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Abstract. Kobayashi has shown that for the submersion p : M ! B of a CR-subman-

ifold of a Kaehler manifold M onto an almost Hermitian manifold B; B is necessarily a

Kaehler manifold. Since generic submanifolds are more general class of CR-submani-

folds, in this present article we study the submersions of generic submanifolds M of

a Kaehler manifold M onto an almost Hermitian manifold B and prove that B is nec-

essarily a Kaehler manifold in this case too. We also obtain the decomposition theo-

rems for such submersions and derive the relation between the holomorphic sectional

curvatures of M restricted to D and that of B. Also the geometry of fibres is discussed.
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1. INTRODUCTION

Let M be an almost Hermitian manifold with almost complex structure J and M a
Riemannian manifold isometrically immersed in M. We note that submanifolds of a
Kaehler manifold are determined by the behavior of tangent bundle of the submanifold
under the action of the almost complex structure of the ambient manifold. A subman-
ifold M is called holomorphic (complex) if JðTpðMÞÞ � TpðMÞ, for every p 2M, where
TpðMÞ denotes the tangent space to M at the point p. M is called totally real if
JðTpðMÞÞ � T?p ðMÞ, for every p 2M, where T?p ðMÞ denotes the normal space to M
at the point p. As a generalization of holomorphic and totally real submanifolds,
CR-submanifolds were introduced by Bejancu [1]. A CR-submanifold M of an almost
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Hermitian manifold M with an almost complex structure J requires two orthogonal
complementry distributions D and D? defined on M such that D is invariant under
J and D? is totally real (cf. [1,2]). There is yet another generalization of CR-subman-
ifolds known as generic submanifolds [3]. These submanifolds are defined by relaxing
the condition on the complementary distribution of holomorphic distribution. Let M
be a real submanifold of an almost Hermitian manifold M, and let
Dp ¼ TpM \ JTpM be the maximal holomorphic subspace of TpðMÞ. If D : p! Dp de-
fines a smooth holomorphic distribution M, then M is called a generic submanifold of
M. The complementary distribution D? of D is called purely real distribution on M. A
generic submanifold is a CR-submanifold if the purely real distribution on M is totally
real. A purely real distribution D? on a generic submanifold M is called proper if it is
not totally real. A generic submanifold is called proper if purely real distribution is
proper.

On the other hand the study of the Riemannian submersion p : M! B of a Rie-
mannian manifold M onto a Riemannian manifold B was initiated by O’Neill [7]. A
submersion p naturally gives rise to two distributions on M called the horizontal
and vertical distributions respectively, of which the vertical distribution is always
integrable giving rise to the fibers of the submersion which are closed submanifolds
of M.

For a CR-submanifold M of a Kaehler manifold M, the distribution D? is integra-
ble [2]. Kobayashi [6] observed the similarity between the total space of submersion
p : M! B and the CR-submanifold M of a Kaehler manifold M in terms of the dis-
tributions. Thus he considered submersion p : M! B of a CR-submanifold M of a
Kaehler manifold M onto an almost Hermitian manifold B such that the distribu-
tions D and D? of M become respectively the horizontal and vertical distributions
required by the submersion p and p restricted to D become an isometry which pre-
serves the complex structures that is J0op� ¼ p�oJ on D where J and J0 are the almost
complex structures of M and B respectively. He has shown that under this situation
B is necessarily a Kaehler manifold and obtained the relation between holomorphic
sectional curvatures of M restricted to D and that of B. Further this study has been
extended by Deshmukh et al. [4], in which they obtained the relations between the
Ricci curvatures and the scalar curvatures of a Kaehler manifold and the base
manifold.

