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The differential pencils with turning point on the half line
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Abstract.  We investigate the inverse spectral problem of recovering pencils of
second-order differential operators on the half-line with turning point. Using the
asymptotic distribution of the Weyl function, we give a formulation of the inverse
problem and prove the uniqueness theorem for the solution of the inverse problem.
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1. INTRODUCTION

We consider the differential equation

V' (x) + (p*R(x) + ipgy (x) + gy (x))p(x) =0, x >0, (1)
on the half-line with nonlinear dependence on the spectral parameter p. Let @ > 1, and

R(x) = { (2)

i.e., the sign of the weight-function changes in an interior point x = a, which is called
the turning point. The functions g(x), j = 0,1, are complex-valued, g;(x) is absolutely
continuous and (1 + x)qj(.l) € L(0,00) for 0 </<j< 1.

Differential equations with spectral parameter and turning point arise in various
problems of mathematics (see, for example, Tamarkin [7]). The classical Sturm-—
Liouville operators with turning points in the finite interval have been studied fairly
completely in Freiling and Schneider [2]. Indefinite differential pencils produce

-1, 0< x<a,
x—1, x=a,
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significant qualitative modification in the investigation of the inverse problem. Some
aspects of the inverse problem theory for differential pencils without turning points
were studied in Khruslov and Shepelsky [5] and Yurko [8]. In Freiling and Yurko
[3.4], the inverse problem was investigated for differential equations with m turning
points. Also the inverse problem was investigated for differential pencils with turn-
ing point and nonlinear dependence on the spectral parameter in Yurko [11,12].
Here we investigate the uniqueness solution of the inverse problem with turning
point when the weight-function changes in the linear form after turning point. As
the main spectral characteristic for the boundary value problem, we introduce the
so-called Weyl function.

In this paper, we will study the uniqueness theorem for Eq. (1) with spectral bound-
ary condition. In Section 2, we determine the asymptotic forms of the solutions of
Eq. (1) and derive characteristic function. In Section 3, we obtain the Weyl function
and establish a formulation of the inverse problem. In Section 4, we prove the
uniqueness theorem.

2. PRIMARY RESULTS

We consider the boundary value problem L for Eq. (1) on the half-line with the bound-
ary condition

U(y) = (0) + (Bip + By)y(0) =0, (3)
where the coefficients f, and f, are complex numbers and f;# =1. Denote
M=+ :={p: £Imp > 0}, y:={p:Imp = 0}. By the well-known method (see, Mennic-
ken and Moller [6]; Tamarkin [7] and Freiling and Yurko [4]), we obtain a solution

e(x,p) of the Eq. (1) (which is called the Jost-type solution) with the following
properties:

Theorem 2.1. Eq. (1) has a unique solution y = e(x,p), p €1+, x = a, with the
following properties:

1. For each fixed x > a, the functions ¢’ (x,p), v = 0,1, are holomorphic for p € T1,
and p € T1_ (i.e., they are piecewise holomorphic).

2. The functions e (x,p), v = 0,1, are continuous for x > a,p € IL, and p € TI_ (we
differ the sides of the cut Tly). In other words, for real p, there exist the finite limits

Vix,p)= lim e (x,2).
z—p, zelly
Moreover, the funclions_e(") (x,p),v = 0,1, are continuously differentiable with respect to
peTL,\ {0} and p € TI \ {0}.
3. For x — oo,p € I14 \ {0}, v=0,1,
), -\ v—1 .
e (x, p) = (Fip) R(x)"exp(£(ipx — O(x)))(1 + o(1)), (4)

where Q(x) =1 [ ¢q,(1)dL.
4. For |p| — o0,p € Iy, v=0,1, uniformly in x > a,

e (x, p) = (Fip)' R(x) exp((ipx — Q(x))1], (5)
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where [1]:=1 + O(p~').We extend e(x,p) to the segment [0,a] as a solution of
Eq. (1) which is smooth for x = 0, i.e.,

e"(a—0,p)=e(a+0,p), v=0,1. (6)

Then the properties 1 — 2 remain true for x = 0.Let the functions ¢(x,p) and S(x,p) be
the solutions of Eq. (1) under the initial conditions ¢ (0,p) = 1, U(p) = 0, S(0,p) = 0,
S'(0,p) = 1. For each fixed x = 0, the functions ¢’ (x,p) and S™ (x,p), v = 0,1, are
entire in p.

