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Abstract. The problem of estimating the mean function of a compound cyclic Poisson
process with linear trend is considered. An estimator of this mean function is constructed
and investigated. The cyclic component of intensity function of this process is not assumed
to have any parametric form, but its period is assumed to be known. The slope of the linear
trend is assumed to be positive, but its value is unknown. Moreover, we consider the case
when there is only a single realization of the Poisson process is observed in a bounded
interval. Asymptotic bias and variance of the proposed estimator are computed, when the
size of interval indefinitely expands.
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1. INTRODUCTION

Let {N(t), t ≥ 0} be a Poisson process with (unknown) locally integrable intensity
function λ which is assumed to consist of two components, namely, a periodic or cyclic
component with period τ > 0 and a linear trend component. In other words, for any point
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s ≥ 0, the intensity function λ can be written as

λ(s) = λc(s) + as,

where λc(s) is a periodic function with (known) period τ and a denotes the slope of the linear
trend which is assumed that a > 0. We do not assume any (parametric) form of λc(s) except
that it is periodic, that is, the equality

λc(s) = λc (s+ kτ)

holds for all s ≥ 0 and k ∈ N, where N denotes the set of natural numbers.
Let {Y (t), t ≥ 0} be a process with

Y (t) =
N(t)
i=1

Xi, (1)

where {Xi, i ≥ 1} is a sequence of independent and identically distributed random variables
with mean µ < ∞ and variance σ2 < ∞, which is also independent of the process
{N(t), t ≥ 0 }. The process {Y (t), t ≥ 0} is said to be a compound cyclic Poisson process
with linear trend. The model presented in (1) is an extension of the model presented in [4].
We refer to [1,3,5,6] for some applications of the compound Poisson process.

Suppose that, for some ω ∈ Ω , a single realization N(ω) of the process {N(t), t ≥ 0}
defined on probability space (Ω , F ,P) with intensity function λ is observed, though only
within a bounded interval [0, n]. Furthermore, suppose that for each data point in the observed
realizationN(ω)∩[0, n], say ith data point, i = 1, 2, . . .,N ([0, n]), its corresponding random
variable Xi is also observed.

The mean function (expected value) of Y (t), denoted by ψ(t), is given by:

ψ(t) = E [N(t)]E [X1] = Λ(t)µ

with Λ(t) =
 t

0
λ(s)ds. Let tr = t −


t
τ


τ , where for any real number x, ⌊x⌋ denote the

largest integer that less than or equal to x, and let also kt,τ =


t
τ


. Then, for any given

real number t, we can write t = kt,ττ + tr, with 0 ≤ tr < τ . Let θ = 1
τ

 τ

0
λc(s)ds is the

global intensity of the cyclic component of the Poisson process {N(t), t ≥ 0}. We assume
that θ > 0. Then, for any given t ≥ 0, we have

Λ(t) = kt,ττθ + Λc (tr) + a
t2

2
which implies

ψ(t) =

kt,ττθ + Λc (tr) + a

t2

2


µ.

An estimator for the mean function ψ(t) of the process {Y (t), t ≥ 0} using the observed
realization have been constructed. Our goal in this paper is to compute asymptotic bias and
variance of an estimator for the mean function ψ(t) of the process {Y (t), t ≥ 0} .

The rest of this paper is organized as follows. The estimator and main results are presented
in Section 2, some technical lemmas are presented in Section 3, and the proofs of the main
results are given in Section 4.
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2. THE ESTIMATOR AND MAIN RESULTS

Let kn,τ =


n
τ


. The estimator of the mean function ψ(t) using the available data set at

hand is given by

ψn(t) =

kt,ττ θn + Λc,n (tr) + ân

t2

2

 µn,

where

ân =
2N [0, n]

n2
,

θn =
1

ln (kn,τ ) τ

kn,τ
k=1

N ([(k − 1) τ, kτ ])
k

− ân


kn,ττ

ln (kn,τ )
− τ

2


,

Λc,n (tr) =
1

ln (kn,τ )

kn,τ
k=1

N ([(k − 1) τ, (k − 1) τ +tr])
k

− ân


kn,ττtr
ln (kn,τ )

+


t2r − 2trτ


2


,

and

µn =
1

N ([0, n])

N([0,n])
i=1

Xi,

with the understanding that µn = 0 when N ([0, n]) = 0. Thus, ψn(t) = 0 when
N ([0, n]) = 0.