To deal with the similar question for the generic submanifold of a Kaehler manifold,
one has the difficulty that the distribution D? for generic submanifold of a Kaehler
manifold is not necessarily integrable to match the requirement of the submersion.
To overcome this difficulty we consider the submersion p : M! B of generic subman-
ifolds M of a Kaehler manifold M onto an almost Hermitian manifold B with the
assumption that D? is integrable. In the present paper, we study the submersions of
generic submanifolds M of a Kaehler manifold M onto an almost Hermitian manifold
B with integrable purely real distribution D? and prove that for the submersion of a
generic submanifold M of a Kaehler manifold M onto an almost Hermitian manifold
B; B is necessarily a Kaehler manifold and obtain the decomposition theorems for the
generic submanifold M. Also we have obtained the relation between the holomorphic
sectional curvatures of M restricted to D and that of B.
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2. PRELIMINARIES

In this section we give terminology and notations used throughout this paper. We re-
call the notion of an almost complex structure and some necessary facts and formulae
from the theory of almost Hermitian manifolds and their submanifolds.

An almost complex structure on a smooth manifold M is a smooth tensor field J of
type (1,1) with the property that J2 ¼ �I. A smooth manifold equipped with such an
almost complex structure is called an almost complex manifold. An almost complex
manifold ðM; JÞ endowed with a chosen Riemannian metric g satisfying
gðJX; JYÞ ¼ gðX;YÞ ð2:1Þ

for all X; Y 2 CðTMÞ, is called an almost Hermitian manifold.

The Levi-Civita connection �r of an almost Hermitian manifold M can be extended
to the whole tensor algebra on M and in this way we obtain tensor fields like ð �rXJÞ
and that
ð �rXJÞY ¼ �rXJY� J �rXY; ð2:2Þ

for all X; Y 2 CðTMÞ.

An almost Hermitian manifold M is called a Kaehler manifold if
ð �rXJÞY ¼ 0; ð2:3Þ

for all X; Y 2 CðTMÞ.

Let M be a Riemannian manifold isometrically immersed in M. Then the Gauss and
Weingarten formulas are respectively given by
�rXY ¼ rXYþ hðX;YÞ ð2:4Þ

and
�rXN ¼ � ~ANXþr?XN ð2:5Þ

for all X; Y 2 CðTMÞ, wherer is the induced Riemannian connection onM;N is a vec-
tor field normal to M; h is the second fundamental form of M; r? is the normal con-
nection in the normal bundle T?M and ~AN is the shape operator.

The second fundamental form and the shape operator are related by the following
relation:
gð~ANX;YÞ ¼ gðhðX;YÞ;NÞ; ð2:6Þ

for any vector fields X; Y 2 CðTMÞ and N 2 CðT?MÞ.

For any vector field X tangent to M, we put
JX ¼ PXþ FX; ð2:7Þ

where PX and FX are the tangential and normal component of JX respectively. Then P
is an endomorphism of the tangent bundle TM and F a normal bundle-valued 1-form
on M.

For any vector field N normal to M, we put
JN ¼ tNþ fN; ð2:8Þ
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where tN and fN are the tangential and normal components of JN respectively. f is an
endomorphism of the normal bundle T?M and t a tangent bundle valued 1-form onM.

Now, suppose M is a real submanifold of an almost Hermitian manifold M with
almost complex structure J. Let Dp ¼ TpM \ JTpM; p 2M be the maximal complex
subspace of the tangent space TpM which is contained in TpM. If the dimension of
Dp is constant at each point p 2M, and it defines a differentiable distribution on M,
then M is called a generic submanifold of M [3]. We call D as the holomorphic distri-
bution and the orthogonal complementary distribution D? of D in TM is purely real
distribution which satisfy the following;
D ? D?; D? \ JD? ¼ f0g:

Let m defines a differentiable vector sub-bundle of T?M satisfying;
T?M ¼ FD? � m; tðT?MÞ ¼ D?:

For a generic submanifold M we have
PD ¼ D and PD? � D?:

It is known that the horizontal distribution D of a generic submanifold M of a Kaehler
manifold M is integrable if and only if
gðhðX; JYÞ;FZÞ ¼ gðhðY; JXÞ;FZÞ; ð2:9Þ

for any X; Y 2 D and Z 2 D? and the vertical distribution D? is integrable if and only
if
rZPW�rWPZþ ~AFZW� ~AFWZ 2 D?; ð2:10Þ

for any vector fields Z; W 2 D?.

