ARAB JOURNAL OF Arab J Math Sci 23 (2017) 124-132
MATHEMATICAL SCIENCES

CrossMark

Some congruences modulo 2 and 5 for bipartition with 5-core
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Abstract.  We find some congruences modulo 2 and 5 for the number of bipartitions with
5-core for a positive integer n in the spirit of Ramanujan.
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1. INTRODUCTION

A bipartition of a positive integer n is a pair of partitions (\, 1) such that the sum of all of
the parts is n. A bipartition with ¢-core is a pair of partitions (\, i) such that \ and y are both
t-cores. If A;(n) denotes the number of bipartitions with t-core of n, then A;(n) is defined
by

S (459"

A(n)q" = 57, (1.1)
nz:% (=) (¢ 9)%

where (a;¢)oe = [[;(1 — ag™). We note the following well known congruence property

which can be proved by using binomial theorem: For any prime p and positive integer k,

(¢";4")8 = (¢"":¢"") o (mod p). (1.2)

The function A;(n) defined in (1.1) have been studied by many mathematicians. Lin
[8] discovered some interesting congruences modulo 4, 5, 7, and 8 for As(n). Yao [10]
established several infinite families of congruences modulo 3 and 9 for Ag(n). Xia [9]
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established several infinite families of congruences modulo 4, 8 and % (k > 2) for A3(n)
and also generalized some results due to Lin and Yao. Baruah and Nath [1] also proved some
results on Az(n).

In this paper, we are concerned with the function As(n) which denotes the number of
bipartition with 5-core of n and is given by

S (¢°:¢°)22
As(n)q" = —=. (1.3)
,;) (6 9)%

In Section 3, we find some congruences modulo 2 and 5 for As(n) in the spirit of
Ramanujan. Section 2 is devoted to record some preliminary results.

2. PRELIMINARIES
Ramanujan’s general theta-function f(a, b) [3, p. 35, Entry 19] is defined by

fla,b) = (—a;ab)oo (—b; ab) oo (ab; ab) o, |abl] < 1. 2.1

Lemma 2.1 (/4, Theorem 2.2]). For any prime p > 5, we have

2 3p2+(6k+1)p 3p2 —(6k+1)p
(4:0)00 = (—1)kq3* +W2f(—q >, —q 2 >

+p—1 p2—1 2 2

+(=1)"5 ¢ (¢" 14" )oos (2.2)

p—1 .
+p—1 . { 5 if p=1(mod6),

—p—1
6 p6 . ifp=—1(mod6).

. —1 —1 +p—1 3k2+k 21
Furthermore, if —25= < k < o= and k # =5—, then 2+ # B~ (mod p).

where

Lemma 2.2 ([7, Theorem 1]). We have

()0 (0%0%)0c (@522 | (a%4")3.(0"%0M) o0 (6% ¢*) o

+4q
(¢ @)oo (4%:¢%)% (%% ¢*0) o (@%:6%)2. (0% ¢®) 00 (¢%°:¢*°) o

Lemma 2.3 (/6]). We have
1 (@*%4%°)3 e -
e - @ F @®) +aF(¢%)
+2¢°F2(¢°) + 3¢°F ' (¢°) + 5¢" — 3¢°F(¢°)
+20°F*(¢°) — 4" F*(¢°) + ¢* F*(d")),

where F(q) == q~'/°R(q) and R(q) is Rogers-Ramanujan continued fraction defined by

2 3

9 9 q
4 149 <1
T +14+ 141+ a
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Lemma 2.4 (/3, p. 39, Entry 24(ii)]). We have

oo

(@92 = (1)@ + 1)g" /2,

n=0

Lemma 2.5 (/2, p. 648, Theorem 2.1; Egns. (2.1), (2.5) & (2.13)]). If

Zpg (4592 2.3)
then for any positive integer k,
2k 3 -1 _(_a\k
p3 {370+ — = (=3)"ps(n), 24
2k 52 —1 _ rk
p3 | 5°%n + = 5"ps3(n) (2.5)
and
2k -1 _ o \k
p3| 7+ 3 = (=7)"ps(n). (2.6)

3. CONGRUENCES MODULO 2 AND 5 FOR Aj5(n)

Theorem 3.1. We have

(i) As(2n+1) =0 (mod 2).
(i) A5(8n +4) =0 (mod 2).

Proof. Using (1.2) with p = 2in (1.3), we find that

oo 5. ,5)10 10. ,10\5
ZAE,(TL)(]” = (%Q’Z)gm = (C(Iq2fgz))°° (mod 2). 3.1

The right hand side of (3.1) contains no term involving odd power of g, so extracting the
terms involving ¢?"*! from (3.1), we arrive at (i).

Extracting the terms involving ¢” from (3.1) and replacing ¢ by ¢ and simplifying using
(1.2), we obtain

ZA (2n)q" = ((q q;)5 = (qQO;qi(;).O;)(f;q%m (mod 2). (3.2)

Employing Lemma 2.2 in (3.2) and simplifying using (1.2), we deduce that

40.