Our main results are presented in the following theorem. The Theorem is about asymptotic
approximation to the bias of ψn(t) and about asymptotic approximation to the variance ofψn(t).

Theorem. Asymptotic approximation to the bias of ψn(t):

bias
 ψn(t)


=


kt,ττ (2θγ − aτγ) + 2γΛc (tr) + aγ


t2r − 2τtr


2 ln (kn,τ )


µ

+ o


1

ln (kn,τ )


, (2)

and asymptotic approximation to the variance of ψn(t):

var
 ψn(t)


=

µ2

ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2


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+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2



− ψ(t)
µ


kt,ττ (2θγ − aτγ) + 2γΛc (tr) + aγ


t2r − 2τtr


+ o


1

ln (kn,τ )


(3)

as n → ∞, where γ = 0.577 . . . is an Euler’s constant.

3. SOME TECHNICAL LEMMAS

In this section, we present some lemmas which are needed in the proofs of our theorem.

Lemma 1. Asymptotic approximation to the bias of ân:

E [ân] = a+
2θ
n

+O


1
n2


(4)

and asymptotic approximation to the variance of ân:

V ar [ân] =
2a
n2

+O


1
n3


(5)

as n → ∞.

Proof. We refer to [2].

Lemma 2. Asymptotic approximation to the bias of Λc,n (tr)

E
Λc,n (tr)


= Λc (tr) +

2γΛc (tr) + aγ

t2r − 2τtr


2 ln (kn,τ )

+ o


1

ln (kn,τ )


(6)

and asymptotic approximation to the variance of Λc,n (tr)

V ar
Λc,n (tr)


=

aτtr
ln (kn,τ )

+
2π2Λc (tr) + aπ2


t2r − 2τtr


+ 12aτtrγ

12 (ln (kn,τ ))2

+ o


1

(ln (kn,τ ))2


(7)

as n → ∞, where γ = 0.577 . . . is an Euler’s constant.

Proof. The expected value of Λc,n (tr) can be computed as follows:

E
Λc,n (tr)


=

1
ln (kn,τ )

kn,τ
k=1

E [N ([(k − 1) τ, (k − 1) τ +tr])]
k

−


kn,ττtr
ln (kn,τ )

+


t2r − 2trτ


2


E [ân] . (8)
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A simple calculation shows that

kn,τ
k=1

E [N ([(k − 1) τ, (k − 1) τ +tr])]
k

= Λc (tr) + a
t2r − 2τtr

2

+
Λc (tr) γ + aγ

t2r −2τtr

2 + akn,ττtr

ln (kn,τ )
. (9)

By substituting (4) and (9) into the r.h.s. of (8), we obtain (6).
The variance of Λc,n (tr) can be computed as follows:
Let

An = 1
ln(kn,τ )

kn,τ

k=1
N([(k−1)τ,(k−1)τ +tr])

k and Bn = ân


kn,τ τtr

ln(kn,τ ) + (t2r −2trτ)
2


.

So

V ar
Λc,n (tr)


= V ar [An] + V ar [Bn] − 2Cov (An, Bn) . (10)

First, we compute

V ar [An] =
1

(ln (kn,τ ))2

kn,τ
k=1

1
k2
V ar [N ([(k − 1) τ, (k − 1) τ +tr])]

=
1

(ln (kn,τ ))2

kn,τ
k=1

1
k2
E [N ([(k − 1) τ, (k − 1) τ +tr])] . (11)

A simple calculation shows that

kn,τ
k=1

1
k2
E [N ([(k − 1) τ, (k − 1) τ +tr])]

=


Λc (tr) + a
t2r − 2τtr

2


π2

6
+ aτtr ln (kn,τ ) + aτtrγ + o (1) (12)

as n → ∞. By substituting (12) into the r.h.s of (11), we have

V ar [An] =
aτtr

ln (kn,τ )
+


Λc (tr) + a

t2r −2τtr

2


π2

6 + aτtrγ

(ln (kn,τ ))2

+ o


1

(ln (kn,τ ))2


, (13)

as n → ∞.
Next, we compute

V ar [Bn] =


kn,ττtr
ln (kn,τ )

+


t2r − 2trτ


2

2

V ar [ân]

