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Abstract. We introduce and characterize slant Riemannian submersions from Sasakian
manifolds onto Riemannian manifolds. We survey main results of slant Riemannian submer-
sions defined on Sasakian manifolds. We give a sufficient condition for a slant Riemannian
submersion from Sasakian manifolds onto Riemannian manifolds to be harmonic. We also
give an example of such slant submersions. Moreover, we find a sharp inequality between the
scalar curvature and norm squared mean curvature of fibres.
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1. INTRODUCTION

Let F be a C∞-submersion from a Riemannian manifold (M, gM ) onto a Riemannian
manifold (N, gN ). Then according to the conditions on the map F : (M, gM ) → (N, gN ),
F can be any one of the following types: semi-Riemannian submersion and Lorentzian sub-
mersion [11], Riemannian submersion [22,12], slant submersion [9,27], almost Hermitian
submersion [29], contact-complex submersion [13], quaternionic submersion [14], almost
h-slant submersion and h-slant submersion [24], semi-invariant submersion [28], h-semi-
invariant submersion [25], etc.

As we know, Riemannian submersions are related to physics and have their applications
in the Yang–Mills theory [6,30], Kaluza–Klein theory [7,15], supergravity and superstring
theories [16,21]. In [26], Şahin introduced anti-invariant Riemannian submersions from al-
most Hermitian manifolds onto Riemannian manifolds. He gave a generalization of Hermitian
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submersions and anti-invariant submersions by defining and studying slant submersions from
almost Hermitian manifolds onto Riemannian manifolds [27].

The present work is another step in this direction, more precisely from the point of view of
slant Riemannian submersions from Sasakian manifolds. We also want to carry anti-invariant
submanifolds of Sasakian manifolds to anti-invariant Riemannian submersion theory and to
prove dual results for submersions. For instance, a slant submanifold of aK-contact manifold
is an anti invariant submanifold if and only if ∇Q = 0 (see Proposition 4.1 of [8]). We get a
result similar to Proposition 4. Although slant submanifolds of contact metric manifolds were
studied by several different authors and are considered a well-established topic in contact
Riemannian geometry, only little about slant submersions are known. So, we study slant
Riemannian submersions from almost contact metric manifolds onto Riemannian manifolds.
Recently, the authors in [17,20] and [18] studied anti-invariant Riemannian submersions from
almost contact manifolds independently of each other.

The paper is organized as follows: In Section 2, we present the basic information about
Riemannian submersions needed throughout this paper. In Section 3, we mention about
Sasakian manifolds. In Section 4, we give the definition of slant Riemannian submersions
and introduce slant Riemannian submersions from Sasakian manifolds onto Riemannian
manifolds. We survey main results on slant submersions defined on Sasakian manifolds. We
give a sufficient condition for a slant Riemannian submersion from Sasakian manifolds onto
Riemannian manifolds to be harmonic. Moreover, we investigate the geometry of leaves of
(kerF∗) and (kerF∗)⊥. We give an example of slant submersions such that the characteristic
vector field ξ is vertical. Moreover, we find a sharp inequality between the scalar curvature
and squared mean curvature of fibres.

2. RIEMANNIAN SUBMERSIONS

In this section we recall several notions and results which will be needed throughout the
paper.

Let (M, gM ) be an m-dimensional Riemannian manifold and let (N, gN ) be an
n-dimensional Riemannian manifold. A Riemannian submersion is a smooth map F : M →
N which is onto and satisfies the following axioms:
S1. F has maximal rank.
S2. The differential F∗ preserves the lengths of horizontal vectors.
The fundamental tensors of a submersion were defined by O’Neill [22], [23]. They are

(1, 2)-tensors on M , given by the following formulas:

T (E,F ) = TEF = H ∇VEVF + V ∇VEHF, (2.1)

