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Abstract. In this paper, we study the following problems∆2u − M


Ω

|∇u|2dx


∆u = λf(x, u) + |u|2
∗ −2u in Ω

u = ∆u = 0 on ∂Ω ,

where 2∗ = 2N
N −4

is the critical exponent. Under some conditions on M and f , we prove the
existence of nontrivial solutions by using variational methods.

Keywords: Fourth-order elliptic equations; Nonlocal problem; Critical exponent; Lions
principle
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1. INTRODUCTION AND MAIN RESULTS

In this paper we are concerned with the existence of nontrivial solutions for the following
nonlocal elliptic problems∆2u − M


Ω

|∇u|2dx


∆u = λf(x, u) + |u|2
∗ −2u in Ω

u = ∆u = 0 on ∂Ω ,
(1.1)
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where Ω is a bounded smooth domain of RN , N ≥ 5, 2∗ = 2N
N −4 is the critical Sobolev

exponent, and M : R+ → R+, f : Ω × R → R are continuous functions that satisfy some
conditions which will be stated later on.

Problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff [22].
More precisely, the authors in [8,22] introduced a model given by the following equation

ρ
∂2u

∂t2
−


ρ0

h
+

E

2L

 L

0

∂u∂x
2 dx


∂2u

∂x2
= 0, (1.2)

which extends the classical D’Alembert’s wave equation by considering the effects of the
changes in the length of the strings during the vibrations. Later (1.2) was developed to form

utt − M


Ω

|∇u|2dx


∆u = f(x, u) in Ω . (1.3)

After that, many authors studied the following nonlocal elliptic boundary value problem

−M


Ω

|∇u|2dx


∆u = f(x, u) in Ω , u = 0 on ∂Ω . (1.4)

Problems like (1.4) can be used for modeling several physical and biological systems where
u describes a process which depends on the average of itself, such as the population density,
see [4]. Many interesting results for problems of Kirchhoff type were obtained see, for
example, [1,13,20,21].

The investigation of fourth order boundary value problems has drawn the attention of many
authors, because the static form change of beam or the sport of rigid body can be described
by a fourth order equation, and specially a model to study traveling waves in suspension
bridges can be furnished by the fourth order equation of nonlinearity. Several results are
known concerning the existence and multiplicity of solutions for fourth order boundary value
problems, see [10,11,18] and the references therein. In [26], using the mountain pass theorem,
Wang and An established the existence and multiplicity of solutions for the following fourth-
order nonlocal elliptic problem∆2u − M


Ω

|∇u|2dx


∆u = λf(x, u) in Ω

u = ∆u = 0 on ∂Ω .
(1.5)

Also, in [24] employing a smooth version of Ricceri’s variational principle [25], the authors
ensured the existence of infinitely many solutions for the problem∆(|∆u|p−2∆u) − M


Ω

|∇u|pdx
p−1

∆pu+ ρ|u|p−2u = λf(x, u) in Ω

u = ∆u = 0 on ∂Ω .
(1.6)

Much interest has grown on problems involving critical exponents, starting from the cele-
brated paper by Brezis and Nirenberg [12]. This pioneering work has stimulated a vast amount
of research on this class of problems. We refer the reader to [2,7,3,5,9,14–17,19,28] and ref-
erence therein for the study of problems with critical exponent.

Before stating our main result, we need the following hypotheses on the function M :
R+ → R+:
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(m1) There is a positive constant m0 such that

M(t) ≥ m0 for all t ≥ 0.

(m2) There exists σ > 2/2∗ such thatM(t) ≥ σM(t)t for all t ≥ 0,

where M(t) =
 t

0
M(s)ds.

A typical example of a function satisfying the conditions (m1)–(m2) is given by

M(t) = m0 + bt

with b ≥ 0 and for all t ≥ 0.
The hypotheses on function f : Ω × R → R are the following:

(f1)

f(x, t) = o(|t|) as t → 0 uniformly in x ∈ Ω .

(f2) There exists q ∈ (2, 2∗) such that

lim
|t|→+∞

f(x, t)
|t|q−2t

= 0 uniformly in x ∈ Ω .