=


(kn,ττtr)

2

(ln (kn,τ ))2
+
kn,ττtr


t2r − 2trτ


ln (kn,τ )

+


t2r − 2trτ

2
4


V ar [ân] . (14)
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By substituting (5) into the r.h.s of (14), we have

V ar [Bn] =
2a (kn,ττtr)

2

n2 (ln (kn,τ ))2
+

4θ (kn,ττtr)
2

n3 (ln (kn,τ ))2
+

2akn,ττtr

t2r − 2trτ


n2 ln (kn,τ )

+
4θkn,ττtr


t2r − 2trτ


n3 ln (kn,τ )

+
a

t2r − 2trτ

2
2n2

+
θ

t2r − 2trτ

2
n3

+O


1
n4


, (15)

as n → ∞.
Last, we compute

2Cov (An, Bn)

=


2kn,ττtr

(ln (kn,τ ))2
+


t2r − 2trτ


ln (kn,τ )



× Cov

kn,τ
k=1

N ([(k − 1) τ, (k − 1) τ +tr])
k

, ân


=


4kn,ττtr

n2 (ln (kn,τ ))2
+

2

t2r − 2trτ


n2 ln (kn,τ )



× Cov

kn,τ
k=1

N ([(k − 1) τ, (k − 1) τ +tr])
k

,N [0, n]


=


4kn,ττtr

n2 (ln (kn,τ ))2
+

2

t2r − 2trτ


n2 ln (kn,τ )



×
kn,τ
k=1

V ar (N ([(k − 1) τ, (k − 1) τ +tr]))
k

=


4kn,ττtr

n2 (ln (kn,τ ))2
+

2

t2r − 2trτ


n2 ln (kn,τ )



×
kn,τ
k=1

E (N ([(k − 1) τ, (k − 1) τ +tr]))
k

. (16)

By substituting (9) into the r.h.s. of (16), we have

2Cov (An, Bn) =
4a (kn,ττtr)

2

n2 (ln (kn,τ ))2
+

2kn,ττtr

2Λc (tr) + a


t2r − 2trτ


n2 ln (kn,τ )

+
2kn,ττtr


2Λc (tr) γ + aγ


t2r − 2trτ


n2 (ln (kn,τ ))2

+ o


4kn,ττtr

n2 (ln (kn,τ ))2


, (17)

as n → ∞. By substituting (13), (15) and (17) into the r.h.s. of (10), we obtain (7). This
completes the proof of Lemma 2.
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Lemma 3. Asymptotic approximation to the bias of θn

E
θn


= θ +

2θγ − aτγ

2 ln (kn,τ )
+ o


1

ln (kn,τ )


(18)

and asymptotic approximation to the variance of θn

V ar
θn


=

a

ln (kn,τ )
+

2θπ2 + a

12τγ − τπ2


12τ (ln (kn,τ ))2

+ o


1

(ln (kn,τ ))2


as n → ∞, where γ = 0.577 . . . is an Euler’s constant.

Proof. To prove Lemma 3, note that,

θn =
1
τ
Λc,n (τ) .

Since θn is (almost) special case of Λc,n (tr) with tr = τ , the proof of Lemma 3 is similar
(and simpler) than the proof of Lemma 2. Hence, it is omitted.

Lemma 4. Asymptotic approximation to the bias of θnân

E
θnân


= aθ +

2aθγ − a2τγ − 12aθ
2 ln (kn,τ )

+ o


1

ln (kn,τ )


(19)

and asymptotic approximation to the bias of Λc,n (tr) ân

E
Λc,n (tr) ân


= aΛc (tr) +


2aΛc (tr) γ + a2γ


t2r − 2τtr


2 ln (kn,τ )

+ o


1

ln (kn,τ )


(20)

as n → ∞, where γ = 0.577 . . . is an Euler’s constant.

Proof. The value of E
θnân


can be computed as follows:

E
θnân


=

2
n2 ln (kn,τ ) τ

E

kn,τ
k=1

N ([(k − 1) τ, kτ ])
k

N [0, n]


−


kn,ττ

ln (kn,τ )
− τ

2


E

â2

n


. (21)

A simple calculation shows that

E

kn,τ
k=1

N ([(k − 1) τ, kτ ])
k

N [0, n]


=
a2n2kn,ττ

2

2
+

θτ − aτ2

2


an2 ln (kn,τ )

2
+
an2


θτ − aτ2

2


γ

2
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+ aθnkn,ττ
2 +


θτ − aτ2

2


θn ln (kn,τ ) +


θτ − aτ2

2


θnγ

+ akn,ττ
2 +


θτ − aτ2

2


ln (kn,τ ) +


θτ − aτ2

2


γ + o (1) , (22)

as n → ∞.

