Skew generalized power series Hopfian modules

Refaat Salem ${ }^{\text {a }}$, Mohamed Farahat ${ }^{\text {a,b, }, * \text {, Hanan Abd-Elmalk }}{ }^{\mathrm{c}}$
${ }^{\text {a }}$ Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, Saudi Arabia
${ }^{c}$ Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Received 1 May 2015; received in revised form 24 June 2015; accepted 25 June 2015
Available online 2 July 2015

Abstract

In this paper we study the transfer of the property of Hopfian modules between the right R-module M_{R} and some of its extension classes. Namely, under certain conditions, we show that: M_{R} is a Hopfian right R-module if and only if the skew generalized power series module $\left[\left[M^{S, \leq}\right]\right]$ is a Hopfian right $\left[\left[R^{S, \leq}, \omega\right]\right]$-module.

Keywords: Hopfian module; Hopfian ring; Skew generalized power series module
2010 Mathematics Subject Classification: primary 06F05; 16W60; secondary 13E10

1. Introduction

Throughout this paper R denotes an associative ring not necessarily commutative with the identity and M_{R} a unitary right R-module. As it has been noted by Hiremath [3], the concept of Hopfian groups was introduced by Baumslag [1]. In fact, the study of endomorphism rings of various rings and modules has been a topic of keen interest since the end of the nineteen sixties when injectivity and its variants began to flourish. In 1986, Hiremath introduced the concept of the Hopfian module as follows: A right R-module M_{R} is called Hopfian if any surjective endomorphism of M_{R} is an isomorphism. The term "Hopfian" is said to be in honor of Heinz Hopf and his use of the concept of the Hopfian group in his work on fundamental groups of surfaces. Any noetherian module is Hopfian and if R is a right noetherian ring, then

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2015.06.003
1319-5166 © 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
every finitely generated R-module is a Hopfian module. Also, a simple ring is Hopfian, since the kernel of any endomorphism is an ideal, which is necessarily zero in a simple ring.

The module R_{R} is Hopfian if and only if R is a directly finite ring. Symmetrically, these two are also equivalent to the left R-module ${ }_{R} R$ being Hopfian. The full linear ring $\operatorname{End}_{D}(V)$ of a countable dimensional vector space is a Hopfian ring which is not Hopfian as a module, since it only has three ideals, but it is not directly finite.

Varadarajan [5,6] showed that the right R-module M_{R} is Hopfian if and only if the right $R[x]$-module $M[x]$ is Hopfian.

The motivation of this paper is to investigate how the property of Hopfian modules behaves under passage to the skew generalized power series modules.

2. Hopfian modules over skew generalized power series rings

In this section we extend the results of [9] to the skew generalized power series modules.
Let (S, \leq) be an ordered commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the identity element by 0 . Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. The following construction is due to Zhongkui [10]:

Let (S, \leq) be a strictly ordered monoid (that is, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<$ $\left.s^{\prime}+t\right), R$ a ring and $\omega: S \longrightarrow \operatorname{End}(R)$ a monoid homomorphism. Consider the set $A=\left[\left[R^{S, \leq}, \omega\right]\right]$ of all maps $f: S \longrightarrow R$ whose support $(\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\})$ is artinian and narrow.

For every $s \in S$ and $f, g \in A$, let

$$
X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=s ; f(u) \neq 0, g(v) \neq 0\}
$$

It follows from ([4], 4.1) that $X_{s}(f, g)$ is a finite set.
This fact allows us to define the operation of multiplication (convolution) as follows:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) \omega_{u}(g(v))
$$

and $(f g)(s)=0$ if $X_{s}(f, g)=\phi$. With this operation and pointwise addition $A=$ $\left[\left[R^{S, \leq}, \omega\right]\right]$ becomes a ring, which is called the ring of skew generalized power series with coefficients in R and exponents in S.

In [8], Zhao and Jiao generalized this construction to obtain the skew generalized power series modules over skew generalized power series rings, as follows:

Let M_{R} be a right R-module, let B be the set of all maps $\varphi: S \longrightarrow M$ such that $\operatorname{supp}(\varphi)$ $=\{s \in S \mid \varphi(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $B=\left[\left[M^{S, \leq}\right]\right]$ is an abelian additive group. For each $f \in A=\left[\left[R^{S, \leq}, \omega\right]\right]$ and $\varphi \in B$, the set

$$
X_{s}(\varphi, f)=\{(u, v) \in S \times S \mid u+v=s ; \varphi(u) \neq 0, f(v) \neq 0\}
$$

is finite (see [9], Lemma 1). This allows us to define the scalar multiplication of the elements of B by scalars from A as follows:

$$
(\varphi f)(s)=\sum_{(u, v) \in X_{s}(\varphi, f)} \varphi(u) \omega_{u}(f(v))
$$

and $(\varphi f)(s)=0$ if $X_{s}(\varphi, f)=\phi$. With this operation and pointwise addition, one can easily show that B is a right A-module, which is called the module of skew generalized power series with coefficients in M and exponents in S.