(f3) There exists θ ∈ (max(2, 2/σ), 2∗) such that

0 < θF (x, t) = θ

 t

0

f(x, s)ds ≤ tf(x, t) for allx ∈ Ω and t ∈ R \ {0},

where σ is given in (m2).

A typical example of a function satisfying the conditions (f1)–(f3) is given by

f(x, t) =
k

i=1

ai(x)|t|qi −2t,

where k ≥ 1, 2 < qi < 2∗, ai ∈ C(Ω) with ai ≥ 0 for all x ∈ Ω .
Now, we formulate our main result as follows.

Theorem 1.1. Suppose that (m1), (m2) and (f1)–(f3) hold. Then, there exists λ∗ > 0, such
that problem (1.1) has a nontrivial solution for all λ ≥ λ∗.

2. PRELIMINARY RESULTS

We denote by H = H2(Ω) ∩ H1
0 (Ω) the Hilbert space equipped with the inner product

(u, v) =

Ω

(∆u∆v + ∇u∇v)dx,

and the deduced norm

∥u∥2 =

Ω

(|∆u|2 + |∇u|2)dx.
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We consider the following energy functional Iλ : H → R, defined by

Iλ(u) =
1
2


Ω

|∆u|2dx+
1
2
M 

Ω

|∇u|2dx


− λ


Ω

F (x, u)dx − 1
2∗


Ω

|u|2
∗
dx. (2.1)

It is well known that a critical point of Iλ is a weak solution of problem (1.1).
In the sequel, we show that the functional Iλ has the mountain pass geometry.

Lemma 2.1. Suppose that (m1), (m2) and (f1)–(f3) hold, then we have

(i) There exist r, ρ > 0 such that inf∥u∥=r Iλ(u) ≥ ρ > 0.
(ii) There exists a nonnegative function e ∈ H such that ∥e∥ > r and Iλ(e) < 0.

Proof. (i) It follows from (f1) and (f2) that for any ε > 0, there exists C(ε) > 0 such that

F (x, t) ≤ 1
2
εt2 + C(ε)|t|q. (2.2)

Together with (m1) and Sobolev’s inequalities, we have

Iλ(u) ≥ 1
2


Ω

|∆u|2dx+
m0

2


Ω

|∇u|2dx − λC1ε∥u∥2 − λC2(ε)∥u∥q − C3∥u∥2∗

≥


min(1,m0)
2

− λC1ε


∥u∥2 − λC2(ε)∥u∥q − C3∥u∥2∗

. (2.3)

We take ε < min(1,m0)
2λC1

, since 2 < q < 2∗, choosing ∥u∥ = r small enough, we can obtain a
positive constant ρ such that Iλ(u) ≥ ρ as ∥u∥ = r.

(ii) Choose a nonnegative function φ1 ∈ C∞
0 (Ω) with ∥φ1∥ = 1.

By integrating (m2), we get

M(t) ≤
M(t0)

t
1
σ
0

t
1
σ = C0t

1
σ for all t ≥ t0 > 0. (2.4)

Moreover, from (f3), one has

Ω
F (x, tφ1) > 0. Hence for t ≥ t0, we obtain

Iλ(tφ1) ≤ t2

2


Ω

|∆φ1|2dx+
1
2
M 

t2

Ω

|∇φ1|2dx


− t2
∗

2∗


Ω

φ2∗

1 dx

≤ t2

2


Ω

|∆φ1|2dx+
C0t

2
σ

2


Ω

|∇φ1|2dx
 1

σ

− t2
∗

2∗


Ω

φ2∗

1 dx

≤ t2

2
+
C0t

2
σ

2
− t2

∗

2∗


Ω

φ2∗

1 dx. (2.5)

The fact that max(2, 2/σ) < 2∗, the assertion (ii) is proved by choosing e = t∗φ1 with
t∗ > 0 large enough. �
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From Lemma 2.1, using a version of the Mountain Pass theorem due to Ambrosetti and
Rabinowitz [6], without (PS) condition (see [27]), there exists a sequence (un) ⊂ H such
that

Iλ(un) → c∗ and I ′
λ(un) → 0,

where

c∗ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > 0, (2.6)

with

Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, Iλ(γ(1)) < 0} .