A(E,F ) = AEF = V ∇HEHF + H ∇HEVF, (2.2)

for any vector fields E and F on M . Here ∇ denotes the Levi-Civita connection of (M, gM ).
These tensors are called integrability tensors for the Riemannian submersions. Here we
denote the projection morphism on the distributions kerF∗ and (kerF∗)⊥ by V and H,
respectively. The following lemmas are well known [22,23]:

Lemma 1. For any U,W vertical and X,Y horizontal vector fields, the tensor fields T and
A satisfy

(i)TUW = TWU, (2.3)
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(ii)AXY = −AYX =
1
2

V [X,Y ] . (2.4)

It is easy to see that T is vertical, TE = TVE , A is horizontal and A = AHE .
For each q ∈ N , F−1(q) is an (m−n)-dimensional submanifold ofM . The submanifolds

F−1(q), q ∈ N , are called fibres. A vector field on M is called vertical if it is always tangent
to fibres. A vector field on M is called horizontal if it is always orthogonal to fibres. A vector
field X on M is called basic if X is horizontal and F -related to a vector field X on N , i. e.,
F∗Xp = X∗F (p) for all p ∈ M.

Lemma 2. Let F : (M, gM ) → (N, gN ) be a Riemannian submersion. If X, Y are basic
vector fields on M , then

(i) gM (X,Y ) = gN (X∗, Y∗) ◦ F,
(ii) H[X,Y ] is basic and F -related to [X∗, Y∗],
(iii) H(∇XY ) is a basic vector field corresponding to ∇∗

X∗
Y∗ where ∇∗ is the connection

on N ,
(iv) for any vertical vector field V , [X,V ] is vertical.
Moreover, if X is basic and U is vertical, then H(∇UX) = H(∇XU) = AXU . On the

other hand, from (2.1) and (2.2) we have

∇VW = TVW + ∇̂VW, (2.5)

∇VX = H ∇VX + TVX, (2.6)

∇XV = AXV + V ∇XV, (2.7)

∇XY = H ∇XY + AXY, (2.8)

for X,Y ∈ Γ ((kerF∗)⊥) and V,W ∈ Γ (kerF∗), where ∇̂VW = V ∇VW . On any fibre
F−1(q), q ∈ N, ∇̂ coincides with the Levi-Civita connection with respect to the metric
induced by gM . This induced metric on fibre F−1(q) is denoted by ĝ.

Notice that T acts on the fibres as the second fundamental form of the submersion and
restricted to vertical vector fields and it can be easily seen that T = 0 is equivalent to the con-
dition that the fibres are totally geodesic. A Riemannian submersion is called a Riemannian
submersion with totally geodesic fibres if T vanishes identically. Let U1, . . . , Um−n be an
orthonormal frame of Γ (kerF∗). Then the horizontal vector field H = 1

m−n
m−n
j=1 TUj

Uj
is called the mean curvature vector field of the fibre. If H = 0, then the Riemannian sub-
mersion is said to be minimal. A Riemannian submersion is called a Riemannian submersion
with totally umbilical fibres if

TUW = gM (U,W )H (2.9)

for U,W ∈ Γ (kerF∗). For any E ∈ Γ (TM), TE and AE are skew-symmetric operators on
(Γ (TM), gM ) reversing the horizontal and the vertical distributions. By Lemma 1, the hori-
zontal distribution H is integrable if and only if A =0. For any D,E,G ∈ Γ (TM), one has

g(TDE,G) + g(TDG,E) = 0 (2.10)

and

g(ADE,G) + g(ADG,E) = 0. (2.11)
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The tensor fields A, T and their covariant derivatives play a fundamental role in expressing
the Riemannian curvature R of (M, g). By (2.5) and (2.6), we have

R(U, V, S,W ) = g(R(S,W )V,U)

= R̂(U, V, S,W ) + g(TUW, TV S) − g(TVW, TUS), (2.12)

where R̂ is a Riemannian curvature tensor of any fibre (F−1(q), ĝq). Precisely, if {U, V } is
an orthonormal basis of the vertical 2-plane, then Eq. (2.12) implies that

