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Abstract. In this paper we study the transfer of the property of Hopfian modules between
the right R-module MR and some of its extension classes. Namely, under certain conditions,
we show that: MR is a Hopfian right R-module if and only if the skew generalized power
series module


MS,≤

is a Hopfian right


RS,≤, ω


-module.
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1. INTRODUCTION

Throughout this paper R denotes an associative ring not necessarily commutative with the
identity and MR a unitary right R-module. As it has been noted by Hiremath [3], the concept
of Hopfian groups was introduced by Baumslag [1]. In fact, the study of endomorphism rings
of various rings and modules has been a topic of keen interest since the end of the nineteen
sixties when injectivity and its variants began to flourish. In 1986, Hiremath introduced the
concept of the Hopfian module as follows: A right R-module MR is called Hopfian if any
surjective endomorphism ofMR is an isomorphism. The term “Hopfian” is said to be in honor
of Heinz Hopf and his use of the concept of the Hopfian group in his work on fundamental
groups of surfaces. Any noetherian module is Hopfian and ifR is a right noetherian ring, then
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every finitely generated R-module is a Hopfian module. Also, a simple ring is Hopfian, since
the kernel of any endomorphism is an ideal, which is necessarily zero in a simple ring.

The module RR is Hopfian if and only if R is a directly finite ring. Symmetrically, these
two are also equivalent to the leftR-module RR being Hopfian. The full linear ring EndD(V )
of a countable dimensional vector space is a Hopfian ring which is not Hopfian as a module,
since it only has three ideals, but it is not directly finite.

Varadarajan [5,6] showed that the right R-module MR is Hopfian if and only if the right
R[x]-module M [x] is Hopfian.

The motivation of this paper is to investigate how the property of Hopfian modules behaves
under passage to the skew generalized power series modules.

2. HOPFIAN MODULES OVER SKEW GENERALIZED POWER SERIES RINGS

In this section we extend the results of [9] to the skew generalized power series modules.
Let (S, ≤) be an ordered commutative monoid. Unless stated otherwise, the operation of

S will be denoted additively, and the identity element by 0. Recall that (S, ≤) is artinian if
every strictly decreasing sequence of elements of S is finite and that (S, ≤) is narrow if every
subset of pairwise order-incomparable elements of S is finite. The following construction is
due to Zhongkui [10]:

Let (S, ≤) be a strictly ordered monoid (that is, if s, s
′
, t ∈ S and s < s

′
, then s + t <

s
′
+ t), R a ring and ω : S −→ End (R) a monoid homomorphism. Consider the set

A =

RS,≤, ω


of all maps f : S −→ R whose support (supp (f) = {s ∈ S| f (s) ≠ 0})

is artinian and narrow.
For every s ∈ S and f, g ∈ A, let

Xs (f, g) = {(u, v) ∈ S × S| u+ v = s; f (u) ≠ 0, g (v) ≠ 0} .

It follows from ([4], 4.1) that Xs (f, g) is a finite set.
This fact allows us to define the operation of multiplication (convolution) as follows:

(fg) (s) =


(u,v)∈Xs(f,g)

f (u)ωu (g (v)) ,

and (fg) (s) = 0 if Xs (f, g) = φ. With this operation and pointwise addition A =
RS,≤, ω


becomes a ring, which is called the ring of skew generalized power series with

coefficients in R and exponents in S.
In [8], Zhao and Jiao generalized this construction to obtain the skew generalized power

series modules over skew generalized power series rings, as follows:
Let MR be a right R-module, let B be the set of all maps ϕ : S −→ M such that supp(ϕ)

= {s ∈ S |ϕ (s) ≠ 0} is artinian and narrow. With pointwise addition, B =

MS,≤

is an
abelian additive group. For each f ∈ A =


RS,≤, ω


and ϕ ∈ B, the set

Xs (ϕ, f) = {(u, v) ∈ S × S| u+ v = s;ϕ (u) ≠ 0, f (v) ≠ 0}

is finite (see [9], Lemma 1). This allows us to define the scalar multiplication of the elements
of B by scalars from A as follows:

(ϕf) (s) =


(u,v)∈Xs(ϕ,f)

ϕ (u)ωu (f (v)) ,
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and (ϕf) (s) = 0 if Xs (ϕ, f) = φ. With this operation and pointwise addition, one can eas-
ily show that B is a right A-module, which is called the module of skew generalized power
series with coefficients in M and exponents in S.