Lemma 2.2. For m = 0,1, |p| — oo, uniformly in x, the following asymptotic formulae
are valid:

(e, ) = (1) (14 B )exp(—px-+ Q1] + (1 - Bexp(px—iQ()[1]), x€ [0.d],
(”/f' <1+l(a71 )exp<fpa(1+i(a71)7)+iQ(a)(171( 1)’7))[1}
T’(l z)exp(pa(1—i(a—1)%)—iQ(a)(1+i(a—1)’%))[1})
><< o(x— 1)%)"1mp(zp( S (x—1)7 ) (‘*”'( a—l)%)
><er< pa(l >+1Q <1+la—1 )) []+=A ﬁ'(l—z —1))
xexp(pa(wz %)—zQ( (1—za—1’7)) )( ip x—l%)
(-

ip(x \+ (x—1)7 Q(x)), xX=a.

@

xexp

Proof. Denote IT} := {p : =Rep > 0}. It is known (see, Mennicken and Moller [6] and
Tamarkin [7]) that for x > a, m= 0,1, p € I}, |p| — oo, there exists a fundamental
system of solutions {Yi(x,0)}x=1. of Eq. (1) of the form

V(o) = (1 iplor = 1) "exp (<1 (inx(x = 1 = (= D¥Q(0) ) 1)
9

Similarly for x € [0,a], m= 0,1, p € T}, |p| — oo, there exists a fundamental system
of solutions {yx(x,p)}r=1.- of Eq. (1) of the form

7 (xp) = (1)p)"exp((=1)" (px = iQ()[1]. (8)
Using the Birkhoff-type fundamental system of solutions, one has

9" (x,p) = Ai(p))" (x.p) + Ax(p)0S" (x.p). x € (0,4, 9)

P (x,p) = Bi(p)Y\" (x,p) + Ba(p) Yi" (x,p), x> a. (10)

Taking (8) and the initial conditions ¢(0,p) = 1, ¢'(0,p) = — (f1p + Po) into account,
we calculate

1+ B,

1 p,
LA,

B, (1)

Ai(p) = Ax(p) =
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Substituting (8) and (11) in (9), we obtain the asymptotic formulae ¢ (x, p), m =0, 1,
as |p| — oo, uniformly in x € [0,a].

Now wusing (7), (10) and the smooth condition ¢ (a—0,p)=
@ (a+0,p), m=0,1, we have

Bi(p) = yexp(—ipala— 1) + Q(a)(a — 1)*) (inla — (e p) + ¢'(a.p) ) 1],

B(p) = yexp(ipala— 1) ~ Q(a)(a— 1)F) (~inla — 1¥ola p) + ¢/(a.p) ) 1]

Substituting the coefficients By(p), B»(p) and (7) in (10), we obtain ¢ (x,p), m = 0,1,
as x = a, |p| — oo. Lemma 2.2 is proved. [

Corollary 2.3. It follows from Lemma 2.2 that

0" (x, p)| < Clp|"exp(|Replx),  x € [0,d], (12)

9" (x, p)| < Clp|"exp(|Repla)exp(|impl(a —x)), x> a (13)
Denote

A(p) = Ule(x, p)). (14)

The function A(p) is called the characteristic function for the boundary value problem L.
The function A(p) is holomorphic in 11 and I1_, and for real p, there exist the finite
limits

Ax(p)_ lim_A(z).

T z—p, zelly
Moreover, the function A(p) is continuously differentiable for p € T1. \ {0}.
Theorem 2.4. For |p| — oo, p € I, the following asymptotical formula holds:

(a = 1) exp((ipa — (@) ((~1 % i(a — 1))(1 = B )exp(pa — iQ(a))[1]
— (=1 Fila—= 1)1 + B))exp(—pa + iQ(a))[1)).