For every $s \in S$ if we set $\omega(s)=\operatorname{Id}_{R} \in \operatorname{Aut}(R) \subset \operatorname{End}(R)$, the identity map of R, then $A=\left[\left[R^{S, \leq}, \omega\right]\right]=\left[\left[R^{S, \leq}\right]\right]$ is the ring of generalized power series in the sense of Ribenboim [4] and $B=\left[\left[M^{S, \leq}\right]\right]$ is the untwisted module of generalized power series in the sense of [7].

For any $r \in R$ we associated the map $c_{r} \in A$ defined by:

$$
c_{r}(x)= \begin{cases}r, & \text { if } x=0 \\ 0, & \text { if } x \neq 0\end{cases}
$$

For any $m \in M$ and $s \in S$, we define a map $d_{m}^{s} \in B$ by:

$$
d_{m}^{s}(x)= \begin{cases}m, & \text { if } x=s \\ 0, & \text { if } x \neq s\end{cases}
$$

If (S, \leq) is a strictly totally ordered monoid, then $\operatorname{supp}(f)$ is a nonempty well-ordered subset of S, for every $0 \neq f \in A$, and we denote by $\pi(f)$ the smallest element of $\operatorname{supp}(f)$. Also, supp (φ) is a nonempty well-ordered subset of S, for every $0 \neq \varphi \in B$, and we denote by $\pi(\varphi)$ the smallest element of $\operatorname{supp}(\varphi)$.

The following are required in the sequel.
Definition 1 ([2]). A monoid S is called finitely generated if there exists a finite subset $\left\{s_{1}, \ldots, s_{n}\right\}$ of S such that $S=\left\{\sum_{i=1}^{n} k_{i} s_{i} \mid k_{i} \geq 0\right\}$.

Lemma 1 ([2]). If S is a finitely generated monoid, then every ideal of S is finitely generated, so every strictly increasing sequence of ideals is finite.

The following lemma is crucial in developing the proof of the main result.

Lemma 2. Let (S, \leq) be a strictly totally ordered monoid which is finitely generated and satisfies the condition that $0 \leq s$ for every $s \in S$. Assume that $\omega_{s}(1)=1$ for each $s \in S$. Then $\pi(\alpha(\varphi)) \geq \pi(\varphi)$ where $\alpha \in \operatorname{End}_{A}(B)$ and $0 \neq \varphi \in B$.

Proof. For each element $x \in S$, we denote by x^{+}the subset $x^{+}=\{x+y \mid y \in S\}$. Set $s=\pi(\alpha(\varphi))$ and $t=\pi(\varphi)$. Suppose that $s<t$. Define $\psi_{1} \in B$ via

$$
\psi_{1}(x)=\varphi(x+t)
$$

Set $\varphi_{1}=\varphi-\psi_{1} e_{t}$. If $\varphi_{1}=0$, then $\varphi=\psi_{1} e_{t}$. Thus

$$
\alpha(\varphi)=\alpha\left(\psi_{1} e_{t}\right)=\alpha\left(\psi_{1}\right) e_{t}
$$

For any $x \in S$ with $x<t$, we have

$$
\left(\alpha\left(\psi_{1}\right) e_{t}\right)(x)=\sum_{(u, v) \in X_{x}\left(\alpha\left(\psi_{1}\right), e_{t}\right)} \alpha\left(\psi_{1}\right)(u) \omega_{u}\left(e_{t}(v)\right)
$$

For each pair $(u, v) \in X_{x}\left(\alpha\left(\psi_{1}\right), e_{t}\right)$, we have $x=u+v<t$. Then $u<t$ and $v<t$. Thus $e_{t}(v)=0$ and $\left(\alpha\left(\psi_{1}\right) e_{t}\right)(x)=0$. Hence $\pi\left(\alpha\left(\psi_{1}\right) e_{t}\right) \geq t$. It follows that $s \geq t$, a contradiction. So $\varphi_{1} \neq 0$. Since $\varphi=\varphi_{1}+\psi_{1} e_{t}$, we have

$$
\alpha(\varphi)=\alpha\left(\varphi_{1}+\psi_{1} e_{t}\right)=\alpha\left(\varphi_{1}\right)+\alpha\left(\psi_{1}\right) e_{t} .
$$