A generic submanifold M of an almost Hermitian manifold M is said to be a generic
product submanifold if it is locally a Riemannian product of the leaves of D and D?. In
this case rUX 2 D, or equivalently rUZ 2 D? for all U 2 CðTMÞ; X 2 D and Z 2 D?.

Let �R and R be the curvature tensor corresponding to the connection �r and r
respectively. Then the equation of Gauss is
�RðX;Y;Z;WÞ ¼ RðX;Y;Z;WÞ � gðhðX;WÞ; hðY;ZÞÞ
þ gðhðX;ZÞ; hðY;WÞÞ; ð2:11Þ
for X; Y; Z, and W tangent to M.
For the theory of submersion p : M! B of a Riemannian manifold M onto a

Riemannian manifold B we follow B. O’Neill [7] and for the submersion of
CR-submanifolds we follow Kobayashi [6].

Let ðM; gÞ and ðB; gBÞ be two Riemannian manifolds with dimðMÞ ¼ m, dimðBÞ ¼ n
and m > n. A Riemannian submersion p : M! B is a map of M onto B satisfying the
following axioms;
ðS1Þp has maximal rank,

that is, each derivative map p� of p is onto and hence, for each b 2 B; p�1ðbÞ is a
submanifold of M of dimension = dimM� dimB. The submanifolds p�1ðbÞ are called
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fibers. A vector field on M is called vertical vector field if it is always tangent to fibres
and it is called horizontal if it is always orthogonal to fibres.

The second axiom may now be stated in the following form;
ðS2Þ The differential p� preserves the length of the horizontal vectors.
We recall that a vector field X onM is said to be basic, if X 2 D and X is p-related to

a vector field on B; i:e., there exists a vector field X� on B such that ðp�XÞp ¼ X�pðpÞ for
every p 2M.

We have the following lemma for basic vector fields [7],

Lemma 2.1. Let X and Y be any basic vector fields on M. Then

(i) gðX ; Y Þ ¼ gBðX �; Y �Þop.
(ii) The horizontal part H½X ; Y � of ½X ; Y � is a basic vector field and corresponds to
½X �; Y ��, that is p�H½X ; Y � ¼ ½X �; Y ��op.

(iii) ½V ;X � 2 D?, for any V 2 D?.
(iv) HðrX Y Þ is a basic vector field corresponding to r�X �Y �, where r

� is the Riemannian
connection on B.

Let �r; r and r� denote Riemannian connections on M; M and B respectively.
For the connection r� we define corresponding connection ~r� for basic vector fields
on M by
~r�XY ¼ HðrXYÞ: ð2:12Þ

Then ~r�XY is a basic vector field, and by Lemma 2.1, we have
p� ~r�XY
� �

¼ r�X�Y�: ð2:13Þ
We define a tensor field C on M by
rXY ¼ ~r�XYþ CðX;YÞ ð2:14Þ

for any X; Y 2 D, where CðX;YÞ is the vertical part of rXY, i.e., VðrXYÞ ¼ CðX;YÞ. It
has been observed that C is skew symmetric and satisfies
CðX;YÞ ¼ 1

2
V½X;Y�
for any X; Y 2 D. Also for X 2 D and V 2 D?, we define an operator A on M by
rXV ¼ VðrXVÞ þ AXV; ð2:15Þ

where AXV is the horizontal part of rXV. Since ½V;X� 2 D? for any basic vector field X
and V 2 D?, we have
HðrXVÞ ¼ HðrVXÞ ¼ AXV: ð2:16Þ

The operator C and A are related by
gðAXV;YÞ ¼ �gðV;CðX;YÞÞ;X;Y 2 D and V 2 D?: ð2:17Þ

The operator C in (2.14) was introduced by Kobayashi [6]. For vertical vector fields we
introduced an operator L defined in the following manner;
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For U; V 2 D?, we define L by
rUV ¼ r̂UVþ LðU;VÞ; ð2:18Þ

where r̂UV ¼ VðrUVÞ and LðU;VÞ ¼ HðrUVÞ. For horizontal vector field X and ver-
tical vector field V we set
rVX ¼ HðrVXÞ þ T VX; ð2:19Þ

where T VX ¼ VðrVXÞ.