Alp) =

D

Proof. Taking the Birkhoff-type fundamental system of solutions {yi(x,p)}x=1, of
Eq. (1) on the interval [0,a], one has

" (x,p) = Hy(p)y\" (x,p) + Ha(p)yy" (x,p),  x€[0,d]. (15)

Using the Cramers rule, we calculate

Hi(p) =5 (a—1)7 (1 F i(a — 1)exp(&(ipa — O(a)))exp(pa — iQ(a)[1],

N = N —

Ha(p) = 5 (a— 1)F(1 £ i(a — 1)exp(£(ipa — O(a)))exp(—pa + iQ(a))[1]:
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Now, taking (8), (15) and coefficients Hyp), j = 1.2, we have for lp| — oo,
p eIl x€(0,d,

" (x,p) = % (a— 1) exp((ipa — Q@) ((—1)"(1 F i(a — 1))exp(pa — iQ(a))
x exp(—px +iQ(x))[1] + (1 £ i(a — 1))
x exp(—pa -+ 10(a))exp(px — i0(x))[1))

Together with (3) and (14), this yields the characteristic function A(p). [

Definition 2.5. The values of the parameter p, for which Eq. (1) has nontrivial solutions
satisfying the conditions U(y) = 0, y(co) = 0 (i.e., lim,_,,.y(x) = 0) are called eigen-
values of L, and the corresponding solutions are called eigenfunctions.

Denote

A, ={peTl;A(p) =0}, A=A UA,
AL ={peRA(p)=0}, A=A UA,
Ar = A, UA, A=A UA_.

Theorem 2.6.

(1) For sufficiently large k, the function A(p) has simple zeros of the form

1
p,{:a(kﬂi+iQ(a)+K1 :|:K2)+0(k71), (16)
where
1 B+ 1 i(a—1)+1
Kllenﬂl_17 K272lni(a—1)—1'

(2) The set N coincides with the set of nonzero eigenvalues of L. For p, € N, the
functions e(x,p;), @(x,pr) are eigenfunctions and

e(x, pr) = wo(x,p1), 770 (17)
(3) For real p#0, L has no eigenvalues.

Proof. By virtue of Theorem 2.4, we have

A(p) =f(p)+2(p),

fp) :g(a — )7 exp(£(ipa— Q(a)))((—1 £i(a—1))(1 - B, )exp(pa—iQ(a))
—(=1Fi(a—1))(1+ B )exp(—pa+iQ(a))),

g(p) =§(a —1)Z exp((ipa— Q(a)))((—1£i(a—1))(1 - B )exp(pa—iQ(a)) O(p™")
—(=1Fi(a=1)(1+py)exp(—pa+iQ(a)O(p™")).



100 A. Neamaty, Y. Khalili

Whereas for sufficiently large p, | f(ip) > | g(p) , applying Rouche’s theorem (see, Con-
way [1]), the number of zeros of A(p) coincides with the number of zeros of f{(p). Now,
solving the equation f{p) = 0, we obtain for sufficiently large k,

1 B+1, 1. (la—1)+1)
T )

Since g(p) = fip)O(p~"), we obtain zeros of the form (16). For p, € A', by virtue of (5)
and (6) we result that lim,_,..e(x,pr) = 0. Thus p, is an eigenvalue. Since
{(p(x,p),e(x,p)) = A(p), we arrive at (17). Overhand, let p; (complex value) be an eigen-
value and y(x,pr) be a corresponding eigenfunction. Since U(y(x,pr)) = 0,
limx—moy(xvp/c) = 09 one gets y(x’pk) = Ck(p(xap/c)a and y(x’pk) = Cke(x’pk) for Ck?&o'
Therefore this yields (17) and A(p) = U(e(x,pr)) = 0. To prove part 3, let po# 0 be
real, then the function e(x,p) does not vanish at infinity. Thus for real p # 0, BVP(L)
has no eigenvalues. [

P = é (kni +iQ(a) +

3. WEYL SOLUTION AND FUNCTION

We put
e(x, p)
X,p) = , 18
o0 =508 (18)
that the function ¢(x,p) be a solution of Eq. (1) under the conditions U(¢) =
I, ¢(x,p) = 0((x - 1)%exp(iipx)),x — 00, p € M. Thus lim,_,.¢(x,p) = 0. The
function ¢(x,p) is called the Weyl solution of the boundary value problem L. Denote