It follows that

$$
\operatorname{supp}(\alpha(\varphi)) \subseteq \operatorname{supp}\left(\alpha\left(\varphi_{1}\right)\right) \cup \operatorname{supp}\left(\alpha\left(\psi_{1}\right) e_{t}\right)
$$

If $s \in \operatorname{supp}\left(\alpha\left(\psi_{1}\right) e_{t}\right)$, then $s \geq \pi\left(\alpha\left(\psi_{1}\right) e_{t}\right) \geq t$, a contradiction with the assumption that $s<t$. Thus $s \in \operatorname{supp}\left(\alpha\left(\varphi_{1}\right)\right)$.

Denote $s_{1}=\pi\left(\alpha\left(\varphi_{1}\right)\right)$ and $t_{1}=\pi\left(\varphi_{1}\right)$. Then $s \geq s_{1}$. Since

$$
\begin{aligned}
\varphi_{1}(t) & =\left(\varphi-\psi_{1} e_{t}\right)(t) \\
& =\varphi(t)-\left(\psi_{1} e_{t}\right)(t) \\
& =\varphi(t)-\psi_{1}(0) \omega_{0}\left(e_{t}(t)\right) \\
& =\varphi(t)-\psi_{1}(0) \omega_{0}(1)=\varphi(t)-\psi_{1}(0),
\end{aligned}
$$

we have

$$
\varphi_{1}(t)=\varphi(t)-\varphi(0+t)=\varphi(t)-\varphi(t)=0
$$

It is clear that $t_{1}>t$. If $t_{1} \in t^{+}=\{t+u \mid u \in S\}$, then there exists $u \in S$ such that $t_{1}=$ $t+u$. Thus

$$
\begin{aligned}
0 & \neq \varphi_{1}\left(t_{1}\right)=\left(\varphi-\psi_{1} e_{t}\right)\left(t_{1}\right) \\
& =\varphi\left(t_{1}\right)-\left(\psi_{1} e_{t}\right)\left(t_{1}\right) \\
& =\varphi\left(t_{1}\right)-\sum_{(y, z) \in X_{t_{1}}\left(\psi_{1}, e_{t}\right)} \psi_{1}(y) \omega_{y}\left(e_{t}(z)\right) \\
& =\varphi\left(t_{1}\right)-\psi_{1}(u) \omega_{u}\left(e_{t}(t)\right) \\
& =\varphi\left(t_{1}\right)-\psi_{1}(u) \omega_{u}(1)=\varphi\left(t_{1}\right)-\psi_{1}(u) \\
& =\varphi\left(t_{1}\right)-\varphi(u+t)=\varphi\left(t_{1}\right)-\varphi\left(t_{1}\right)=0,
\end{aligned}
$$

a contradiction. Hence $t_{1} \notin t^{+}$and $t_{1}+S \nsubseteq t+S$. Then $t+S \varsubsetneqq(t+S) \cup\left(t_{1}+S\right)$. Suppose that for a positive integer $n \geq 2$, we have found $\varphi_{1}, \psi_{1}, \ldots, \varphi_{n-1}, \psi_{n-1} \in B$ such that

$$
\psi_{i}(x)=\varphi_{i-1}\left(x+t_{i-1}\right) \quad \text { and } \quad \varphi_{i}=\varphi_{i-1}-\psi_{i} e_{t_{i-1}}
$$

where

$$
\begin{aligned}
& t_{i}=\pi\left(\varphi_{i}\right), t<t_{1}<\cdots<t_{i-1}<t_{i} \quad \text { and } \\
& t_{i} \notin t^{+} \cup t_{1}^{+} \cup \cdots \cup t_{i-1}^{+} \quad \text { for each } i=1, \ldots, n-1 .
\end{aligned}
$$

We set $t_{0}=t$ and $\varphi_{0}=\varphi$. Define $\psi_{n} \in B$ via

$$
\psi_{n}(x)=\varphi_{n-1}\left(x+t_{n-1}\right) .
$$

Let $\varphi_{n}=\varphi_{n-1}-\psi_{n} e_{t_{n-1}}$. Hence

$$
\varphi=\psi_{1} e_{t}+\psi_{2} e_{t_{1}}+\cdots+\psi_{n} e_{t_{n-1}}+\varphi_{n}
$$

If $\varphi_{n}=0$, then

$$
\alpha(\varphi)=\alpha\left(\psi_{1}\right) e_{t}+\alpha\left(\psi_{2}\right) e_{t_{1}}+\cdots+\alpha\left(\psi_{n}\right) e_{t_{n-1}} .
$$