Moreover, if X is basic, ½V;X� 2 D? for V 2 D? and we obtain
HðrVXÞ ¼ HðrXVÞ ¼ AXV:
Hence for a basic vector field X and V 2 D? we have
rVX ¼ AXVþ T VX: ð2:20Þ

The operators T and L are related by
gðT VX;WÞ ¼ �gðLðV;WÞ;XÞ: ð2:21Þ

Let R� be the curvature tensor corresponding to the connection r� of the base man-

ifold B then R� and R are related by
RðX;Y;Z;HÞ ¼ R�ðX�;Y�;Z�;H�Þ þ gðCðX;ZÞ;CðY;HÞÞ
� gðCðY;ZÞ;CðX;HÞ þ 2gðCðX;YÞ;CðZ;HÞÞ ð2:22Þ
for the horizontal vector fields X; Y; Z and H on M.

3. SUBMERSION OF GENERIC SUBMANIFOLDS

In this section, we define the submersion of the generic submanifold of a Kaehler man-
ifold onto an almost Hermitian manifold and discuss the impact such submersions
p : M! B on the geometry of generic submanifold M.

Let M ba a generic submanifold of an almost Hermitian manifold M with distribu-
tion D and D? and the normal bundle T?M. We assume that

(i) D? is the kernel of p� that is p�ðD?Þ ¼ f0g.
(ii) p�ðDpÞ ¼ T pðpÞB is a complex isometry, where p 2 M and T pðpÞB is the tangent

space of B at pðpÞ.

Now we have the following lemma;

Lemma 3.1. Let p : M! B be a submersion of generic submanifold M of a Kaehler
manifold M onto an almost Hermitian manifold B. Then for horizontal vector fields X; Y
we have
CðX; JYÞ ¼ PCðX;YÞ þ thðX;YÞ;
hðX; JYÞ ¼ FCðX;YÞ þ fhðX;YÞ:
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Proof. Since M is a Kaehler manifold, we have
�rXJY ¼ J �rXY
for all X;Y 2 D
On using (2.4), (2.7), (2.12) and (2.14), we have
~r�XJYþ CðX; JYÞ þ hðX; JYÞ ¼ J ~r�XYþ CðX;YÞ
� �

þ JhðX;YÞ
¼ J ~r�XYþ PCðX;YÞ þ FCðX;YÞ
þ thðX;YÞ þ fhðX;YÞ: ð3:1Þ
Comparing the horizontal, vertical and normal parts, we get
~r�XJY ¼ J ~r�XY; ð3:2Þ
CðX; JYÞ ¼ PCðX;YÞ þ thðX;YÞ; ð3:3Þ
hðX; JYÞ ¼ FCðX;YÞ þ fhðX;YÞ ð3:4Þ
and hence the result. h

From above lemma, we have the following corollary;

Corollary 3.1. Let p : M! B be a submersion of generic submanifold M of a Kaehler
manifold M onto an almost Hermitian manifold B. Then
CðX; JYÞ þ hðX; JYÞ ¼ JCðX;YÞ þ JhðX;YÞ

for all X; Y 2 D.

Lemma 3.2. Let M be a generic submanifold of a Kaehler manifold M and p : M! B be
a submersion from generic submanifold M onto an almost Hermitian manifold B. Then
for any vertical vector fields V; W we have the following:
LðV;PWÞ � Hð~AFWVÞ ¼ JLðV;WÞ ð3:5Þ
r̂VPW� Vð~AFWVÞ ¼ P r̂VWþ thðV;WÞ ð3:6Þ
hðV;PWÞ þ r?VFW ¼ F r̂VWþ fhðV;WÞ: ð3:7Þ
Proof. Since M is a Kaehler manifold, we have �rVJW ¼ J �rVW, for any V;W 2 D?.
By using (2.7), we get
�rVPWþ �rVFW ¼ J �rVW:
On using Gauss and Weingarten formulae, we have
rVPWþ hðV;PWÞ þ ð�~AFWVÞ þ r?VFW ¼ JðrVWþ hðV;WÞÞ: ð3:8Þ