For every s ∈ S if we set ω (s) = IdR ∈ Aut(R) ⊂ End(R), the identity map of R,
then A =


RS,≤, ω


=


RS,≤

is the ring of generalized power series in the sense of
Ribenboim [4] and B =


MS,≤

is the untwisted module of generalized power series in
the sense of [7].

For any r ∈ R we associated the map cr ∈ A defined by:

cr (x) =

r, if x = 0,
0, if x ≠ 0.

For any m ∈ M and s ∈ S, we define a map dsm ∈ B by:

dsm (x) =

m, if x = s,
0, if x ≠ s.

If (S, ≤) is a strictly totally ordered monoid, then supp (f) is a nonempty well-ordered
subset of S, for every 0 ≠ f ∈ A, and we denote by π(f) the smallest element of supp (f).
Also, supp (ϕ) is a nonempty well-ordered subset of S, for every 0 ≠ ϕ ∈ B, and we denote
by π(ϕ) the smallest element of supp (ϕ).

The following are required in the sequel.

Definition 1 ([2]). A monoid S is called finitely generated if there exists a finite subset
{s1, . . . , sn} of S such that S = {

n
i=1 kisi |ki ≥ 0 }.

Lemma 1 ([2]). If S is a finitely generated monoid, then every ideal of S is finitely
generated, so every strictly increasing sequence of ideals is finite.

The following lemma is crucial in developing the proof of the main result.

Lemma 2. Let (S, ≤) be a strictly totally ordered monoid which is finitely generated and
satisfies the condition that 0 ≤ s for every s ∈ S. Assume that ωs (1) = 1 for each s ∈ S.
Then π (α(ϕ)) ≥ π(ϕ) where α ∈ EndA (B) and 0 ≠ ϕ ∈ B.

Proof. For each element x ∈ S, we denote by x+ the subset x+ = {x + y | y ∈ S }. Set
s = π(α(ϕ)) and t = π(ϕ). Suppose that s < t. Define ψ1 ∈ B via

ψ1(x) = ϕ(x+ t).

Set ϕ1 = ϕ − ψ1et. If ϕ1 = 0, then ϕ = ψ1et. Thus

α(ϕ) = α(ψ1et) = α(ψ1)et.

For any x ∈ S with x < t, we have

(α(ψ1)et)(x) =


(u,v)∈Xx(α(ψ1),et)

α(ψ1) (u)ωu (et (v)) .
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For each pair (u, v) ∈ Xx (α(ψ1), et), we have x = u + v < t. Then u < t and v < t.
Thus et (v) = 0 and (α(ψ1)et)(x) = 0. Hence π (α(ψ1)et) ≥ t. It follows that s ≥ t, a
contradiction. So ϕ1 ≠ 0. Since ϕ = ϕ1 + ψ1et, we have

α(ϕ) = α (ϕ1 + ψ1et) = α(ϕ1) + α(ψ1)et.

It follows that

supp (α(ϕ)) ⊆ supp (α(ϕ1)) ∪ supp (α(ψ1)et) .

If s ∈ supp (α(ψ1)et), then s ≥ π(α(ψ1)et) ≥ t, a contradiction with the assumption that
s < t. Thus s ∈ supp (α(ϕ1)).

Denote s1 = π (α(ϕ1)) and t1 = π (ϕ1). Then s ≥ s1. Since

ϕ1(t) = (ϕ − ψ1et)(t)
= ϕ(t) − (ψ1et)(t)
= ϕ(t) − ψ1(0)ω0 (et (t))
= ϕ(t) − ψ1(0)ω0 (1) = ϕ(t) − ψ1(0),

we have

ϕ1(t) = ϕ(t) − ϕ(0 + t) = ϕ(t) − ϕ(t) = 0.