K(U ∧ V ) = K̂(U ∧ V )+ ∥ TUV ∥2 −g(TUU, TV V ), (2.13)

where K and K̂ denote the sectional curvature of M and fibre F−1(q), respectively.
We recall the notion of harmonic maps between Riemannian manifolds. Let (M, gM )

and (N, gN ) be two Riemannian manifolds and suppose that ϕ : M → N is a smooth
map between them. Then the differential ϕ∗ of ϕ can be viewed as a section of the bun-
dle Hom(TM,ϕ−1TN) → M , where ϕ−1TN is the pullback bundle which has fibres
(ϕ−1TN)p = Tϕ(p)N , p ∈ M. Hom(TM,ϕ−1TN) has a connection ∇ induced from the
Levi-Civita connection ∇M and the pullback connection. Then the second fundamental form
of ϕ is given by

(∇ϕ∗)(X,Y ) = ∇ϕ
Xϕ∗(Y ) − ϕ∗(∇M

X Y ) (2.14)

for X,Y ∈ Γ (TM), where ∇ϕ is the pullback connection. It is known that the second
fundamental form is symmetric. If ϕ is a Riemannian submersion, it can be easily proved that

(∇ϕ∗)(X,Y ) = 0 (2.15)

for X,Y ∈ Γ ((kerF∗)⊥). A smooth map ϕ : (M, gM ) → (N, gN ) is said to be harmonic if
trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ is the section τ(ϕ) of Γ (ϕ−1TN)
defined by

τ(ϕ) = divϕ∗ =
m
i=1

(∇ϕ∗)(ei, ei), (2.16)

where {e1, . . . , em} is the orthonormal frame on M . Then it follows that ϕ is harmonic if
and only if τ(ϕ) = 0; for details, see [2].

3. SASAKIAN MANIFOLDS

An n-dimensional differentiable manifold M is said to have an almost contact structure
(φ, ξ, η) if it carries a tensor field φ of type (1, 1), a vector field ξ and a 1-form η on M
respectively such that

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1, (3.1)

where I denotes the identity tensor.
The almost contact structure is said to be normal if N + dη ⊗ ξ = 0, where N is the

Nijenhuis tensor of φ. Suppose that a Riemannian metric tensor g is given in M and satisfies
the condition

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ). (3.2)
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Then the (φ, ξ, η, g)-structure is called an almost contact metric structure. Define a tensor
field Φ of type (0, 2) by Φ(X,Y ) = g(φX, Y ). If dη = Φ then an almost contact metric
structure is said to be normal contact metric structure. A normal contact metric structure is
called a Sasakian structure, which satisfies

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (3.3)

where ∇ denotes the Levi-Civita connection of g. For a Sasakian manifold M = M2n+1, it
is known that

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (3.4)

S(X, ξ) = 2nη(X) (3.5)

and

∇Xξ = −φX. (3.6)

[5].
The curvature tensor R of a Sasakian space form M(c) is given by

R(X,Y )Z =
c+ 3

4
(g(Y,Z)X − g(X,Z)Y )

+
c − 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(φY,Z)φX − g(φX,Z)φY
− 2g(φX, Y )φZ), (3.7)

in [4] for any tangent vector fields X,Y, Z to M(c).
Now we will introduce a well known Sasakian manifold example on R2n+1.

Example 1 ([4]). We consider R2n+1 with Cartesian coordinates (xi, yi, z)(i = 1, . . . , n)
and its usual contact form

η =
1
2


dz −

n
i=1

yidxi


.

The characteristic vector field ξ is given by 2 ∂
∂z and its Riemannian metric g and tensor field

φ are given by

g =
1
4
η ⊗ η +

n
i=1

((dxi)2 + (dyi)2), φ =

 0 δij 0
−δij 0 0

0 yj 0

 , i = 1, . . . , n.