Further on using Eqs. (2.7), (2.8), and (2.18) in (3.8), we get
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LðV;PWÞ þ r̂VPWþ hðV;PWÞ � Hð ~AFWVÞ � Vð~AFWVÞ þ r?VFW
¼ Jð r̂VWþ LðV;WÞ þ hðV;WÞÞ
¼ P r̂VWþ F r̂VWþ JLðV;WÞ þ thðV;WÞ þ fhðV;WÞ: ð3:9Þ
Comparing the horizontal, vertical and normal parts in (3.9), we have
LðV;PWÞ � Hð~AFWVÞ ¼ JLðV;WÞ;
r̂VPW� Vð~AFWVÞ ¼ P r̂VWþ thðV;WÞ;
hðV;PWÞ þ r?VFW ¼ F r̂VWþ fhðV;WÞ;
which completes the proof. h

Proposition 3.1. Let M be a generic submanifold of a Kaehler manifold M and
p : M! B be a submersion from generic submanifold M onto an almost Hermitian man-
ifold B. Then
AJXV ¼ JAXV; for any X 2 D and V 2 D?:
Proof. Let X be a basic vector field, Y in D and V 2 D?, we have
gðAJXV;YÞ ¼ gðHrJXV;YÞ ¼ gðrJXV;YÞ ¼ gð½JX;V�;YÞ þ gðrVJX;YÞ
¼ gðrVJX;YÞ ¼ gð �rVJX;YÞ ¼ gðJ �rVX;YÞ ¼ �gð �rVX; JYÞ
¼ �gðrVX; JYÞ ¼ �gðAXV; JYÞ ¼ gðJAXV;YÞ
Non-degeneracy of g gives the desired result. h

From above proposition and (2.17) it follows that

Proposition 3.2. Let M be a generic submanifold of a Kaehler manifold M and
p : M! B be a submersion from generic submanifold M onto an almost Hermitian
manifold B. Then
CðJX; JYÞ ¼ CðX;YÞ; for all X;Y 2 D:

As a consequence of the above result, we have the following:

Corollary 3.2. For horizontal vector fields X and Y, we have
CðX; JYÞ ¼ �CðJX;YÞ:
Definition 3.1. A generic submanifold M is said to be mixed totally geodesic, if
hðX;VÞ ¼ 0, for any X 2 D and V 2 D?.

Proposition 3.3. A generic submanifold M of a Kaehler manifold M is mixed totally geo-
desic if and only if ~ANV 2 D? (respectively ~ANX 2 DÞ, for V 2 D? (respectively X 2 D)
and N 2 CðT?MÞ.
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Proof. Let M be a mixed totally geodesic, then by (2.6), we have
gð~ANV;XÞ ¼ gðhðX;VÞ;NÞ ¼ 0
for any X 2 D and V 2 D?, which implies that
~ANV 2 D? for V 2 D?:

Similarly, we can prove that ~ANX 2 D for X 2 D.

Conversely, suppose that ~ANV 2 D? for any V 2 D? and N 2 ðT?MÞ. Then for any
X 2 D,
gð~ANV;XÞ ¼ 0:
Again, by using (2.6), we have
gðhðX;YÞ;NÞ ¼ 0 for N 2 CðT?MÞ: ð3:10Þ

Since hðX;VÞ 2 CðT?MÞ, from (3.10) it follows that hðX;VÞ ¼ 0, i.e., M is mixed to-
tally geodesic. Which completes the proof. h

Now, we have

Theorem 3.1. Let M be a generic submanifold of a Kaehler manifold M and p : M! B
be a submersion from generic submanifold M onto an almost Hermitian manifold B. Then
B is a Kaehler manifold.