Thus

$$
\operatorname{supp}(\alpha(\varphi)) \subseteq \bigcup_{i=0}^{n-1} \operatorname{supp}\left(\alpha\left(\psi_{i+1}\right) e_{t_{i}}\right)
$$

which implies that there exists i such that $s=\pi(\alpha(\varphi)) \in \operatorname{supp}\left(\alpha\left(\psi_{i+1}\right) e_{t_{i}}\right)$. Thus $s \geq$ $\pi\left(\alpha\left(\psi_{i+1}\right) e_{t_{i}}\right) \geq t_{i} \geq t$, a contradiction. Now, suppose that $\varphi_{n} \neq 0$. Denote $t_{n}=\pi\left(\varphi_{n}\right)$. Since $\varphi_{n}=\varphi_{n-1}-\psi_{n} e_{t_{n-1}}$, we have

$$
\begin{aligned}
\varphi_{n}\left(t_{n-1}\right) & =\varphi_{n-1}\left(t_{n-1}\right)-\left(\psi_{n} e_{t_{n-1}}\right)\left(t_{n-1}\right) \\
& =\varphi_{n-1}\left(t_{n-1}\right)-\sum_{(y, z) \in X_{t_{n-1}}\left(\psi_{n}, e_{t_{n-1}}\right)} \psi_{n}(y) \omega_{y}\left(e_{t_{n-1}}(z)\right) \\
& =\varphi_{n-1}\left(t_{n-1}\right)-\psi_{n}(0) \omega_{0}\left(e_{t_{n-1}}\left(t_{n-1}\right)\right) \\
& =\varphi_{n-1}\left(t_{n-1}\right)-\psi_{n}(0) \omega_{0}(1)=\varphi_{n-1}\left(t_{n-1}\right)-\psi_{n}(0) \\
& =\varphi_{n-1}\left(t_{n-1}\right)-\varphi_{n-1}\left(0+t_{n-1}\right)=0 .
\end{aligned}
$$

For any $x \in S$ with $x<t_{n-1}$ and for every $(y, z) \in X_{x}\left(\psi_{n}, e_{t_{n-1}}\right)$, we have $x=y+z<$ t_{n-1}. Then $y<t_{n-1}$ and $z<t_{n-1}$, and hence $\omega_{y}\left(e_{t_{n-1}}(z)\right)=\omega_{y}(0)=0$. It follows that

$$
\begin{aligned}
\varphi_{n}(x) & =\varphi_{n-1}(x)-\left(\psi_{n} e_{t_{n-1}}\right)(x) \\
& =0-\sum_{(y, z) \in X_{x}\left(\psi_{n}, e_{t_{n-1}}\right)} \psi_{n}(y) \omega_{y}\left(e_{t_{n-1}}(z)\right)=0 .
\end{aligned}
$$

So $\pi\left(\varphi_{n}\right)=t_{n}>t_{n-1}$. Thus

$$
t<t_{1}<\cdots<t_{n-1}<t_{n} .
$$

Suppose that $t_{n} \in t^{+} \cup t_{1}^{+} \cup \cdots \cup t_{n-1}^{+}$. Then there exists i such that

$$
t_{n} \notin t_{n-1}^{+}, \ldots, t_{n} \notin t_{i+1}^{+}, \quad \text { but } t_{n} \in t_{i}^{+} .
$$

Let $t_{n}=t_{i}+v$ for some $v \in S$. Then

$$
\begin{aligned}
\varphi_{i}\left(t_{n}\right) & =\left(\psi_{i+1} e_{t_{i}}+\psi_{i+2} e_{t_{i+1}}+\cdots+\psi_{n} e_{t_{n-1}}+\varphi_{n}\right)\left(t_{n}\right) \\
& =\left(\psi_{i+1} e_{t_{i}}\right)\left(t_{n}\right)+\left(\psi_{i+2} e_{t_{i+1}}\right)\left(t_{n}\right)+\cdots+\left(\psi_{n} e_{t_{n-1}}\right)\left(t_{n}\right)+\varphi_{n}\left(t_{n}\right)
\end{aligned}
$$

Note that, since $t_{n} \in t_{i}^{+}$and $t_{n} \notin t_{i+1}^{+}$, we see that

$$
\left(\psi_{i+1} e_{t_{i}}\right)\left(t_{n}\right)=\psi_{i+1}(v) \omega_{v}\left(e_{t_{i}}\left(t_{i}\right)\right)=\psi_{i+1}(v) \omega_{v}(1)=\psi_{i+1}(v)
$$

and

$$
\left(\psi_{i+2} e_{t_{i+1}}\right)\left(t_{n}\right)=\sum_{(y, z) \in X_{t_{n}}\left(\psi_{i+2}, e_{t_{i+1}}\right)} \psi_{i+2}(y) \omega_{y}\left(e_{t_{i+1}}(z)\right)=0
$$

