, Theorem 2.1], [1, Theorem 3.2.1] on plane curves (see Lemma 1 and the proof of Theorem 1). The numerical bounds in Noether's theorem are sharp.

We thank the referees for their precious job.

2. Proof of Theorem 1 and the other results

Lemma 1. Let $C \subset \mathbb{P}^{2}$ be a degree $d \geqslant 4$ smooth plane curve defined over a field K. Fix positive integers x, e such that $e<(x+1)(d-x-1)$ and $e \geqslant x d-d+2$. If $e \in L(C, K)$, then $x d \geqslant e$ and there is a degree $x d-e$ effective divisor on C defined over K.

Proof. Fix a degree e spanned line bundle L on C defined over K and any effective divisor E defined over K and with $L \cong \mathcal{O}_{C}(E)$. Since $e<(x+1)(d-x-1)$, we have $h^{0}\left(C, \mathcal{O}_{C}(x)(-E)\right) \neq 0([1]$, first line of the proof of Theorem 3.2.1). Since C is a smooth plane curve, $d-1$ is the first element of $L(C)$ ([5, Theorem 2.1]; see [2] for the computation of $L(C)$). Since $\operatorname{deg}\left(\mathcal{O}_{C}(x)(-E)\right)=x d-e \leqslant d-2$, we have $h^{0}\left(C, \mathcal{O}_{C}(x)(-E)\right)=1$, i.e. there is a unique effective divisor $Z \subset C$ such that $\mathcal{O}_{C}(Z) \cong \mathcal{O}_{C}(x)(-E)$. Since E and $\mathcal{O}_{C}(x)$ are defined over K, Z is defined over K.

The thesis 'there is a degree $x d-e$ effective divisor on C defined over K ' in Lemma 1 is a statement concerning the structure of $C(F)$ for some finite field extensions F of K. For instance, if $x=1$, it says that if $d \geqslant 9$ and $2 d-1 \in L(C, K)$, then $C(K) \neq \emptyset$. If $d \geqslant 8$ and $2 d-2 \in L(C, K)$, the case $x=2$ and $e=2 d-2$ of Lemma 1 gives the existence of a degree 2 effective divisor Z of C defined over K. If either $\operatorname{char}(K) \neq 2$ or K is perfect, then either $Z=2 P$ for some $P \in C(K)$ or there is a degree 2 Galois extension F of K such that $Z=P+\sigma(P)$ with $P \in C(F) \backslash C(K)$ and $\sigma: F \rightarrow F$ the non-trivial automorphism of F over K. Hence either $C(K) \neq \emptyset$ or there is a quadratic extension F of K with $\sharp(C(F)) \geqslant 2$.

Proof of Theorem 1. The line bundle $\mathcal{O}_{C}(1)$ is a degree d spanned line bundle defined over any field containing K. Hence $t d \in L(C, K)$ for all integers $t \geqslant 1$. We recall that gon $(C)=d-1$ and that any pencil computing the gonality of C over the algebraically closed field \bar{K} is of the form $\mathcal{O}_{C}(1)(-P)$ with P a uniquely determined element of $C(\bar{K})$ ([5, Theorem 2.1]; if $d \geqslant 6$, then use [1], case $\delta=0$, i.e. C smooth and $e \leqslant d-1$; if $d=4$, then use $\omega_{C} \cong \mathscr{O}_{C}(1)$ and Riemann-Roch). Since $\mathscr{O}_{C}(1)$ is defined over K, the line bundle $\mathcal{O}_{C}(1)(-P)$ is defined over K if and only if $P \in C(K)$. Hence (a), (b), (c) and (d) are equivalent.

Fix an integer x such that $1 \leqslant x<\lfloor\sqrt{d}\rfloor$. Since $(x+1)^{2} \leqslant d$, we have $x d-1<(x+1)(d-x-1)$. The case $e=x d-1$ of Lemma 1 shows that (a) implies (f). Obviously (f) implies (e). Now assume $C(K) \neq \emptyset$. Fix $P \in C(K)$ and an integer $x \geqslant 1$. Since $\mathscr{O}_{C}(x)$ is very ample, the line bundle $\mathscr{O}_{C}(x)(-P)$ is spanned. Hence (e) implies (a).