Now note that, by Lemma 1, we have

E

(ân)2


= a2 +

4aθ
n

+O


1
n2


, (23)

as n → ∞. By substituting (22) and (23) into the r.h.s of (21), we obtain (19).

The value of E
Λc,n (tr) ân


can be computed as follows:

E
Λc,n (tr) ân


=

2
n2 ln (kn,τ )

E

kn,τ
k=1

N ([(k − 1) τ, (k − 1) τ +tr])
k

N [0, n]


−


kn,ττtr
ln (kn,τ )

+


t2r − 2trτ


2


E

â2

n


. (24)

A simple calculation shows that

E

kn,τ
k=1

N ([(k − 1) τ, (k − 1) τ +tr])
k

N [0, n]


=
a2n2kn,ττtr

2
+


Λc (tr) +

a

t2r − 2τtr


2


an2 ln (kn,τ )

2

+


Λc (tr) γ +

aγ

t2r − 2τtr


2


an2

2

+ aθnkn,ττtr +


Λc (tr) +

a

t2r − 2τtr


2


θn ln (kn,τ )

+


Λc (tr) γ +

aγ

t2r − 2τtr


2


θn

+ akn,ττtr +


Λc (tr) +

a

t2r − 2τtr


2


ln (kn,τ )

+


Λc (tr) γ +

aγ

t2r − 2τtr


2


+ o (1) , (25)

as n → ∞. By substituting (23) and (25) into the r.h.s of (24), we obtain (20). This completes
the proof of Lemma 4.
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Lemma 5. Asymptotic approximation to the bias of θn
Λc,n (tr)

E
θn

Λc,n (tr)


= θΛc (tr)

+
Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2 ln (kn,τ )

+ o


1

ln (kn,τ )


(26)

as n → ∞, where γ = 0.577 . . . is an Euler’s constant.

Proof. To compute E
θn

Λc,n (tr)


we argue as follows.
Let

Λc,n (tr)
C

=
1

ln (kn,τ )

kn,τ
k=1

N ([(k − 1) τ +tr, kτ ])
k

− ân


kn,ττ (τ − tr)

ln (kn,τ )
− (τ − tr)

2

2


.

So

θn =
1
τ

Λc,n (tr) + Λc,n (tr)
C

.

Note that Λc,n (tr) and Λc,n (tr)
C

are independent random variables.
Hence,

E
θn

Λc,n (tr)


= Cov
θn, Λc,n (tr)


+ E

θn


E
Λc,n (tr)


=

1
τ
Cov

Λc,n (tr) , Λc,n (tr)


+
1
τ
Cov

Λc,n (tr)
C
, Λc,n (tr)


+E

θn


E
Λc,n (tr)


=

1
τ
V ar

Λc,n (tr)


+ E
θn


E
Λc,n (tr)


. (27)

By substituting (6), (7) and (18) into the r.h.s of (27), we obtain (26). This completes the
proof of Lemma 5.

4. PROOF OF THEOREM

In this section, we present the proofs of our theorem. Asymptotic approximation to the
bias of ψn(t) can be computed as follows:

First, we compute the expected value of ψn(t) as follows:

E
 ψn(t)


= E


E
 ψn(t)|N ([0, n])


=

∞
m=1

E
 ψn(t)|N ([0, n]) = m


P (N ([0, n]) = m)
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=
∞

m=1

E


kt,ττ θn + Λc,n (tr) + ân

t2

2



× E


1
m

m
i=1

Xi


P (N ([0, n]) = m)

=

kt,ττE

θn


+ E

Λc,n (tr)


+ E (ân)
t2

2


× µ

∞
m=1

P (N ([0, n]) = m) . (28)

By substituting (4) of Lemma 1, (6) of Lemma 2 and (18) of Lemma 3 into the r.h.s. of (28),
and after some algebras, we obtain that

E
 ψn(t)


