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Abstract. In this article, we introduce the generalized Fourier transform (FA-

transform) and derive an inversion formula and convolution product for this

transform. Furthermore, the fundamental solutions of the single-order and distributed-

order Cauchy type fractional diffusion equations are given by means of the appropriate

F A-transform in terms of the Wright functions. Also, applicability of this transform for

the explicit solution of the generalizedHilbert type singular integral equation is discussed.
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1. INTRODUCTION

We consider the Fourier-type integral transform called the FA-transform as follows
FAffðxÞ; pg ¼
Z 1

�1
A0ðxÞe�ipAðxÞfðxÞdx; p 2 R; ð1-1Þ
where f(x) is piecewise continuous and absolutely integrable on R (i.e.R1
�1 jfðA

�1ðxÞÞjdx <1) and the function A(x) is strictly increasing function with
asymptotic behaviors limxfi±1A(x) =±1.

It is obvious that the FA-transform corresponds to the Fourier transform when it is
A(x) = x.
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In the recent years,Mainardi et al. [15–19],Gorenflo et al. [11,12] andother researchers
(e.g. [8,25]) have investigated on the diffusion- wave type equations and other equations
of this type with constant coefficients containing fractional derivatives (in the Riemann–
Liouville or Caputo senses of single and distributed orders) in time and/or in space to de-
scribe the models of anomalous transport in physics and engineering. They applied the
joint transform method to boundary value problems to find the fundamental solutions
of these equations in terms of higher transcendental functions such as Fox H-function,
theWright and theMittag–Leffler functions. For the linear partial fractional differential
equations (LPFDEs) with non-constant coefficients the existing integral transform
methods (such as the joint Laplace-Fourier transform) are not applicable, therefore,
importance of the FA-transform for solving some fractional-type equations with non-
constant coefficients is emphasized. In this regard, we introduced a Laplace-type integral
transform (LA-transform) for solving LPFDEs with non-constant coefficients, see [1–3].

In this work, we focus our attention on the LPFDEs with non-constant coefficients
in terms of the Adx-derivatives which occur in physical phenomena such as fractional
diffusion with non-constant coefficients, distributed-order fractional diffusion which can
be easily solved by applying the FA-transform by choosing the appropriate A(x).
Furthermore, effectiveness of the FA-transform in solving the singular integral
equations with convolution-type kernels is treated.

In Section 2, we derive a new inversion formula for the FA-transform in terms of the
Fourier’s integral. Two lemmas in the FA-transform of the Adx-derivatives and the con-
volution property are also established. These properties can be useful for obtaining the
solutions of fractional diffusion with non-constant coefficients and distributed-order
fractional diffusion.

In Section 3, we find the fundamental solution of the fractional diffusion equation
on fractals introduced by Giona and Roman by applying the F xbþ1

bþ1
-transform (b P 0).

These solutions can be expressed in terms of the higher transcendental functions of the
Wright type.

In Section 4, Moshinskii’s diffusion equation is generalized to a fractional diffusion
equation of distributed order and by using theF sinh�1ðxÞ- transform the fundamental solution
of this equation is given as an integral representation in terms of the Laplace type integral.

In Section 5, applicability of the F x2nþ1 -transform in solving the generalized Hilbert
singular integral equation is discussed and finally the main conclusions are set in
Section 6.

2. ELEMENTARY PROPERTIES OF THE FA-TRANSFORM

In this section, we establish some lemmas on the FA-transform which can be useful for
solving LPFDEs. First, related to the classical Fourier transform and inverse Fourier
transform
FffðxÞ; pg ¼
Z 1

�1
e�ipxfðxÞdx; ð2-1Þ

F�1fFðpÞ; xg ¼ 1

2p

Z 1

�1
eipxFðpÞdp; ð2-2Þ
we derive an inversion formula for the FA-transform.
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Lemma 2.1 (The inversion formula for the FA-transform). Let f, f0 be piecewise
continuous in every finite interval and f be absolutely integrable on R i.e.
Z 1