This gives a contact metric structure on R2n+1. The vector fields Ei = 2 ∂
∂yi

, En+i =

2


∂
∂xi

+ yi
∂
∂z


, ξ form a φ-basis for the contact metric structure. On the other hand, it can

be shown that R2n+1(φ, ξ, η, g) is a Sasakian manifold.
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4. SLANT RIEMANNIAN SUBMERSIONS

Definition 1. Let M(φ, ξ, η, gM ) be a Sasakian manifold and (N, gN ) be a Riemannian
manifold. A Riemannian submersion F : M(φ, ξ, η, gM ) → (N, gN ) is said to be slant if for
any nonzero vector X ∈ Γ (kerF∗) − {ξ}, the angle θ(X) between φX and the space kerF∗
is a constant (which is independent of the choice of p ∈ M and of X ∈ Γ (kerF∗) − {ξ}).
The angle θ is called the slant angle of the slant submersion. Invariant and anti-invariant
submersions are slant submersions with θ = 0 and θ = π/2, respectively. A slant submersion
which is not invariant nor anti-invariant is called proper submersion.

Now we will give an example.

Example 2. R5 has got a Sasakian structure as in Example 1. Let F : R5 → R2 be a map
defined by F (x1, x2, y1, y2, z) = (x1 − 2

√
2x2 + y1, 2x1 − 2

√
2x2 + y1). Then, a simple

calculation gives

kerF∗ = span


V1 = 2E1 +

1√
2
E4, V2 = E2, V3 = ξ = E5


and

(kerF∗)⊥ = span


H1 = 2E1 − 1√

2
E4, H2 = E3


.

Then it is easy to see that F is a Riemannian submersion. Moreover, φV1 = 2E3 − 1√
2
E2

and φV2 = E4 imply that |g(φV1, V2)| = 1√
2

. So F is a slant submersion with slant angle
θ = π

4 .

In Example 2, we note that the characteristic vector field ξ is a vertical vector field. If ξ is
orthogonal to kerF∗, we will then give the following theorem.

Theorem 1. Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ,
η, gM ) onto a Riemannian manifold (N, gN ). If ξ is orthogonal to kerF∗, then F is anti-
invariant.

Proof. By (2.3), (2.6), (2.10) and (3.6), we have

g(φU, V ) = −g(∇Uξ, V ) = −g(TUξ, V ) = g(TUV, ξ)
= g(TV U, ξ) = g(U, φV )

for any U, V ∈ Γ (kerF∗). Using the skew symmetry property of φ in the last relation, we
complete the proof of the theorem. �

Remark 1. Lotta [19] proved that ifM1 is a submanifold of a contact metric manifold of M̃1

and ξ is orthogonal to M1, then M1 is an anti-invariant submanifold. So, our result can be
seen as a submersion version of Lotta’s result.
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Now, let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ, η, gM )
onto a Riemannian manifold (N, gN ). Then for any U, V ∈ Γ (kerF∗), we put

φU = ψU + ωU, (4.1)

where ψU and ωU are vertical and horizontal components of φU , respectively. Similarly, for
any X ∈ Γ (kerF∗)⊥, we have

φX = BX + CX, (4.2)

where BX (resp. CX) is the vertical part (resp. horizontal part) of φX .
From (3.2), (4.1) and (4.2), we obtain

gM (ψU, V ) = −gM (U,ψV ) (4.3)

and

gM (ωU, Y ) = −gM (U, BY ), (4.4)

for any U, V ∈ Γ (kerF∗) and Y ∈ Γ ((kerF∗)⊥).
Using (2.5), (3.6) and (4.1), we obtain

TUξ = −ωU, ∇̂Uξ = −ψU, (4.5)

for any U ∈ Γ (kerF∗).
Now we will give the following proposition for a Riemannian submersion with two

dimensional fibres in a similar way to Proposition 3.2 of [1].

Proposition 1. Let F be a Riemannian submersion from an almost contact manifold onto a
Riemannian manifold. If dim(kerF∗) = 2 and ξ is a vertical vector field, then the fibres are
anti-invariant.