It is clear that t1 > t. If t1 ∈ t+ = {t + u |u ∈ S }, then there exists u ∈ S such that t1 =
t+ u. Thus

0 ≠ ϕ1(t1) = (ϕ − ψ1et)(t1)
= ϕ(t1) − (ψ1et)(t1)

= ϕ(t1) −


(y,z)∈Xt1 (ψ1,et)

ψ1(y)ωy (et (z))

= ϕ(t1) − ψ1(u)ωu (et (t))
= ϕ(t1) − ψ1(u)ωu (1) = ϕ(t1) − ψ1(u)
= ϕ(t1) − ϕ(u+ t) = ϕ(t1) − ϕ(t1) = 0,

a contradiction. Hence t1 ∉ t+ and t1 +S ⊈ t+S. Then t+S $ (t+S) ∪ (t1 +S). Suppose
that for a positive integer n ≥ 2, we have found ϕ1, ψ1, . . . , ϕn−1, ψn−1 ∈ B such that

ψi(x) = ϕi−1(x+ ti−1) and ϕi = ϕi−1 − ψieti−1 ,

where

ti = π(ϕi), t < t1 < · · · < ti−1 < ti and

ti ∉ t+ ∪ t+1 ∪ · · · ∪ t+i−1 for each i = 1, . . . , n − 1.

We set t0 = t and ϕ0 = ϕ. Define ψn ∈ B via

ψn(x) = ϕn−1(x+ tn−1).
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Let ϕn = ϕn−1 − ψnetn−1 . Hence

ϕ = ψ1et + ψ2et1 + · · · + ψnetn−1 + ϕn.

If ϕn = 0, then

α(ϕ) = α(ψ1)et + α(ψ2)et1 + · · · + α(ψn)etn−1 .

Thus

supp (α(ϕ)) ⊆
n−1
i=0

supp (α(ψi+1)eti) ,

which implies that there exists i such that s = π (α(ϕ)) ∈ supp (α(ψi+1)eti). Thus s ≥
π (α(ψi+1)eti) ≥ ti ≥ t, a contradiction. Now, suppose that ϕn ≠ 0. Denote tn = π(ϕn).
Since ϕn = ϕn−1 − ψnetn−1 , we have

ϕn (tn−1) = ϕn−1 (tn−1) −

ψnetn−1


(tn−1)

= ϕn−1 (tn−1) −


(y,z)∈Xtn−1(ψn,etn−1)
ψn(y)ωy


etn−1 (z)


= ϕn−1 (tn−1) − ψn (0)ω0


etn−1 (tn−1)


= ϕn−1 (tn−1) − ψn (0)ω0 (1) = ϕn−1 (tn−1) − ψn (0)
= ϕn−1 (tn−1) − ϕn−1 (0 + tn−1) = 0.

For any x ∈ S with x < tn−1 and for every (y, z) ∈ Xx


ψn, etn−1


, we have x = y + z <

tn−1. Then y < tn−1 and z < tn−1, and hence ωy

etn−1 (z)


= ωy (0) = 0. It follows that

ϕn (x) = ϕn−1 (x) −

ψnetn−1


(x)

= 0 −


(y,z)∈Xx(ψn,etn−1)
ψn(y)ωy


etn−1 (z)


= 0.

So π (ϕn) = tn > tn−1. Thus

t < t1 < · · · < tn−1 < tn.

Suppose that tn ∈ t+ ∪ t+1 ∪ · · · ∪ t+n−1. Then there exists i such that

tn ∉ t+n−1, . . . , tn ∉ t+i+1, but tn ∈ t+i .

Let tn = ti + v for some v ∈ S. Then

ϕi(tn) =

ψi+1eti + ψi+2eti+1 + · · · + ψnetn−1 + ϕn


(tn)

= (ψi+1eti) (tn) +

ψi+2eti+1


(tn) + · · · + (ψnetn−1) (tn) + ϕn (tn) .