�1
jfðA�1ðxÞÞjdx <1:
Let us assume that
FAffðxÞ; pg ¼ FðpÞ ¼
Z 1

�1
A0ðxÞe�ipAðxÞfðxÞdx;
then
F�1A fFðpÞ; xg ¼ fðxÞ ¼ 1

2p

Z 1

�1
eipAðxÞFðpÞdp: ð2-3Þ
Proof. By definition of the FA-transform (1-1), letting t = A(x), we have
FðpÞ ¼
Z 1

�1
e�iptfðA�1ðtÞÞdt ¼ FffðA�1ðtÞÞ; pg:
At this point, by the inversion formula for the Fourier transform and setting back
A�1(t) = x, we get finally
fðxÞ ¼ 1

2p

Z 1

�1
eipAðxÞFðpÞdp: �
Lemma 2.2 (The FA-transform of Adx-derivatives). Let f, f0, . . . , f(n�1) be continuous
functions on R and
lim
jxj!1

fðkÞðxÞ ¼ 0; k ¼ 0; 1; . . . ; n� 1;
then
FAfAdn
xfðxÞ; pg ¼ ðipÞ

nFAffðxÞ; pg; ð2-4Þ

where the Adx-derivative operator is defined as follows
Adx ¼
1

A0ðxÞ
d

dx
:

We also define
Ad2
x ¼ AdxAdx ¼

1

A02ðxÞ
d2

dx2
� A00ðxÞ
A03ðxÞ

d

dx
:

The Adx-derivative for any positive integer power can be found.

Proof. Using the definitions of the FA-transform (1-1), the Adx-derivative and integra-
tion by parts, we obtain
FAfAdxfðxÞ; pg ¼
Z 1

�1
e�ipAðxÞf0ðxÞdx

¼ e�ipAðxÞfðxÞj1�1 þ ip

Z 1

�1
A0ðxÞe�ipAðxÞfðxÞdx:
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Since limŒxŒfi1f(x) = 0, it follows that
FAfAdxfðxÞ; pg ¼ ðipÞFAffðxÞ; pg:
Similarly by repeated application of the above relation, we get
FA Ad2
xfðxÞ; p

� �
¼ ðipÞFAfAdxfðxÞ; pg ¼ ðipÞ2FAffðxÞ; pg
and by repeating the above scheme for Adn
xfðxÞ, we obtain (2-4).

Lemma 2.3 (The convolution product for the FA-transform). If F(p), G(p) are the
FA-transform of the functions f(x), g(x), respectively, then
FðpÞGðpÞ ¼ FAff � gg ¼ FA

Z 1

�1
A0ðtÞgðtÞfðA�1ðAðxÞ � AðtÞÞÞdt

� �
: ð2-5Þ
Proof. Using the definition of the FA-transform for F(p) and G(p), we have
FðpÞGðpÞ ¼
Z 1

�1
A0ðyÞe�ipAðyÞfðyÞdy

� � Z 1

�1
A0ðtÞe�ipAðtÞgðtÞdt

� �

¼
Z 1

�1

Z 1

�1
A0ðyÞA0ðtÞe�ipðAðtÞþAðyÞÞfðyÞgðtÞdydt:
Now, by substitution A(t) + A(y) = A(x) and changing the order of integration in
the double integral, we get
FðpÞGðpÞ ¼
Z 1

�1
A0ðxÞe�ipAðxÞdx

Z 1

�1
A0ðtÞgðtÞfðA�1ðAðxÞ � AðtÞÞÞdt

¼ FA

Z 1

�1
A0ðtÞgðtÞfðA�1ðAðxÞ � AðtÞÞÞdt

� �
:

In view of the theorems of the FA-transform expressed in this section we may apply
the FA-transform transform to LPFDEs in the next sections. First, in connection with
initial-value problems, we consider a partial fractional differential equation in the
Riemann–Liouville sense [10,23]. h
3. THE TIME-FRACTIONAL DIFFUSION EQUATION WITH NON-CONSTANT COEFFICIENTS OF SINGLE