As the proof of the following proposition is similar to slant submanifolds (see [8]), we
omit its proof.

Proposition 2. Let F be a Riemannian submersion from a Sasakian manifold M(φ, ξ, η, gM )
onto a Riemannian manifold (N, gN ) such that ξ ∈ Γ (kerF∗). Then F is an anti-invariant
submersion if and only if D is integrable, where D = kerF∗ − {ξ}.

Theorem 2. Let M(φ, ξ, η, gM ) be a Sasakian manifold of dimension 2m + 1 and (N, gN )
is a Riemannian manifold of dimension n. Let F : M(φ, ξ, η, gM ) → (N, gN ) be a slant
Riemannian submersion. Then the fibres are not totally umbilical.

Proof. Using (2.5) and (3.6), we obtain

TUξ = −ωU, (4.6)

for any U ∈ Γ (kerF∗). If the fibres are totally umbilical, then we have TUV = gM (U, V )H
for any vertical vector fields U, V where H is the mean curvature vector field of any fibre.
Since Tξξ = 0, we have H = 0, which shows that fibres are minimal. Hence the fibres are
totally geodesic, which is a contradiction to the fact that TUξ = −ωU ≠ 0. �
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By (2.5), (2.6), (4.1) and (4.2), we have

(∇Uω)V = CTUV − TUψV, (4.7)

(∇Uψ)V = B T UV − TUωV +R(ξ, U)V, (4.8)

where

(∇Uω)V = H ∇UωV − ω∇̂UV (4.9)

(∇Uψ)V = ∇̂UψV − ψ∇̂UV, (4.10)

for U, V ∈ Γ (kerF∗). Now we will characterize slant submersions in the following theorem.

Theorem 3. Let F be a Riemannian submersion from a Sasakian manifold M(φ, ξ, η, gM )
onto a Riemannian manifold (N, gN ) such that ξ ∈ Γ (kerF∗). Then, F is a slant Riemannian
submersion if and only if there exists a constant λ ∈ [0, 1] such that

ψ2 = −λ(I − η ⊗ ξ). (4.11)

Furthermore, in such a case, if θ is the slant angle of F , it satisfies that λ = cos2 θ.

Proof. Firstly we suppose that F is not an anti-invariant Riemannian submersion. Then, for
U ∈ Γ (kerF∗),

cos θ =
gM (φU, ψU)

|φU | |ψU |
=

|ψU |2

|φU | |ψU |
=

|ψU |
|φU |

. (4.12)

Since φU ⊥ ξ, we have g(ψU, ξ) = 0. Now, substituting U by ψU in (4.12) and using (3.2)
we obtain

cos θ =

ψ2U


|φψU |
=

ψ2U


|ψU |
. (4.13)

From (4.12) and (4.13), we have

|ψU |2 =
ψ2U

 |φU | . (4.14)

On the other hand, one can get the following

gM (ψ2U,U) = gM (φψU,U) = −gM (ψU, φU)

= −gM (ψU,ψU) = − |ψU |2 . (4.15)

Using (4.14) and (4.15), we get

gM (ψ2U,U) = −
ψ2U

 |φU |

= −
ψ2U

 φ2U
 . (4.16)

Also, one can easily get

gM (ψ2U, φ2U) = −gM (ψ2U,U). (4.17)
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So, by means of (4.16) and (4.17), we obtain gM (ψ2U, φ2U) =
ψ2U

 φ2U
 and it follows

that ψ2U and φ2U are collinear, that is ψ2U = λφ2U = −λ(I − η ⊗ ξ). Using the last
relation together with (4.12) and (4.13) we obtain that cos θ =

√
λ is constant and so F is a

slant Riemannian submersion.
If F is an anti-invariant Riemannian submersion then φU is normal, ψU = 0 and it is

equivalent to ψ2U = 0. In this case θ = π
2 and so Eq. (4.12) is again satisfied. �

By using (3.2), (4.1), (4.3) and (4.11), we have the following lemma.