Note that, since tn ∈ t+i and tn ∉ t+i+1, we see that

(ψi+1eti) (tn) = ψi+1(v)ωv (eti (ti)) = ψi+1 (v)ωv (1) = ψi+1(v),
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and

(ψi+2eti+1) (tn) =


(y,z)∈Xtn(ψi+2,eti+1)
ψi+2(y)ωy


eti+1 (z)


= 0.

Thus

ϕi (tn) = ψi+1(v) + ϕn(tn) = ϕi(v + ti) + ϕn (tn) = ϕi (tn) + ϕn(tn),

which implies that ϕn(tn) = 0, a contradiction. Hence tn ∉ t+ ∪ t+1 ∪ · · · ∪ t+n−1. Now, we
have the infinite strictly increasing sequence of ideals of S

t+ S $ (t+ S) ∪ (t1 + S) $ (t+ S) ∪ (t1 + S) ∪ (t2 + S) $ · · ·

a contradiction with Lemma 1. Therefore s ≥ t. �

Now, we are able to prove the main result of this paper.

Theorem 3. Suppose that (S, ≤) is a strictly totally ordered monoid which is finitely gener-
ated and satisfies the condition that 0 ≤ s for every s ∈ S. Assume that ωs (1) = 1 for each
s ∈ S. Then MR is a Hopfian right R-module if and only if BA is a Hopfian right A-module.

Proof. Suppose that MR is a Hopfian right R-module. Let α : BA −→ BA be any surjec-
tive A-homomorphism. We want to prove that α is injective to be an isomorphism. Define
f : B −→ M via f (ϕ) = ϕ (0). Now, define h : MR −→ MR via h (m) = fα(d0

m).
(1) h is an R-homomorphism: For any m ∈ M and r ∈ R, we have

h (mr) = fα

d0
mr


= fα


d0
mcr


= f


α


d0
mcr


= f


α


d0
m


cr


=


α


d0
m


cr


(0).

Since 0 ≤ s for every s ∈ S, we get X0


α(d0

m), cr


= {(0, 0)} and so

h (mr) = (α(d0
m))(0)ω0 (cr(0)) = (α(d0

m))(0)ω0(r)
= (α(d0

m))(0)r = fα(d0
m)r

= h(m)r.

(2) h is a surjective map: For any m ∈ M , there exists β ∈ B such that α (β) = d0
m since α

is surjective. Let ψ = β − d0
β(0). Then

ψ(0) = (β − d0
β(0))(0) = β(0) − d0

β(0)(0) = β(0) − β(0) = 0.

So π (ψ) > 0 and using Lemma 2, π (α (ψ)) > 0. Hence

m = d0
m (0) = α (β) (0) = α


ψ + d0

β(0)


(0) =


α (ψ) + α


d0
β(0)


(0)

= α (ψ) (0) + α

d0
β(0)


(0) = 0 + α


d0
β(0)


(0) = α


d0
β(0)


(0)

= fα

d0
β(0)


= h(β(0)).

Hence h is a surjective R-homomorphism which must be an isomorphism, since MR is a
Hopfian right R-module. To prove that α is injective, let ϕ ∈ BA be such that α (ϕ) = 0.
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It follows that h (ϕ (0)) = α (ϕ) (0) = 0. Then ϕ (0) = 0, since h is an R-isomorphism.
Suppose that u ∈ S and for any v ∈ S with v < u, ϕ (v) = 0. We show that ϕ (u) = 0.
Define ψ ∈ BA via

ψ (s) =

ϕ (u) , if s = u,
0, if s ≠ u.

Thus (ϕ − ψ) (s) = 0, for any s ≤ u, and it follows that π (ϕ − ψ) > u. Using Lemma 2,
we have π (α (ϕ − ψ)) > u. Hence

α (ψ) (u) = α (ψ) (u) + 0 = α (ψ) (u) + α (ϕ − ψ) (u)
= α (ψ + ϕ − ψ) (u) = α (ϕ) (u) = 0.