ORDER
Theorem 3.1. The explicit solution of the following partial fractional differential equation
in the Riemann–Liouville sense
tD
a
0þuðx; tÞ ¼ �Cx�b @uðx; tÞ

@x
� kuðx; tÞ; C > 0; b P 0; k 2 R;

0 < a 6
1

2
; ð3-1Þ
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with Cauchy type initial and boundary conditions
tD
a�1
0þ uðx; 0þÞ ¼ fðxÞ

lim
x!þ1

xbþ1 ¼ þ1; lim
x!�1

xbþ1 ¼ �1; x 2 R; t 2 Rþ;
ð3-2Þ
is
uðx; tÞ ¼
Z 1

�1
sbGaðxbþ1 � sbþ1; tÞfðsÞds: ð3-3Þ
The Green function Ga and the Wright function are given by the following relations
Gaðx; tÞ ¼ 1

Ct
e
� kx

Cðbþ1ÞW �a; 0;� x

Cðbþ 1Þ t
�a

� �
HðxÞ; ð3-4Þ

Wða; b; zÞ ¼
X1
k¼0

zk

k!Cðakþ bÞ ; a > �1; b 2 C; z 2 C: ð3-5Þ
Proof. Since the Eq. (3-1) is a LPFDE with non-constant coefficients, we set
AðxÞ ¼ xbþ1

bþ1 in the integral (1-1) and apply this new integral transform (the
F xbþ1

bþ1
-transform) in space and the Laplace transform in time as followsZ 1

Lfuðx; tÞ; sg ¼ ~uðx; sÞ ¼

0

e�stuðx; tÞdt; Rs > 0;

F xbþ1
bþ1
fuðx; tÞ; pg ¼ ûðp; tÞ ¼

Z 1

�1
xbe�ip

xbþ1
bþ1 uðx; tÞdx:
Then, using the Laplace transform of the Riemann–Liouville derivative [13,22,24]
LftDa
0þuðx; tÞ; sg ¼ sa~uðx; sÞ � tD

a�1
0þ uðx; 0þÞ
and the F xbþ1
bþ1

-transform of the Eq. (3-1), we obtain
F xbþ1
bþ1
fx�buðx; tÞ; pg ¼ ipûðp; tÞ;
which by utilizing the Cauchy type initial conditions (3-2), leads to
~̂uðp; sÞ ¼ 1

sa þ Cipþ k
FðpÞ; ð3-6Þ
where F(p) is the F xbþ1
bþ1

-transform of the initial condition f(x). At this point, by consid-

ering the inversion formula for the F xbþ1
bþ1

-transform (2-3) and the convolution product

(2-5), we obtain
~uðx; sÞ ¼ 1

2p

Z 1

�1
~̂uðp; sÞeipx

bþ1
bþ1 dp ¼ 1

C
F�1xbþ1

bþ1

1
saþk
C
þ ip

( )
� fðxÞ

¼ 1

C
½e�ðs

aþkÞ xbþ1
Cðbþ1ÞHðxbþ1Þ� � fðxÞ;
where H is the Heaviside unit step function and symbol * is the convolution of the two
functions f, g for the F xbþ1

bþ1
-transform expressed by the relation (2-5) as follows
f � g ¼
Z 1

�1
tbgðtÞf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xbþ1 � tbþ1

bþ1
p	 


dt:
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Now, in regard to the inverse Laplace transform of the functions e
�sa xbþ1

Cðbþ1Þ via the
Wright function we have [13,22]
L�1 e
�sa xbþ1

Cðbþ1Þ

� �
¼ 1

t
W �a; 0;� xbþ1

Cðbþ 1Þ t
�a

� �
:

Consequently, we get the explicit solution of the Cauchy type problem (3-1) and (3-2)
as follows
uðx; tÞ ¼
Z 1