Lemma 3. Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ,
η, gM ) onto a Riemannian manifold (N, gN ) with slant angle θ. Then the following relations
are valid for any U, V ∈ Γ (kerF∗):

gM (ψU,ψV ) = cos2 θ(gM (U, V ) − η(U)η(V )), (4.18)

gM (ωU, ωV ) = sin2 θ(gM (U, V ) − η(U)η(V )). (4.19)

We denote the complementary orthogonal distribution to ω(kerF∗) in (kerF∗)⊥ by µ.
Then we have

(kerF∗)⊥ = ω(kerF∗) ⊕ µ. (4.20)

Lemma 4. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then µ is an invariant distribution
of (kerF∗)⊥ under the endomorphism φ.

Proof. For X ∈ Γ (µ) and V ∈ Γ (kerF∗), from (3.2) and (4.1), we obtain

gM (φX,ωV ) = gM (φX, φV ) − gM (φX,ψV )
= gM (X,V ) − η(X)η(V ) − gM (φX,ψV )
= −gM (X,φψV )
= 0.

In a similar way, we have gM (φX,U) = −gM (X,φU) = 0 due to φU ∈ Γ ((kerF∗) ⊕
ω(kerF∗)) for X ∈ Γ (µ) and U ∈ Γ (kerF∗). Thus the proof of the lemma is
completed. �

By means of (4.19), we can give the following result:

Corollary 1. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ). Let

{e1, e2, . . . , e2m−n, ξ}

be a local orthonormal frame of (kerF∗), then {csc θωe1, csc θωe2, . . . , csc θωe2m−n} is a
local orthonormal frame of ω(kerF∗).

By using (4.20) and Corollary 1, one can easily prove the following proposition:
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Proposition 3. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ). Then dim(µ) = 2(n − m). If
µ = {0}, then n = m.

By (4.3) and (4.18), we have

Lemma 5. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ). If e1, e2, . . . , ek, ξ are
orthogonal unit vector fields in (kerF∗), then

{e1, sec θψe1, e2, sec θψe2, . . . , ek, sec θψek, ξ}

is a local orthonormal frame of (kerF∗). Moreover dim(kerF∗) = 2m − n + 1 = 2k + 1
and dimN = n = 2(m − k).

Lemma 6. Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ,
η, gM ) onto a Riemannian manifold (N, gN ). If ω is parallel, then we have

TψUψU = − cos2 θ(TUU + η(U)ωU). (4.21)

Proof. If ω is parallel, from (4.7), we obtain CTUV = TUψV for U, V ∈ Γ (kerF∗).
Antisymmetrizing with respect to U , V and using (2.3), we get

TUψV = TV ψU.

Substituting V by ψU in the above equation and using Theorem 3, we get the required
formula. �

We give a sufficient condition for a slant Riemannian submersion to be harmonic as
an analogue of a slant Riemannian submersion from an almost Hermitian manifold onto a
Riemannian manifold in [27].

Theorem 4. Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ,
η, gM ) onto a Riemannian manifold (N, gN ). If ω is parallel, then F is a harmonic map.

Proof. From [10] we know that F is harmonic if and only if F has minimal fibres. Thus F is
harmonic if and only if

n1
i=1 Tei

ei = 0. Hence using the adapted frame for slant Riemannian
submersion and by the help of (2.16) and Lemma 5, we can write

τ = −
m− n

2
i=1

F∗(Tei
ei + Tsec θψei

sec θψei) − F∗(Tξξ).

Regarding Tξξ = 0, we have

τ = −
m− n

2
i=1

F∗(Tei
ei + sec2 θTψei

ψei).



260 I.K. Erken, C. Murathan

Using (4.21) in the above equation, we obtain

τ = −
m− n

2
i=1

F∗(Teiei + sec2 θ(− cos2 θ(Teiei + η(ei)ωei)))

= −
m− n

2
i=1

F∗(Tei
ei − Tei

ei) = 0.