Let S∗ be the best positive constant of the Sobolev embedding H ↩→ L2∗
(Ω) given by

S∗ = inf


∥u∥2 : u ∈ H,


Ω

|u|2
∗
dx = 1


. (2.7)

Lemma 2.2. Suppose that (m1), (m2) and (f1)–(f3) hold. Then there exists λ∗ > 0 such

that c∗ ∈

0,


1
θ − 1

2∗


S

N
4

∗


for all λ ≥ λ∗.

Proof. For the nonnegative function e given in (ii) of Lemma 2.1, we have limt→+∞ Iλ(te)
= −∞, then there exists tλ > 0 such that

Iλ(tλe) = max
t≥0

Iλ(te).

Therefore

tλ


Ω

|∆e|2dx+M


t2λ


Ω

|∇e|2dx


Ω

tλ|∇e|2dx

= λ


Ω

f(x, tλe)edx+ t2
∗ −1

λ


Ω

|e|2
∗
dx.

By (m2) and (f3) it follows that

t2
∗

λ


Ω

e2
∗
dx ≤ λtλ


Ω

f(x, tλe)edx+ t2
∗

λ


Ω

e2
∗
dx

= t2λ


Ω

|∆e|2dx+M


t2λ


Ω

|∇e|2dx


Ω

t2λ|∇e|2dx

≤ t2λ


Ω

|∆e|2 +
1
σ
M 

Ω

t2λ|∇e|2dx

. (2.8)

Hence, from (2.4), we obtain

t2
∗

λ


Ω

e2
∗
dx ≤ t2λ


Ω

|∆e|2 +
C0

σ
t
2/σ
λ


Ω

|∇e|2dx
1/σ

, with tλ > t0.
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Since 2∗ > max(2, 2/σ), (tλ) is bounded. So, there exists a sequence λn → +∞ and s0 ≥ 0
such that tλn

→ s0 as n → ∞. Hence, there exists C > 0 such that

t2λn


Ω

|∆e|2 +
C0

σ
t
2/σ
λn


Ω

|∇e|2dx
1/σ

≤ C for all n,

that is,

λntλn


Ω

f(x, tλn
e)edx+ t2

∗

λn


Ω

e2
∗
dx ≤ C for all n.

If s0 > 0, the last inequality implies that

λntλn


Ω

f(x, tλn
e)e dx+ t2

∗

λn


Ω

e2
∗
dx → +∞ ≤ C, as n → ∞,

which is impossible, and consequently, s0 = 0. Let γ∗(t) = te for t ∈ [0, 1]. Clearly γ∗ ∈ Γ ,
thus

0 < c∗ ≤ max
t≥0

Iλ(γ∗(t)) = Iλ(tλe) ≤ t2λ
2


Ω

|∆e|2 +
1
2
M 

t2λ


Ω

|∇e|2dx

.

Since tλn
→ 0 and


1
θ − 1

2∗


(m0S∗)

N
4 > 0, for λ > 0 sufficiently large, we have

t2λ
2


Ω

|∆e|2 +
1
2
M 

t2λ


Ω

|∇e|2dx

<


1
θ

− 1
2∗


S

N
4

∗ ,

and hence

0 < c∗ <


1
θ

− 1
2∗


S

N
4

∗ . �

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, there exists a sequence (un) ⊂ H such that

Iλ(un) → c∗ and I ′
λ(un) → 0, (2.9)

with c∗ ∈

0,


1
θ − 1

2∗


S

N
4

∗


for λ ≥ λ∗. Then, there exists C > 0 such that |Iλ(un)| ≤ C

and by (f3) for n large enough, it follows from (m1) and (m2) that

C + ∥un∥ ≥ Iλ(un) − 1
θ

⟨I ′
λ(un), un⟩

≥


1
2

− 1
θ


Ω

|∆un|2dx+

σ

2
− 1
θ


m0


Ω

|∇un|2dx

≥ min


1
2

− 1
θ


,


σ

2
− 1
θ


m0


∥un∥2. (2.10)