�1
sbGaðxbþ1 � sbþ1; tÞfðsÞds; ð3-7Þ
where the Green function Ga is given by the following relation
Gaðx; tÞ ¼ 1

Ct
e
� kx

Cðbþ1ÞW �a; 0;� x

Cðbþ 1Þ t
�a

� �
HðxÞ; ð3-8Þ
provided that the integral on the right-hand side of (3-7) is convergent. h
4. THE TIME-FRACTIONAL DIFFUSION EQUATION OF DISTRIBUTED ORDER

The earlier idea of fractional derivatives of distributed order go back to Volterra and
was developed by Caputo [6,7]. Later other researchers e.g. Atanackovic et al. [4],
Chechkin et al. [9] and Umarov et al. [26] study some linear and non-linear fractional
differential equations of distributed order by analyzing some interesting cases of the
order-density function. In this paper, by the notion of fractional derivative of distrib-
uted order, we consider a generalization of Moshinskii’s equation [20] which describes
diffusion of impurity in narrow channels.

Theorem 4.1. The explicit solution of the fractional diffusion of distributed order
equation subject to initial condition u(x,0) = f(x) and order-density function b(a)
Z 1

0

bðaÞ t
CDa

0þuðx; tÞ
� �

da ¼ ð1þ x2Þ @
2uðx; tÞ
@x2

þ x
@uðx; tÞ
@x

; x 2 R; t

> 0; bðaÞP 0;

Z 1

0

bðaÞda ¼ 1 ð4-1Þ
is
uðx; tÞ ¼ 1

2p

Z 1

0

e�rt

r
dr

Z 1

�1

ffiffiffi
q
p

e
�j ln xþ

ffiffiffiffiffiffi
x2þ1
p

sþ
ffiffiffiffiffiffi
s2þ1
p

	 

j ffiffiqp cos p

2cð Þ

� sin
pc
2
� j ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1
p

� �
j ffiffiffiqp sin

pc
2

	 
� �
fðsÞds: ð4-2Þ
The parameters q and c are given by relations (4-4) and (4-8).
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Proof. In order to solve the Eq. (4-1), we extend the approach by Naber [21] and
Mainardi et al. [19] to find a general representation of the fundamental solution related
to a generic order-density function b(a). In this respect, by applying the Laplace trans-
form of fractional derivative in the Caputo sense with respect to t
L t
CDa

0þuðx; tÞ; s
� �

¼ sa~uðx; sÞ � sa�1uðx; 0þÞ
and the F sinh�1ðxÞ-transform with respect to x and setting n = 2 in relation (2-4)
F sinh�1ðxÞ ð1þ x2Þ @
2uðx; tÞ
@x2

þ x
@uðx; tÞ
@x

; p

� �
¼ F sinh�1ðxÞ sinh�1ðxÞd

2
xuðx; tÞ; p

n o
¼ �p2ûðp; tÞ;
we obtain
Z 1

0

bðaÞsada
� �

~̂uðp; sÞ þ p2 ~̂uðp; sÞ ¼ 1

s

Z 1

0

bðaÞsada
� �

FðpÞ:
From which
~̂uðp; sÞ ¼ BðsÞ
sðBðsÞ þ p2ÞFðpÞ; Rs > 0; ð4-3Þ
where F(p) is the F sinh�1ðxÞ-transform of the function f(x) and
BðsÞ ¼
Z 1

0

bðaÞsada: ð4-4Þ
By inverting the F sinh�1ðxÞ-transform of (4-3), we get the remaining Laplace transform
as the following expression
~uðx; sÞ ¼ fðxÞ �
ffiffiffiffiffiffiffiffiffi
BðsÞ

p
2s

e�jsinh
�1ðxÞj

ffiffiffiffiffiffi
BðsÞ
p

; R
ffiffiffiffiffiffiffiffiffi
BðsÞ

p
> 0; ð4-5Þ
where the convolution of the two functions f, g for the F sinh�1ðxÞ-transform is given by
relation (2-5) (using the fact that sinh�1ðxÞ ¼ lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