So we prove that F is harmonic. �

Now setting Q = ψ2, we define ∇Q by

(∇UQ)V = V ∇UQV − Q∇̂UV

for any U, V ∈ Γ (kerF∗).We give a characterization for a slant Riemannian submersion
from a Sasakian manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) by using the
value of ∇Q.

Proposition 4. Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ,
η, gM ) onto a Riemannian manifold (N, gN ). Then, ∇Q = 0 if and only if F is an anti-
invariant submersion.

Proof. By using (4.11),

Q∇̂UV = − cos2 θ(∇̂UV − η(∇̂UV )ξ) (4.22)

for each U, V ∈ Γ (kerF∗), where θ is the slant angle.
On the other hand, it follows that

V(∇UQV ) = − cos2 θ(∇̂UV − η(∇̂UV )ξ + g(V, ψU)ξ + η(V )ψU). (4.23)

So, from (4.22) and ∇Q = 0 if and only if cos2 θ(g(V, ψU)ξ+η(V )ψU) = 0 which implies
that ψU = 0 or θ = π

2 . Both the cases verify that F is an anti-invariant submersion. �

We now investigate the geometry of leaves of (kerF∗)⊥ and kerF∗.

Theorem 5. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the distribution (kerF∗)⊥

defines a totally geodesic foliation on M if and only if

gM (H ∇XY, ωψU) − sin2 θgM (Y, φX)η(U) = gM (AXBY, ωU)
+ gM (H ∇XCY, ωU)

for any X,Y ∈ Γ ((kerF∗)⊥) and U ∈ Γ (kerF∗).

Proof. From (3.3) and (4.1), we have

gM (∇XY,U) = −gM (φ∇XφY,U) + gM (Y, φX)η(U)
= gM (∇XφY, φU) + gM (Y, φX)η(U)
= gM (∇XφY, ψU) + gM (∇XφY, ωU) + gM (Y, φX)η(U) (4.24)

for any X,Y ∈ Γ ((kerF∗)⊥) and U ∈ Γ (kerF∗).
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Using (3.3) and (4.1) in (4.24), we obtain

gM (∇XY, U) = −gM (∇XY, ψ
2U) − gM (∇XY, ωψU)

+ gM (Y, φX)η(U) + gM (∇XφY, ωU). (4.25)

By (4.2) and (4.11), we have

gM (∇XY, U) = cos2 θgM (∇XY,U) − cos2 θη(U)η(∇XY )
− gM (∇XY, ωψU) + gM (Y, φX)η(U)
+ gM (∇XBY, ωU) + gM (∇XCY, ωU). (4.26)

Using (2.7), (2.8) and (3.6) in the last equation, we obtain

sin2 θgM (∇XY,U) = sin2 θgM (Y, φX)η(U) − gM (H ∇XY, ωψU)
+ gM (AXBY, ωU) + gM (H ∇XCY, ωU)

which proves the theorem. �

Proposition 5. Let F be a proper slant Riemannian submersion from a Sasakian manifold
M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). If the distribution kerF∗ defines a
totally geodesic foliation on M , then F is an invariant submersion.

Proof. By (4.5), if the distribution kerF∗ defines a totally geodesic foliation on M , then
we conclude that ωU = 0 for any U ∈ Γ (kerF∗) which shows that F is an invariant
submersion. �

Now we establish a sharp inequality between norm squared mean curvature ∥H∥2 and the
scalar curvature τ̂ of fibre through p ∈ M5(c).

Theorem 6. Let F be a proper slant Riemannian submersion from a Sasakian space form
M5(c) onto a Riemannian manifold (N2, gN ). Then, we have

∥H∥2 ≥ 8
9
τ̂ − 2

9
[c+ 3 + (3c+ 5) cos2 θ] (4.27)

where H denotes the mean curvature of fibres. Moreover, the equality sign of (4.27) holds
at a point p of a fibre if and only if with respect to some suitable slant orthonormal frame
{e1, e2 = sec θψe1, e3 = ξ, e4 = csc θwe1, e5 = csc θwe2} at p, we have

T 4
11 = 3T 4

22, T 4
12 = 0 and T 5

11 = 0,

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 3 and α = 4, 5.