Consider the following computation, for any s ∈ S
d0
ϕ(u)eu


(s) =


(x,y)∈Xs


d0

ϕ(u),eu

 d0
ϕ(u) (x)ωx (eu (y))

= d0
ϕ(u) (0)ω0 (eu (s))

= ϕ (u) eu (s)

=

ϕ (u) , if s = u,
0, if s ≠ u.

= ψ(s).

It follows that ψ = d0
ϕ(u)eu. Thus

h (ϕ (u)) = fα

d0
ϕ(u)


= α


d0
ϕ(u)


(0) =


α


d0
ϕ(u)


eu


(u)

= α

d0
ϕ(u)eu


(u) = α (ψ) (u) = 0,

which implies that ϕ (u) = 0, since h is an R-isomorphism. Hence ϕ (s) = 0 for any s ∈ S,
and so ϕ = 0. Therefore α is an A-isomorphism and BA is a Hopfian right A-module.

Conversely, suppose that BA is a Hopfian right A-module. Let h : MR −→ MR be any
surjective R-homomorphism. We want to prove that h is injective.

Define α : BA −→ BA via α (ϕ) (s) = h (ϕ (s)) for any ϕ ∈ BA and s ∈ S. We show
that α is an A-isomorphism.

(1) α is an A-homomorphism: For any ϕ ∈ BA, f ∈ A and s ∈ S, we set

X1 = {(u, v) ∈ Xs (ϕ, f) |h (ϕ (u)) = α (ϕ) (u) = 0 } and

X2 = {(u, v) ∈ Xs (ϕ, f) |h (ϕ (u)) = α(ϕ) (u) ≠ 0 }.

Then clearly X2 = Xs (α(ϕ), f). Consider the following computation, for any s ∈ S

α (ϕf) (s) = h ((ϕf) (s)) = h

 
(u,v)∈Xs(ϕ,f)

ϕ (u)ωu (f (v))


=


(u,v)∈Xs(ϕ,f)

h (ϕ (u))ωu (f (v))
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=


(u,v)∈X1

h (ϕ (u))ωu (f (v)) +


(u,v)∈X2

h (ϕ (u))ωu (f (v))

= 0 +


(u,v)∈X2

h (ϕ (u))ωu (f (v))

=


(u,v)∈Xs(α(ϕ),f)

α(ϕ) (u)ωu (f (v))

= (α(ϕ)f) (s) .

Thus α (ϕf) = α (ϕ) f .
(2) α is a surjective map: For any ψ ∈ BA and any s ∈ supp (ψ), there exists an element

ms ∈ M such that h (ms) = ψ (s), since h is a surjective map.
Define β : S −→ M via

β (s) =

ms, if s ∈ supp (ψ) ,
0, if s ∉ supp (ψ) .

Clearly, supp (β) ⊆ supp (ψ), which implies that supp (β) is an artinian and narrow subset
of S and thus β ∈ BA.

If s ∈ supp (ψ), then

α(β)(s) = h (β (s)) = h (ms) = ψ (s) .

If s ∉ supp (ψ), then

α(β)(s) = h (β (s)) = h (0) = 0.

Thus α (β) = ψ. Hence α is a surjective A-homomorphism which must be an isomorphism,
since BA is a Hopfian right A-module. To prove that h is injective, let m ∈ M be such that
h (m) = 0. Then for any s ∈ S,

α

d0
m


(s) = h


d0
m (s)


=


h


d0
m (0)


= h (m) = 0, if s = 0,

h (0) = 0, if s ≠ 0.

Thus α

d0
m


= 0 and so m = 0, since α is an A-isomorphism. Therefore h is an R-

isomorphism and MR is a Hopfian right R-module. �

If we set ω (s) = IdR, for every s ∈ S, we get the following result as a corollary.

Corollary 4 ([9]). Suppose that (S, ≤) is a strictly totally ordered monoid which is finitely
generated and satisfies the condition that 0 ≤ s for every s ∈ S. Then MR is a Hopfian right
R-module if and only if


MS,≤

[[RS,≤]]
is a Hopfian right


RS,≤

-module.
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