Þ)
f � g ¼
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p gðtÞfðsinhðsinh�1ðxÞ � sinh�1ðtÞÞdt;

¼
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p gðtÞf 1

2

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

tþ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1
p � tþ

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1
p

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

 ! !
dt: ð4-6Þ
By virtue of the Titchmarsh theorem for the inverse Laplace transform of the
function
~u1ðx; sÞ ¼
ffiffiffiffiffiffiffiffiffi
BðsÞ

p
2s

e�jsinh
�1ðxÞj

ffiffiffiffiffiffi
BðsÞ
p

;

which has branch cut on the real negative semiaxis [5], we have
u1ðx; tÞ ¼ �
1

p

Z 1

0

e�rtIf~u1ðx; reipÞgdr: ð4-7Þ
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In order to simplify the above relation (4-7), we need to evaluate the imaginary part of
the function �~u1ðx; reipÞ along the ray s = reip, r > 0, where the branch cut of the func-
tion sa is defined. In this regard, by writing
BðreipÞ ¼ q cos cpþ iq sin cp;
q ¼ qðrÞ ¼ jBðreipÞj
c ¼ cðrÞ ¼ 1

p arg½BðreipÞ�

(
ð4-8Þ
and substituting in the above relation, the relation (4-7) leads to
u1ðx; tÞ ¼
1

2p

Z 1

0

ffiffiffi
q
p

r
e�rt�jsinh

�1ðxÞj ffiffiqp cos p
2
cð Þ

� sin
pc
2
� jsinh�1ðxÞj ffiffiffiqp sin

pc
2

	 
	 

dr:
Finally, using the convolution product given by relation (4-6), u(x, t) is expressed as an
integral representation
uðx; tÞ ¼ 1

2p
fðxÞ

�
Z 1

0

ffiffiffi
q
p

r
e�rt�jsinh

�1ðxÞj ffiffiqp cos p
2cð Þ sin pc

2
� jsinh�1ðxÞj ffiffiffiqp sin

pc
2

	 
	 

dr

� �

¼ 1

2p

Z 1

0

e�rt

r
dr

Z 1

�1

ffiffiffi
q
p

e
�j ln xþ

ffiffiffiffiffiffi
x2þ1
p

sþ
ffiffiffiffiffiffi
s2þ1
p

	 

j ffiffiqp cos p

2
cð Þ

� sin
pc
2
� j ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1
p

� �
j ffiffiffiqp sin

pc
2

	 
� �
fðsÞds;

ð4-9Þ
provided that the integrals on the right-hand side of (4-9) are convergent.
The explicit solution (4-9) of the time-fractional diffusion equation of distributed

order (4-1) can be simplified in particular cases. For example, if we set the order density
function with respect to the Dirac delta function b(a) = d(a � n), 0 < n < 1, the time-
fractional diffusion equation of distributed order (4-1) is converted to time-fractional
disturbance equation of single order n, so that
BðsÞ ¼ sn; q ¼ qðrÞ ¼ rn; c ¼ n:
In this case, the inverse Laplace transform of s
n
2
�1e�jsinh

�1ðxÞjs
n
2 in (4-5) can be easily ob-

tained in terms of the Wright function
L�1 s
n
2�1e�jsinh

�1ðxÞjs
n
2

n o
¼ 1

t
n
2
W � n

2
; 1� n

2
;�jsinh�1ðxÞjt�n

2

	 

:

The formal solution u(x, t) (4-9) takes the form
uðx; tÞ ¼ 1

2pt
n
2

Z 1

�1
W � n

2
; 1� n

2
;�j ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1
p

� �
jt�n

2

� �
fðsÞds: � ð4-10Þ
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5. SINGULAR INTEGRAL EQUATIONS

In this section, we apply the FA-transform for solving singular integral equations with
convolution-type kernel. For this purpose, let us consider the singular integral equation
as follows
fðxÞ ¼ gðxÞ þ k
Z 1

�1
kðx; tÞfðtÞdt; k 2 C ð5-1Þ
where, k(x, t) is the convolution-type kernel in the form
kðx; tÞ ¼ A0ðtÞhðA�1ðAðxÞ � AðtÞÞÞ; ð5-2Þ

and g, h are the known functions.