M(p) = ¢(0,p). (19)
We will call M(p) the Weyl function for L. It follows from (18) and (19) that
e(0, p)
M(p) = 222, 20
) =50 (20)

The function M(p) is regular in II.\ A, and continuous in TII.\Ai. As
lp| — oo, p €I, we have

1

M(p) D [1]. (21
Using the initial conditions at the point x = 0, we get

d(x,p) = S(x, p) + M(p)o(x, p), (22)

<(/)(xap)7¢(x7p)> =1, (23)

where (y,z) = yz' — y'z.

Lemma 3.1. Fix 6 > 0. Denote Gs:={p € C:| p — pd = 6, pi € A}. Then the following
inequalities are valid:
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,p)| < Clp|"exp(—|Implx), x = a,

0
,p)| < Clp["exp(—|Impla)exp(|Rep|(a — x)), x € [0,d],
= Clplexp(—|Impla)exp(|Repla), p € G,

|e‘

e
|A(p)]
6" (
16" (
IM(p)| < Clp|™", p€Gs

)(x
(x

A\
B

% p)| < Clpl" exp(—|Replajexp(~|Tmpl(x — a)), p € Gy, x
x, p)| < Clp/" 'exp(—|Replx), p € Gs, x€]0,dl,

Proof. It follows for x > a

e (x, p)] = | (Eip)" R()" Fexp((ipx — Q(x))1]
= | ()" R(x)" Lexp((iRepx — 0(x))) x 1] |p["exp(|Impl)
< Clp|"exp(=|Implx),

and using triangle equality for the function e(x,p) in [0,a], we have

e (x,p)| = ‘%m(a— 1)¥ exp((ipa— 0(a)))((—1)" (1 Fi(a—1))exp(pa—iQ(a))
xexp(=px+iQ(x))[1]+ (1 £i(a—1))exp(—pa+iQ(a))exp(px —iQ(x))[1])

< 5 ta= D¥exp(eipa— Q@) |(I(~1)"(1 Fi(a~ D)explpa- 10(a)

x exp(—px +iQ(x)) 1]+ |(1 £i(a— 1))exp(—pa+iQ(a))exp(px — iQ(x))[1]])
:{ ;(a 1) exp(+iRepa)exp(FQ(a))

x exp(—ilmpx)exp(—iQ(a))exp(iQ(x))[1]|+[(1 £ i(a—1))exp(—ilmpa)

xexp(ilmpx)exp(iQ(a))exp(—iQ(x))[1])}ol"exp(~| Impla)exp(| Rep|(a—x))

(I(=1)"(1Fila—1))exp(ilmpa)

= Clp|"exp(—|Impla)exp(|Rep|(a—x)).
Since | x + Y| = 11" —1)l], we have for p € G,

p)l =[5 (a—1)7exp((ipa— Q@) (~1%ila—1))(1-,)

xexp(pa—iQ(a))[l] = (=15 i(a—1))(1+f)exp(—pa+iQ(a))[l])

> |2 (a1 Fexp((ipa—0(a))| x (=1 %i(a—1)(1 =)

xexp(pa—iQ(a))[1]| = [(=1Fi(a—1))(1+B;)
x exp(—pa+iQ(a))[1]]|
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~{ a1 expteirepaenn(z0t@| -1 ta- 1)<

~ By)exp(Repa)exp(~iQ(@)1]| - (=1 ila—1)(1+ ;) x exp(~ Repa)
<exp(Q() 1| Holexp(—lmplalexs| Repla

= Clplexp(—|Imp|a)exp(|Rep|a).

Now, taking (18) and (20), we infer for p € Gs,
6" (x, p)| < Clp|" exp(—|Repla)exp(~|Imp|(x — a)), x > a,
(6" (x, p)] < Clpl™ " exp(—|Replx), x € [0,d],
|M(p)| < Clp| ™.
Lemma 3.1 is proved. [
Now we will study the inverse problem for the boundary value problem L. The

inverse problem is formulated as follows:

Inverse Problem 3.2. Given the Weyl function M(p), construct the potentials g;(x),
qo(x) and the coefficients f3;, fo.