=


ψ(t) +


kt,ττ (2θγ − aτγ) + 2γΛc (tr) + aγ


t2r − 2τtr


2 ln (kn,τ )

+ o


1

ln (kn,τ )


µ


1 − e−Λ(n)


. (29)

A simple calculation shows that

Λ (n) = E [N (0, n)] = θn+
an2

2
+O (1) , (30)

as n → ∞. By substituting (30) into the r.h.s. of (29) and after some simplification, we obtain

E
 ψn(t)


= ψ(t) +


kt,ττ (2θγ − aτγ) + 2γΛc (tr) + aγ


t2r − 2τtr


2 ln (kn,τ )


µ

+ o


1

ln (kn,τ )


, (31)

as n → ∞. By (31), we obtain (2). Asymptotic approximation to the variance of ψn(t) can
be computed as follows:

First we compute E
 ψn(t)

2


as follows:

E

 ψn(t)
2


= E


E

 ψn(t)
2

|N ([0, n])


=
∞

m=1

E


kt,ττ θn + Λc,n (tr) + ân

t2

2

2


× E


1
m

m
i=1

Xi

2

P (N ([0, n]) = m)

=

kt,ττE

θn

2


+ E

Λc,n (tr)
2


+
t4

4
E

(ân)2


+ 2kt,ττE

θn
Λc,n (tr)


+ kt,ττt

2E
θnân





Statistical properties of an estimator for the mean function of a compound cyclic Poisson process in the presence of linear trend 183

+ t2E
Λc,n (tr) ân


×

∞
m=1

E


1
m

m
i=1

Xi

2

P (N ([0, n]) = m) . (32)

Since {Xi, i ≥ 1} is a sequence of independent and identically distributed random variables
with mean µ and variance σ2, a simple calculation shows that

E


1
m

m
i=1

Xi

2

= µ2 +
σ2

m
. (33)

Now note that, by Lemma 2 we have

E

Λc,n (tr)
2


= (Λc (tr))
2

+
aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


ln (kn,τ )

+ o


1

ln (kn,τ )


(34)

and by Lemma 3 we have

E

θn

2


= θ2 +
a+ 2θ2γ − aτθγ

ln (kn,τ )
+ o


1

ln (kn,τ )


(35)

as n → ∞. By substituting (23), (33), (34), (35), Lemma 4 and Lemma 5 into the r.h.s. of
(32), after some simplification, we have

E

 ψn(t)
2


=


kt,ττθ + Λc (tr) + a

t2

2


µ

2

+
µ2

ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2



+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2



×

 ∞
m= 1

P (N ([0, n]) = m)


+


kt,ττθ + Λc (tr) + a

t2

2

2

+
1

ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2





184 B.A. Wibowo et al.

+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2



× σ2

m

 ∞
m= 1

1
m
P (N ([0, n]) = m)


+ o


1

ln (kn,τ )



×

 ∞
m= 1

P (N ([0, n]) = m) +
∞

m=1

1
m
P (N ([0, n]) = m)


. (36)

The first term on the r.h.s. of (36) is equal to

(ψ(t))2 +
µ2

ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2



+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2


+O


e−n


(37)

as n → ∞, while its second term can be simplified as
(ψ(t))2 +

1
ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+ 2atr

2



+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2



× σ2


1

θn+ an2

2

+O


1
n2



+ o


1

ln (kn,τ )


1 +O


e−n


+

1
θn+ an2

2

+O


1
n2



= o


1

ln (n/τ)


, (38)

as n → ∞. By substituting (37) and (38) into the r.h.s. of (36), then we have

E

 ψn(t)
2


= (ψ(t))2 +
µ2

ln (kn,τ )


(kt,ττ)

2 
a+ 2θ2γ − aτθγ


+

aτtr + 2γ (Λc (tr))

2 + aγΛc (tr)

t2r − 2τtr


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+ 2kt,ττ


Λc (tr) (2θγ − aτγ) + θ


2γΛc (tr) + aγ


t2r − 2τtr


+2atr

2



+ kt,ττt
2


2aθγ − a2τγ

2


+ t2


2aΛc (tr) γ + a2γ


t2r − 2τtr


2



+ o


1

ln (kn,τ )


, (39)

as n → ∞. By (31) and (39) we obtain (3). This completes the Theorem.
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