0 10 40
7% 6" 0 (4% ¢
E As(2n)q" = (¢*;¢") oo (qzo;qzo)ooJrq( Joo )

: (mod2). (3.3)
n=0 (q2aq2)oo
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The right hand side of (3.3) contains no term involving ¢*"+2

involving ¢*"*2 from (3.3), we complete the proof of (ii). [

, so extracting the terms

Theorem 3.2. Let p > 5 be a prime with (_75) = —1. Then for non-negative integers o and
n, we have
> A5 (8% n 420" = 2) ¢" = (4:0)o0 (475 0")oe  (mod 2), (34)
n=0

where, here and throughout the paper ( ) denotes the Legendre symbol.

Proof. Extracting the terms involving ¢*" from (3.3) and replacing ¢* by ¢, we obtain

ZA5 (8n)¢" = (¢; @)oo (4°; ¢°) oo (mod 2), (3.5)

which is the case a = 0.
Assume (3.4) holds for . Employing Lemma 2.1 in (3.4), we obtain

Z As (8p2an + 2p%* — 2) q"
n=0

p—1

2 2 3p2 4 (6k+1) 3p® —(6k+1)
[ > (—1)kgBEER2f (qp T g2 >

—_p—1
k,; 5

p—1
ket L

+p— 2
+(-1)76 lqp%l(qu;qu)oJ

2 2
z : m 5(3’m +m /2f < 53p +(62m+1)p7_q53p (im+1)p>

2
+p—1 5E —1

+(-1)"F ¢ (q5p2;q5’”2>oo] (mod 2). (3.6)

Consider the congruence

3]“2; L (37"2; m> =6 (p224 1) (mod p). 3.7)
The congruence (3.7) is equivalent to

(6k+1)> +5(6m +1)>=0 (mod p). (3.8)
For (%’) = —1 the congruence (3.8) has a unique solution kK = m = %. So extracting

the terms involving ¢P"+®*~1)/4 from (3.6), dividing by ¢(*~1)/4 and replacing ¢ by ¢, we
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deduce that
o0
Z As (8p2°‘+1n + 2p2at? _ 2) " = (";¢") 00 (¢°P;¢°P)se (mod 2). 3.9
n=0

Extracting the terms involving ¢P™ from (3.9) and replacing ¢ by ¢, we obtain

o0

> As (8™ 0+ 2p* % — 2) ¢" = (4;0)o0 (070" oo (mOd2), (3.10)

n=0
which is the case « + 1 of (3.4). Hence, the proof is complete. [
Corollary 3.3. Let p > 5 be a prime with (‘75) = —1. Then for non-negative integers «
and n, we have

As (8p*Pn+2p** T (4j+p) —2) =0 (mod 2), (3.11)
where j =1,2,3,...,p— L.

Proof. Extracting the terms involving ¢?"*7 for j = 1,2,3,...,p — 1 from (3.9), we arrive
at the desired result. O

Theorem 3.4. For any positive integer k, we have

A5 (2%n +2F — 2) = A5(2n) (mod 2).

Proof. Extracting the terms involving ¢?**! from (3.3), dividing by ¢ and replacing ¢° by q,

we obtain

oo 20. 20 5. 5

3 As(2Pn+2)g" = (@750 )o@ )oe (11049, (3.12)
(¢ 0)oo

n=0

Combining (3.2) and (3.12), we deduce that

As(2%n +2) = A5(2n)  (mod?2). (3.13)
Iterating (3.13) by replacing n by 2n + 1 and for any positive integer k, we obtain

As (2Fn 2871 42572 4. 4 2) = A5(2n)  (mod2). (3.14)
Simplifying (3.14), we arrive at the desired result. [

Theorem 3.5. We have

(i) Y02y As (16n) ¢™ = (g5 9)2, (mod 2),
(i) As (80n + 167 + 8) = 0 (mod 2), wherei = 1,2, 3 and 4.
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Proof. Simplifying (3.5) using (1.2), we obtain

o (G5 _ 2 0y (i)
0A5(8n)q S Y =(q 7Q)007(q;q)oo (mod 2). (3.15)

NE

n

Employing Lemma 2.2 in (3.15) and simplifying using (1.2), we deduce that

> As(8n)g" = (6% 0% + (6% 0")oe (0367 )0e (mod2). (3.16)

n=0

Extracting the terms involving ¢ from (3.16) and replacing ¢* by ¢, we arrive at (i). Again,

extracting the terms involving ¢"*1 in (3.16), dividing by ¢ and replacing ¢ by ¢, we obtain
D A5(16n+8)" = (¢%0°)oo (0" ¢'")oe  (mod2). (3.17)
n=0

Extracting the terms involving ¢°"*% for i = 1,2, 3, and 4 from (3.17), we arrive at (ii). [

Theorem 3.6. For any positive integer k, then

(i) A5 (16 - 3%Fn + 2 3%k — 2) = A5(16n) (mod 2),
(i) A5 (16 -5%%n +2-52F — 2) = A;(16n) (mod 2),
(i) A5 (16 - 7% n +2- 72k — 2) = A;(16n) (mod 2).