4. UNIQUENESS THEOREM

In this section, we prove the uniqueness theorem for the solution of the inverse problem
from the given Weyl function. We agree that together with L = L(q1(x),q0(x),f1,50),

consider a boundary value problem L = L(q, (x)7c]0(x),/~317ﬁo) of the same form but
with different coefficients. Also if a certain symbol denotes an object related to L, then

the corresponding symbol with tilde will denote the analogs’ object related to L.

Theorem 4.1. If M(p) = M(p) then gy(x) = 41(x).qo(x) = Go(x) for x >0, f; =y
and By = Po. Thus the specification of the Weyl function uniquely determines the
coefficients.

Proof. We consider the matrix P(x,p) = [P;(x,p)];x=1,>» defined by

p(x.p)  dlx,p) | _[olxp) ¢(x,p)]
P(X”’)Lb'(x,m <2>/<x,p>1‘[<p’<x,p> ¢ (x.p) @)

By virtue of (23), this yields
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Using (22) and (25), we calculate
{%wmzﬁwamﬁmm—wwmmamm+ﬁmw (x,p
Po(x,p) = SV (x, p)d(x, p) — 9=V (x, p)S(x, p) — M(p) =" (x, p)

)@'(x, p),

@(x, p),
(26)

where M(p) = M(p) — M(p). Since M(p) = M(p), deduce M(p) =0, and conse-

quently the functions Pjy(x,p), k = 1,2, are entire in p for each fixed x > 0. It follows
from Corollary 2.3, Lemma 3.1 and (25) that for x > 0, p € Gy,

[Pu(x,p)| <C, [Pifx,p)| < Clp|™
Therefore Pi(x,p) = Pi(x) and P»(x,p) = 0 for each x > 0. Together with (24), we
have for all x and p that

Pi(x)@(x,p) = 0(x,p),  Pi(x)d(x,p) = §(x,p). (27)

Since M(p) = ﬁ(p)7 it follows from (21) that §, = ;.
First let x € [0,a]. Taking the functions e(x,p), ¢(x,p) in [0,a], A(p), (18) and equality
By = Bi, we have as arg p € (0,%), |p| — oo

(p(x,p)_ex —i(Q(x) — O(x d)(x’p)—ex x)— O(x

P p) p(=i(Q(x) — Q(x))[], ) p(i(Q(x) — Q(x)[1].  (28)
One has from (27) and (28) that

Py(x) = exp(=i(Q(x) = Q()))[1],  Pi(x) = exp(i(Q(x) — Q(x))]1], (29)

and consequently, Q(x) = Q( ) and Py(x) = 1 for x € [0,a].
Now let x > a. Taking the functions e(x,p), ¢(x, p) in [a,00), A(p), (18) and
equalities ff; = B, O(a) = Q( ) into accounts, we get as arg p € (0 ) lp| — o0

VWFMAQAﬁQMPQMMM7 0
$80) — exp(~(Q,(x) — Q. ()]
where Q,(x) =1 f L (2)dt. Tt follows from (27) and (30) that

Pi(x) = exp((x = 17 (Q,(x) = Cul)) ) 1], P1()

= exp(—(Qa(X) = 0u())IL. (31)
Since (x — 1) +1 >0, deduce Q,(x) = Q,(x) and P(x) = 1 for x > a
Thus ¢,(x) = ¢, (x), Pl( ) =1 for all x > 0. According to (27), we have
(/)(X,p) = (ﬁ(xv p)7 d)(x’ ,0) = &(X, ,0) (32)

Hence ¢,(x) = g, (x) on (0,00) and f, = fo. Theorem 4.1 is proved. [

Remark 4.2. Using the method of spectral mappings (see, Yurko [9,10]) on the prop-
erties of the Weyl function obtained above, one can obtain a procedure for the solution
of the inverse problem along with necessary and sufficient conditions for its solvability.
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