Lemma 2. Let C be a smooth and geometrically connected curve defined over a field K. Then $L^{\prime}(C, K) \subseteq L(C, K)$.

Proof. Fix a positive integer d and a degree d morphism $f: C \rightarrow \mathbb{P}^{1}$ defined over K. Since $\mathcal{O}_{\mathbb{P}^{1}}(1)$ is a degree 1 spanned line bundle defined over $K, f^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ is a degree d spanned line bundle on C defined over K.

Proposition 1. Let C be a smooth and geometrically connected curve defined over an infinite field K. Then $L^{\prime}(C, K)=L(C, K)$.

Proof. By Lemma 2 it is sufficient to prove the inclusion $L^{\prime}(C, K) \supseteq L(C, K)$. Fix a positive integer $d \in L(C, K)$ and take a spanned $R \in \operatorname{Pic}^{d}(C)(K)$. Set $r:=h^{0}(C, R)-1$. Since R is spanned and defined over K, the complete linear system $|R|$ induces a morphism $f: C \rightarrow \mathbb{P}^{r}$ defined over K and with $\operatorname{deg}(f) \cdot \operatorname{deg}(f(C))=d$. If $r=1$, then we are done. Hence we may assume $r \geqslant 2$. Let $G(r-2, r)$ be the Grassmannian of all $(r-2)$-dimensional linear subspaces of \mathbb{P}^{r}. Since $G(r-2, r)$ is a K-rational variety and K is infinite, $G(r-2, r)(K)$ is Zariski dense in $G(r-2, r)(\bar{K})$. Set $\Omega:=\{V \in G(r-2, r)(\bar{K})$: $V \cap f(C)(\bar{K})=\emptyset\} . \Omega$ is a non-empty open subset of $G(r-2, r)$ defined over K, because $f(C)$ is defined over K. Hence $\Omega(K) \neq \emptyset$. Composing f with the linear projection from any $V \in \Omega(K)$ we obtain a degree d morphism $\psi: C \rightarrow \mathbb{P}^{1}$ defined over K.

Example 1. Fix a prime power $q>2$. There is a smooth degree $q+2$ curve $C \subset \mathbb{P}^{2}$ defined over \mathbb{F}_{q} and such that $C\left(\mathbb{F}_{q}\right)=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ (see [6] for a complete classification of all such curves). The spanned line bundle $\mathcal{O}_{C}(1)$ gives $q+2 \in L\left(C, \mathbb{F}_{q}\right)$. Let R be any spanned line bundle of degree $q+2$ on C defined over \bar{K}. Since $q>2$, we have $q+2<2(q+2-2)$. We look at the proof of Lemma 1 with $d=e=q+2$ and $x=1$ and get $h^{0}\left(C, \mathcal{O}_{C}(1) \otimes R^{\vee}\right)>0$. Since $\operatorname{deg}(R)=\operatorname{deg}\left(\mathcal{O}_{C}(1)\right)$, we get $R \cong \mathcal{O}_{C}(1)$. Hence the line bundle $\mathcal{O}_{C}(1)$ is the unique spanned line bundle on C with degree $q+2$ over any field $E \supseteq \mathbb{F}_{q}$. Notice that $h^{0}\left(C, \mathcal{O}_{C}(1)\right)=3$. Hence there is a bijection between the morphisms $h: C\left(\overline{\mathbb{F}_{q}}\right) \rightarrow \mathbb{P}^{1}\left(\overline{\mathbb{F}}_{q}\right)$ with $\operatorname{deg}(h)=q+2$ and the two-dimensional linear subspaces $V_{h} \subset H^{0}\left(C, \mathcal{O}_{C}(1)\right)\left(\overline{\mathbb{F}}_{q}\right)=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{C}(1)\right)\left(\overline{\mathbb{F}}_{q}\right)$ such that V_{h} spans $\mathcal{O}_{C}(1)$. Moreover, h is defined over \mathbb{F}_{q} if and only if V_{h} is defined over \mathbb{F}_{q}. Each twodimensional linear subspace of $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)\left(\overline{\mathbb{F}}_{q}\right)$ is uniquely determined by an element of $\mathbb{P}^{2}\left(\overline{\mathbb{F}}_{q}\right)$ and a linear subspace V is defined over \mathbb{F}_{q} if and only if the associated point $P_{V} \in \mathbb{P}^{2}\left(\overline{\mathbb{F}}_{q}\right)$ is contained in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$. Since $C\left(\mathbb{F}_{q}\right)=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$, V does not span $\mathcal{O}_{C}(1)$ at the point $P_{V} \in C\left(\mathbb{F}_{q}\right)$.