Proof. From (3.2), for any basic vector fields X and Y, we have
~r�XJY ¼ J ~r�XY:

Operating p� on the above equation to project it down on B and using Lemma 2.1, we
get
r�X�J
0Y� ¼ J0r�X�Y�;

r�X�J
0� �
Y� ¼ 0
for any vector fields X�; Y� 2 TB, where p�X ¼ X� and p�Y ¼ Y� and J0 is the almost
complex structure on B. This proves that B is a Kaehler manifold. h

Now, we recall that on a Riemannian manifold M, a distribution S is said to be par-
allel if rXY 2 S, where r is the Riemannian connection on M. From the definition of
Riemannian submersion p : M! B of a Riemannian manifold M onto a Riemannian
manifold B, it follows that the vertical distribution is always integrable and its integral
manifold are the fibers [7], which are closed submanifolds of M. If in addition, D? is
parallel, then we have

Theorem 3.2. Let M be a generic submanifold of a Kaehler manifold M and p : M! B
be a submersion from M onto an almost Hermitian manifold B. If D is integrable and D?
is parallel, then M is locally the Riemannian product M1 �M2, where M1 is an invariant
submanifold and M2 is a purely real submanifold of M.
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Let �H and H� denote the holomorphic sectional curvatures of M and B respectively.
In order to compare the holomorphic sectional curvatures of M with that of B, we cal-
culate the bisectional curvature. For this, we set Z ¼ JW;Y ¼ JX in (2.11) and (2.22)
and get
�RðW; JW;X; JXÞ ¼ RðW; JW;X; JXÞ þ gðhðX; JWÞ; hðJX;WÞÞ
� gðhðJX; JWÞ; hðX;WÞÞ ð3:11Þ

RðW; JW;X; JXÞ ¼ R�ðW�; J
0W�;X�; J

0X�Þ � gðCðJX; JWÞ;CðX;WÞÞ
þ gðCðX; JWÞ;CðJX;WÞÞ þ 2gðCðX; JXÞ;CðJW;WÞÞ ð3:12Þ
for any basic vector fields X; Y; Z, and W on M.
From (3.11) and (3.12), we have
�RðW; JW;X; JXÞ ¼ R�ðW�; J
0W�;X�; J

0X�Þ þ gðhðX; JWÞ; hðJX;WÞÞ
� gðhðJX; JWÞ; hðX;WÞÞ � gðCðJX; JWÞ;CðX;WÞÞ
þ gðCðX; JWÞ;CðJX;WÞÞ
þ 2gðCðX; JXÞ;CðW; JWÞÞ: ð3:13Þ
From the above equation, we have the following theorem.

Theorem 3.3. Let M be a Kaehler manifold and M be a generic submanifold of M with D
integrable. Let B be an almost Hermitian manifold and p : M! B be a submersion then
the bisectional curvatures K and K� of M and B respectively satisfy
�KðW;XÞ ¼ K�ðW�;X�Þ þ khðX; JWÞk2 þ khðX;WÞk2
for any X; W in D.

Proof. Since D is integrable, so we have
hðX; JWÞ ¼ hðJX;WÞ; for X;W 2 D: ð3:14Þ

Also, we have
CðX;YÞ ¼ 0; for any X;Y 2 D: ð3:15Þ

Using the relation (3.14) and (3.15) in (3.13), we get the result. h

In order to compare the holomorphic sectional curvatures of M and B, we have the
following theorem whose proof follows from Theorem 3.3.

Theorem 3.4. Let p be a submersion from a generic submanifold M of a Kaehler manifold
M onto an almost Hermitian manifold B. If the horizontal distribution D is integrable,
then the holomorphic sectional curvatures of M and B satisfy
�HðXÞ ¼ H�ðX�Þ þ khðX; JXÞk2 þ khðX;XÞk2 ð3:16Þ

for any X 2 D.
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From above result, we have

Corollary 3.3. Let p be a submersion from generic submanifold M of a Kaehler manifold
M onto an almost Hermitian manifold B. If the horizontal distribution D is integrable,
then the holomorphic sectional curvature �H and H� of M and B respectively, are equal if
and only if M is D-totally geodesic.
4. SUBMERSIONS WITH TOTALLY GEODESIC FIBRES

In this section we discuss the submersion of generic submanifold of a Kaehler manifold
onto an almost Hermitian manifold with totally geodesic fibres and we assume that
m ¼ 0.