Proof. By Corollary 1, Lemma 5 and Proposition 3 we construct a slant orthonormal frame
{e1, e2, e3, e4, e5} defined by

e1, e2 = sec θψe1, e3 = ξ, e4 = csc θwe1, e5 = csc θwe2, (4.28)

where e1, e2, e3 = ξ ∈ Γ (kerF∗) and e4, e5 ∈ Γ ((kerF∗)⊥). Let τ̂ be scalar curvature of
fibre F−1(q). We choose an arbitrary point p of the fibre F−1(q). We obtain

τ̂(p) = K̂(e1 ∧ e2) + K̂(e1 ∧ e3) + K̂(e2 ∧ e3). (4.29)
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By (2.12), (2.13) and (3.7), we get

K̂(e1 ∧ e2) =
c+ 3

4
+

3
4
(c − 1) cos2 θ + T 4

11T
4
22

+T 5
11T

5
22 − (T 4

12)
2 − (T 5

12)
2, (4.30)

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 3 and α = 4, 5. Using Theorem 3 and the
relation (4.19), one has

ψe2 = − cos θe1 and ωe2 = sin θe5. (4.31)

From (4.8), we have

g((∇̂e2ψ)e2, e1) = g(B T e2e2, e1) − g(Te2ωe2, e1).

Using (4.1), (4.2), (4.10), (4.28) and (4.31) in the last relation, we obtain

sin θ[g(Te2e2, e4) − g(Te2e1, e5)] = 0. (4.32)

Since the submersion is proper, Eq. (4.32) implies that

T 4
22 = T 5

12.

Now we choose the unit normal vector e4 ∈ Γ (ker(F∗))⊥ parallel to the mean curvature
vector H(p) of fibre. Then we have

∥H(p)∥2 =
1
9
(T 4

11 + T 4
22)

2, T 5
11 + T 5

22 = 0.

So the relation (4.30) becomes

K̂(e1 ∧ e2) =
c+ 3

4
+

3
4
(c − 1) cos2 θ + T 4

11T
4
22 − (T 5

11)
2 − (T 4

12)
2 − (T 4

22)
2. (4.33)

From the trivial inequality (µ − 3λ)2 ≥ 0, one has (µ+ λ)2 ≥ 8(λµ − λ2). Putting µ = T 4
11

and λ = T 4
22 in the last inequality, we find

∥H∥2 ≥ 8
9


K̂(e1 ∧ e2) − c+ 3

4
− 3

4
(c − 1) cos2 θ


. (4.34)

Using (2.13), we get

K̂(e1 ∧ e3) = K̂(e2 ∧ e3) = cos2 θ.

By (2.13), (4.29) and the last relation, we get the required inequality. Moreover, the equality
sign of (4.27) holds at a point p of a fibre if and only if T 4

11 = 3T 4
22, T 4

12 = 0 and T 5
11 = 0. �

Open Problem:
Let F be a slant Riemannian submersion from a Sasakian manifold M(φ, ξ, η, gM ) onto

a Riemannian manifold (N, gN ). In [3], Barrera et al. defined and studied the Maslov form
of non-invariant slant submanifolds of S-space form M̃(c). They find conditions for it to be
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closed. By a similar discussion in [3], we can define Maslov form ΩH of M as the dual form
of the vector field BH , that is,

ΩH(U) = gM (U, BH)

for any U ∈ Γ (kerF∗). So it will be interesting to give a characterization with respect to

ΩH for slant submersions, where H =
m− n

2
i=1 Teiei + Tsec θψei sec θψei and

{e1, sec θψe1, e2, sec θψe2, . . . , ek, sec θψek, ξ} is a local orthonormal frame of (kerF∗).
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