Proposition 2. Fix a prime power q. Let C be a geometrically connected smooth curve defined over \mathbb{F}_{q}. If $C\left(\mathbb{F}_{q}\right) \neq \emptyset$, then the first element of $L\left(C, \mathbb{F}_{q}\right)$ is the first element, $\operatorname{gon}\left(C, \mathbb{F}_{q}\right)$, of $L^{\prime}\left(C, \mathbb{F}_{q}\right)$. Moreover, every spanned $L \in \operatorname{Pic}(C)\left(\mathbb{F}_{q}\right)$ such that $\operatorname{deg}(L)=\operatorname{gon}\left(C, \mathbb{F}_{q}\right)$ has $^{0}(C, L)=2$.

Proof. Let d be the first element of $L\left(C, \mathbb{F}_{q}\right)$. Fix $P \in C\left(\mathbb{F}_{q}\right)$ and any spanned $L \in \operatorname{Pic}^{d}(C)\left(\mathbb{F}_{q}\right)$. To prove all the statements of Proposition 2 it is sufficient to see that $h^{0}(C, L)=2$. Since $d>0$ and L is spanned, we have $h^{0}(C, L) \geqslant 2$. Assume $a:=h^{0}(C, L) \geqslant 3$. Since L is spanned, we have $h^{0}(C, L(-P))=a-1 \geqslant 2$. Let R be the subsheaf of $L(-P)$ spanned by $H^{0}(C, L(-P))$. Since $h^{0}(C, L(-P)) \geqslant 2, R$ is a positive degree spanned line bundle. Since L and P are defined over $\mathbb{F}_{q}, L(-P)$ is defined over \mathbb{F}_{q}. Hence the vector space $H^{0}(C, L(-P))$ is defined over \mathbb{F}_{q}. Hence R is defined over \mathbb{F}_{q}. Since $\operatorname{deg}(R) \leqslant a-1<a$, we obtained a contradiction.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

[1] M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra 145 (1992) 209-218.
[2] M. Coppens, The existence of base point free linear systems on smooth plane curves, J. Algebraic Geom. 4 (1) (1995) 1-15.
[3] S. Greco, G. Raciti, The Lüroth semigroup of plane algebraic curves, Pacific J. Math. 151 (1) (1991) 4356.
[4] S. Greco, G. Raciti, Gap orders of rational functions on plane curves with few singular points, Manuscripta Math. 70 (4) (1991) 441-447.
[5] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986) 375-386.
[6] M. Homma, S.J. Kim, Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: supplement to a work of Tallini, Linear Algebra Appl. 438 (2013) 969-985.
[7] R. Pellikaan, On the gonality of curves, abundant codes and decoding, in: Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math. vol. 1518, Springer, Berlin, 1992, pp. 132-144.

[^0]: * Tel.: +39 0461281646; fax: +39 04611624.

 E-mail address: ballico@science.unitn.it
 Peer review under responsibility of King Saud University.