Proposition 4.1. Let p be a submersion from a generic submanifold M of a Kaehler
manifold M onto an almost Hermitian manifold B and assume that m ¼ 0. If the fibers are
totally geodesic submanifolds of M then M is mixed totally geodesic, i:e., hðX;VÞ ¼ 0, for
any X 2 D and V 2 D?.

Proof. Since fibers are totally geodesic, i:e., LðV;WÞ ¼ 0 for any V; W 2 D?, then by
(3.5), we have
Hð~AFWVÞ ¼ 0;
which implies that
~AFWV 2 D?:

Now for any X 2 D, using (2.6), we get
0 ¼ gð~AFWV;XÞ;
¼ gðhðV;XÞ;FWÞ:
Therefore by the non-degeneracy of g we get the result. h

Remark 4.1. The converse of the above result is also true for the submersion of CR-
submanifold of a Kaehler manifold [4].

For the endomorphism P : TM! TM, we have
ð �rEPÞF ¼ rEPF� PðrEFÞ ð4:1Þ

for any vector fields E and F tangent to M. The endomorphism P is said to be parallel,
if �rP ¼ 0 or ð �rEPÞF ¼ 0, for any vector E; F tangent to M.

Using (2.18), for any V; W 2 D?, we have
ð �rVPÞW ¼ r̂VPWþ LðV;PWÞ � Pð r̂VWÞ � PLðV;WÞ: ð4:2Þ

Now, if we suppose that the fibers are totally geodesic then above equation gets the
form
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ð �rVPÞW ¼ r̂VPW� P r̂VW: ð4:3Þ

Further, if P is parallel, then (4.3) yields
r̂VPW ¼ P r̂VW: ð4:4Þ

If we now consider that the fibers are totally geodesic and P is parallel, then by using
(3.5) and (3.6) of Lemma 3.2, we have
~AFWV ¼ �thðV;WÞ:

Since m ¼ 0, therefore fhðV;WÞ ¼ 0 and it shows that
~AFWV ¼ �JhðV;WÞ: ð4:5Þ
Proposition 4.2. Let p be a submersion from a generic submanifold M of a Kaehler
manifold M onto an almost Hermitian manifold B with totally geodesic fibers. Then
�RðX;V;Y;WÞ ¼ �gððrVCÞðX;YÞ;WÞ þ gðAXV;AYWÞ � gðhðX;YÞ; hðV;WÞÞ

for any X; Y 2 D and V; W 2 D?.

Proof. From (1.29) [5] we have
RðV;X;Y;WÞ ¼ gððrXLÞðV;WÞ;YÞ þ gððrVCÞðX;YÞ;WÞ
þ gðAXV;AYWÞ � gðT VX; T WYÞ: ð4:6Þ
Now using (4.6) in (2.11), we get
�RðX;V;Y;WÞ ¼ �gððrXLÞðV;WÞ;YÞ þ gððrVCÞðX;YÞ;WÞ � gðAXV;AYWÞ
� gðT VX; T WYÞ � gðhðX;WÞ; hðV;YÞÞ þ gðhðX;YÞ; hðV;WÞÞ:
Since the fibers are totally geodesic, then
gðT VX; T WYÞ ¼ �gðX;LðV;VrWYÞÞ ¼ 0:
Also, by Proposition 4.1, M is mixed totally geodesic i:e., hðX;VÞ ¼ 0 for any X 2 D
and V 2 D?. Hence we get the result. h

As an immediate consequence of Proposition 4.3 we have

Corollary 4.1. Let p be a submersion from generic submanifold M of a Kaehler manifold
M onto an almost Hermitian manifold B. If the fibers are totally geodesic submanifolds of
M then for unit vectors X 2 D and V 2 D?
�KðX ^ VÞ ¼ gðhðX;XÞ; hðV;VÞÞ � kAXVk2:
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