Proof. Employing (2.3) in Theorem 3.5(i), we deduce that

As(16n) = p3(n) (mod?2). (3.18)
Employing (3.18) in (2.4), (2.5), and (2.6), we arrive at (i), (ii), and (iii), respectively. [
Corollary 3.7. If n is not a triangular number, then

As(16n) =0 (mod 2).

Proof. Employing Lemma 2.4 in Theorem 3.5(i), we obtain

> A5 (16n)¢" = (—1)"(2n + 1)g" "2 (mod2). (3.19)
n=0 n=0

The desired result now follows easily from (3.19). O

Corollary 3.8. If n is not a triangular number, we have
A5 (16-3%n+2-3" —2) =0 (mod 2),
A5 (16-5%n+2-5% —2) =0 (mod 2),
A (16 -7 n+2-7 -2) =0 (mod?2).
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Proof. We employ Corollary 3.7 in Theorem 3.6 to complete the proof. [

Theorem 3.9. We have

(i) As(5n + 2) =0 (mod 5),
(i) A5(5n + 3) =0 (mod 5),
(iii) As5(5n +4) = 0 (mod 5).

Proof. Squaring the identity in Lemma 2.3, we find that

25. ,25\10
T~ e 2
+5¢*F~°(¢°) +10¢°F~°(¢°) + 20¢" F~*(¢”)
+16°F*(¢°) + 27¢° F%(¢°) + 20¢" F~'(¢°) + 15¢° — 20¢° F (¢°)
+27¢"°F?(¢°) — 16¢" F*(q°) + 20¢"* F*(¢°) — 104" F°(¢°)
+5¢"F%(¢°) = 2¢"°F7(¢°) + ¢'°F*(¢°)}. (3.20)

Employing (3.20) in (1.3), we find that

0 (q25,q25)10
S As(n)g” = UL (%) 1 2gr ()
(q5. q5)2
’I’L:O 9 oo
+5¢°F~%(¢°) +106°F~°(¢°) + 204" F~*(¢")
+16¢°F~°(¢°) +27¢°F~2(¢°) + 204" F " (¢°) + 15¢° — 20¢° F (¢°)
+27¢'°F2(¢°) — 169" F*(¢°)+20¢"2 F*(¢°) ~10¢"° F°(¢°)
+5¢" FO(¢°) — 2¢"° FT(¢°) + ¢"°F3(¢")}. (3.21)

Extracting the terms involving ¢°**2 from (3.21), then dividing by ¢ and replacing ¢° by q,
we find that

Z As(5n +2)¢" = 5(‘1(233’3(12 (F~%(q) + 4¢F'(q) + 4¢°F*(q)) . (3.22)

n=0

Now (i) follows easily from (3.22).
Extracting the terms involving ¢°"*3 from (3.21), then dividing by ¢* and replacing ¢° by

q, we find that
e (q5. q5)10
> As(5n+3)g" = 5W (2F5(q) + 3¢ — 2¢*°F°(q)) . (3.23)

n=0 ©

Now (ii) follows easily from (3.23).
Extracting the terms involving ¢°"** from (3.21), then dividing by ¢* and replacing ¢° by

q, we find that
& (q5. q5)10
> As(5n+4)g" = 5W (4F~*(q) — 4¢F (q) + ¢*F5(q)) . (3.24)

Now (iii) follows easily from (3.24). [

n=0
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Remark 3.10. Theorem 3.9(ii) also follows as a particular case of a general result in [5, p. 4,

Theorem 8§].

Theorem 3.11. For any positive integer k, we have

As (5%n +2-5% —2) =5%A5(n)  (mod 10).

Proof. From (3.23), we note that

ZA5 5n 4 3)q" _ @) °°{10( °(q) +q—q°F°(q)) +5¢}
—~ (4 9)%

(¢°;¢°) 0
(9%
Employing (1.3) in (3.25), we obtain

= bq (mod 10).

ZA5 (5n+ 3)q 5ZA "' (mod10).
n=0

Extracting the term involving ¢" ! on both sides of (3.26), we obtain
As(5n+8) =545(n) (mod 10).
Iterating (3.27) by replacing n by 5n + 8 k times, we deduce that
As (5Fn+ (551 +55 2+ ... +5+1)8) =5"A5(n) (mod 10).
Simplifying (3.28), we arrive at the desired result. [

Corollary 3.12. For any positive integer k, we have

(i) As (5% n+2-5F — 2) =0 (mod 5),
(ii) A5 (5"n+2- 5% — 2) = A5(n) (mod 2).

Proof. Proof follows from Theorem 3.11. O
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