Since θ > max(2, 2/σ), (un) is bounded. Hence, up to a subsequence, we may assume that

un ⇀ u weakly in H2(Ω) ∩ H1
0 (Ω),
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un → u a.e. in Ω ,
un → u in Ls(Ω), 1 ≤ s < 2∗, (2.11)

|∆un|2 ⇀ µ (weak∗—sense of measures)
|un|2

∗
⇀ ν (weak∗—sense of measures),

where µ and ν are nonnegative bounded measures on Ω . Then, by concentration-compactness
principle due to Lions [23], there exists some at most countable index set J such that

ν = |u|2
∗

+

j∈J

νjδxj , νj > 0,

µ ≥ |∆u|2 +

j∈J

µjδxj
, µj > 0,

S∗ν
2/2∗

j ≤ µj ,

(2.12)

where δxj
is the Dirac measure mass at xj ∈ Ω .

For ε > 0 and j ∈ J , define a function ψj
ε(x) ∈ C∞

0 such that 0 ≤ ψj
ε ≤ 1,

ψj
ε(x) =


1 if |x − xj | < ε
0 if |x − xj | ≥ 2ε, (2.13)

|∇ψj
ε |∞ ≤ 2/ε and |∆ψj

ε |∞ ≤ 2/ε2.
Since I ′

λ(un) → 0 and (ψj
εun) is bounded, ⟨I ′

λ(un), ψj
εun⟩ → 0 as n → ∞, that is

Ω

|∆un|2ψj
εdx+


Ω

∆un


2∇un∇ψj

εdx+ un∆ψj
ε


dx

+M


Ω

|∇un|2dx


Ω

un∇un∇ψj
εdx+


Ω

ψj
ε |∇un|2dx


= λ


Ω

f(x, un)unψ
j
εdx+


Ω

|un|2
∗
ψj

εdx+ on(1). (2.14)

Note that

∥∇(un − u)∥2
L2(Ω) = −


Ω

(un − u)∆(un − u)dx ≤ ∥un − u∥.∥un − u∥L2(Ω),

then, (2.11) implies

∇un → ∇u inL2(Ω). (2.15)

Now, by Vitali’s theorem we get

lim
n→∞


Ω

|un∇ψj
ε |2dx =


Ω

|u∇ψj
ε |2dx and

lim
n→∞


Ω

|un∆ψj
ε |2dx =


Ω

|u∆ψj
ε |2dx.
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In what follows, the letter C will be indiscriminately used to denote various constants. By
Hölder’s inequality, we obtain

lim sup
n→∞


Ω

un∇un∇ψj
εdx

 ≤ lim sup
n→∞


Ω

|∇un|2
 1

2


Ω

|un|2|∇ψj
ε |2dx

 1
2

≤ C


Ω

|u|2|∇ψj
ε |2dx

 1
2

≤ C


B(xj ,ε)

|∇ψj
ε |Ndx

 1
N


B(xj ,ε)

|u|2
∗
dx

 1
2∗

≤ C


B(xj ,ε)

|u|2
∗
dx

 1
2∗

→
ε→0

0,

and similarly, we have

lim sup
n→∞


Ω

∆un∇un∇ψj
εdx

 ≤ lim sup
n→∞


Ω

|∆un|2
 1

2


Ω

|∇un|2|∇ψj
ε |2dx

 1
2

≤ C


Ω

|∇u|2|∇ψj
ε |2dx

 1
2

≤ C


B(xj ,ε)

|∇ψj
ε |Ndx

 1
N


B(xj ,ε)

|∇u|2
∗
dx

 1
2∗

≤ C


B(xj ,ε)

|∇u|2
∗
dx

 1
2∗

→
ε→0

0,

and

lim sup
n→∞


Ω

un∆un∆ψj
εdx

 ≤ lim sup
n→∞


Ω

|∆un|2
 1

2


Ω

|un|2|∆ψj
ε |2dx

 1
2

≤ C


Ω

|u|2|∆ψj
ε |2dx

 1
2

≤ C


B(xj ,ε)

|∆ψj
ε | N

2 dx

 2
N


B(xj ,ε)

|u|2
∗
dx

 1
2∗

≤ C


B(xj ,ε)

|u|2
∗
dx

 1
2∗

→
ε→0

0.