By applying the FA-transform to the both sides of (5-1) and using the convolution
product (2-5), we get
FðpÞ ¼ GðpÞ
1� kHðpÞ ;
and by the inversion of F(p) we finally obtain
fðxÞ ¼ F�1A

GðpÞ
1� kHðpÞ

� �
; kHðpÞ–1: ð5-3Þ
As an application of the FA-transform for solving singular integral equations of con-
volution-type kernel, in next example we consider the generalized Hilbert type integral
equation with a kernel satisfied by the convolution theorem of the F x2nþ1 -transform.

Theorem 5.1. The Solution of the generalized Hilbert type singular integral equation
fðxÞ ¼ gðxÞ þ kHx2nþ1 fðxÞ; k 2 C; n ¼ 0; 1; 2; . . . ð5-4Þ

is written in terms of the k-th iterate of generalized Hilbert transforms
Hk

x2nþ1 ; k ¼ 1; 2; . . . as follows
fðxÞ ¼ gðxÞ þ
X1
k¼1
ð�kÞkHk

x2nþ1gðxÞ: ð5-5Þ
The function g is the known function and the generalized Hilbert transform Hx2nþ1 is given
by [14]
Hx2nþ1 fðxÞ ¼
1

p
P:V:

Z 1

�1

t2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2nþ1 � t2nþ1

2nþ1
p fðtÞdt: ð5-6Þ
Proof. By applying the F x2nþ1 -transform on the singular integral Eq. (5-4) and knowing
the operator Hx2nþ1 is convolution of functions f(x) and 1

x
the transformed equation

takes the form
FðpÞ ¼ GðpÞ þ kF x2nþ1
1

x
; p

� �
FðpÞ ¼ GðpÞ þ kFðpÞ

Z 1

�1
x2n e

�ipx2nþ1

x
dx

¼ GðpÞ � 2kiFðpÞ sgnðpÞ
p

2n
2nþ1

Z 1

0

sinðuÞ
u

1
2nþ1

du; ð5-7Þ



70 A. Aghili, A. Ansari
or equivalently
FðpÞ ¼ 1

1þ ki sgnðpÞ

p
2n

2nþ1C 1
2nþ1ð Þ sin p

4nþ2ð Þ
GðpÞ: ð5-8Þ
Now, by expansion of the geometric series in (5-8) and using the obtained result in (5-7)
Hx2nþ1gðxÞ ¼ F�1x2nþ1
�isgnðpÞ

p
2n

2nþ1C 1
2nþ1

	 

sin p

4nþ2

	 
GðpÞ
8<
:

9=
;;
the solution of the singular integral equation (5-4) can be written in terms of the k-th
iterate of the generalized Hilbert transform Hk

x2nþ1 as follows
fðxÞ ¼ gðxÞ þ
X1
k¼1
ð�kÞkHk

x2nþ1gðxÞ; ð5-9Þ
provided that the k-th iterate of generalized Hilbert transforms Hk
x2nþ1 ; k ¼ 1; 2; . . . and

series converge absolutely. h
6. CONCLUSIONS

This paper provides some new results in the areas of singular integral equations and
fractional calculus. Furthermore, the implementation of the new integral transform
(FA-transform) for solving two Cauchy type fractional diffusion equations of single
and distributed order was discussed.

It may be concluded that the FA-transform method is very efficient technique for
finding exact solution for PFDEs. Although the FA-transform method described in this
paper is well-suited to solve the time fractional diffusion equations in terms of higher
transcendental functions, the method could lead to a promising approach for many
applications in applied sciences.
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