It follows that

lim
ε→0


lim

n→∞


Ω


∆un(2∇un∇ψj

ε + un∆ψj
ε) + un∇un∇ψj

ε + ψj
ε |∇un|2


dx


= 0. (2.16)
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On the other hand, from (2.11) we have

f(x, un)un → f(x, u)u a.e. in Ω ,

un → u strongly in L2(Ω) and in Lq(Ω). By (m1) and (m2), for any ε > 0 there exists
Cε > 0 such that

|f(x, t)| ≤ ε|t| + Cε|t|q−1 for all (x, t) ∈ Ω × R, (2.17)

thus

|f(x, un)un| ≤ ε|un|2 + Cε|un|q.

This is what we need to apply Vitali’s theorem, which yields

lim
n→∞


Ω

f(x, un)undx =

Ω

f(x, u)udx.

Since ψj
ε has compact support, from (2.11), (2.14) and (2.16) we deduce


Ω

ψj
εdµ ≤ C


B(xj ,ε)

|u|2
∗
dx

 1
2∗

+ C


B(xj ,ε)

|∇u|2
∗
dx

 1
2∗

+


B(xj ,ε)

|∇u|2dx+ λ


B(xj ,ε)

f(x, u)udx+

Ω

ψj
εdν,

letting ε → 0, we get

µj ≤ νj .

It follows from (2.12) that

S
N
4

∗ ≤ νj . (2.18)

Now, we shall prove that the above expression cannot occur, and therefore the set J is

empty. Indeed, arguing by contradiction, let us suppose that S
N
4

∗ ≤ νj0 for some j0 ∈ J .
Then, from the fact that

c∗ = Iλ(un) − 1
θ

⟨I ′
λ(un), un⟩ + on(1),

we obtain

c∗ ≥


1
θ

− 1
2∗


Ω

|un|2
∗
dx+ on(1)

≥


1
θ

− 1
2∗


Ω

ψj
ε |un|2

∗
dx+ on(1).
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Letting n → ∞, we obtain

c∗ ≥


1
θ

− 1
2∗


j∈J

ψj
ε(xj)νj

=


1
θ

− 1
2∗


j∈J

νj ≥


1
θ

− 1
2∗


S

N
4

∗

which contradicts Lemma 2.2. This implies that J = ∅ and it follows that un → u in L2∗
(Ω).

The relation (2.17) implies that
Ω

|f(x, un)(un − u)|dx ≤

Ω


ε|un| + Cε|un|q−1


|un − u|dx

≤ ε


Ω

|un|2dx
 1

2


Ω

|un − u|2dx
 1

2

+Cε


Ω

|un|qdx
 q−1

q


Ω

|un − u|qdx
 1

q

,

and using again (2.11), we get

lim
n→∞


Ω

f(x, un)(un − u)dx = 0. (2.19)

Since un → u in L2∗
(Ω), we see that

lim
n→∞


Ω

|un|2
∗ −2un(un − u)dx = 0. (2.20)

From ⟨I ′
λ(un), un − u⟩ = on(1), we deduce that

⟨I ′
λ(un), un − u⟩ =


Ω

∆un∆(un − u)dx+M


Ω

|∇un|2dx


Ω

∇un∇(un − u)

− λ


Ω

f(x, un)(un − u)dx −

Ω

|un|2
∗ −2un(un − u)dx

= on(1).

By continuity of M , (2.15), (2.19) and (2.20) we have

lim
n→∞


Ω

∆un∆(un − u)dx = 0.

In the same way, we obtain

lim
n→∞


Ω

∆u∆(un − u)dx = 0.
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Taking into account (2.15), we conclude that ∥un∥ → ∥u∥. By the uniform convexity of H ,
it follows that un → u strongly in H , and hence

I ′
λ(u) = 0 and Iλ(u) = c∗ ≠ 0.

The proof of Theorem 1.1 is complete. �
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