Thus

$$
\varphi_{i}\left(t_{n}\right)=\psi_{i+1}(v)+\varphi_{n}\left(t_{n}\right)=\varphi_{i}\left(v+t_{i}\right)+\varphi_{n}\left(t_{n}\right)=\varphi_{i}\left(t_{n}\right)+\varphi_{n}\left(t_{n}\right)
$$

which implies that $\varphi_{n}\left(t_{n}\right)=0$, a contradiction. Hence $t_{n} \notin t^{+} \cup t_{1}^{+} \cup \cdots \cup t_{n-1}^{+}$. Now, we have the infinite strictly increasing sequence of ideals of S

$$
t+S \varsubsetneqq(t+S) \cup\left(t_{1}+S\right) \varsubsetneqq(t+S) \cup\left(t_{1}+S\right) \cup\left(t_{2}+S\right) \varsubsetneqq \cdots
$$

a contradiction with Lemma 1. Therefore $s \geq t$.
Now, we are able to prove the main result of this paper.
Theorem 3. Suppose that (S, \leq) is a strictly totally ordered monoid which is finitely generated and satisfies the condition that $0 \leq s$ for every $s \in S$. Assume that $\omega_{s}(1)=1$ for each $s \in S$. Then M_{R} is a Hopfian right R-module if and only if B_{A} is a Hopfian right A-module.

Proof. Suppose that M_{R} is a Hopfian right R-module. Let $\alpha: B_{A} \longrightarrow B_{A}$ be any surjective A-homomorphism. We want to prove that α is injective to be an isomorphism. Define $f: B \longrightarrow M$ via $f(\varphi)=\varphi(0)$. Now, define $h: M_{R} \longrightarrow M_{R}$ via $h(m)=f \alpha\left(d_{m}^{0}\right)$.
(1) h is an R-homomorphism: For any $m \in M$ and $r \in R$, we have

$$
\begin{aligned}
h(m r) & =f \alpha\left(d_{m r}^{0}\right)=f \alpha\left(d_{m}^{0} c_{r}\right)=f\left(\alpha\left(d_{m}^{0} c_{r}\right)\right) \\
& =f\left(\alpha\left(d_{m}^{0}\right) c_{r}\right)=\left(\alpha\left(d_{m}^{0}\right) c_{r}\right)(0) .
\end{aligned}
$$

Since $0 \leq s$ for every $s \in S$, we get $X_{0}\left(\alpha\left(d_{m}^{0}\right), c_{r}\right)=\{(0,0)\}$ and so

$$
\begin{aligned}
h(m r) & =\left(\alpha\left(d_{m}^{0}\right)\right)(0) \omega_{0}\left(c_{r}(0)\right)=\left(\alpha\left(d_{m}^{0}\right)\right)(0) \omega_{0}(r) \\
& =\left(\alpha\left(d_{m}^{0}\right)\right)(0) r=f \alpha\left(d_{m}^{0}\right) r \\
& =h(m) r .
\end{aligned}
$$

(2) h is a surjective map: For any $m \in M$, there exists $\beta \in B$ such that $\alpha(\beta)=d_{m}^{0}$ since α is surjective. Let $\psi=\beta-d_{\beta(0)}^{0}$. Then

$$
\psi(0)=\left(\beta-d_{\beta(0)}^{0}\right)(0)=\beta(0)-d_{\beta(0)}^{0}(0)=\beta(0)-\beta(0)=0
$$

So $\pi(\psi)>0$ and using Lemma 2, $\pi(\alpha(\psi))>0$. Hence

$$
\begin{align*}
m & =d_{m}^{0}(0)=\alpha(\beta)(0)=\alpha\left(\psi+d_{\beta(0)}^{0}\right)(0)=\left(\alpha(\psi)+\alpha\left(d_{\beta(0)}^{0}\right)\right) \tag{0}\\
& =\alpha(\psi)(0)+\alpha\left(d_{\beta(0)}^{0}\right)(0)=0+\alpha\left(d_{\beta(0)}^{0}\right)(0)=\alpha\left(d_{\beta(0)}^{0}\right)(0) \\
& =f \alpha\left(d_{\beta(0)}^{0}\right)=h(\beta(0))
\end{align*}
$$

Hence h is a surjective R-homomorphism which must be an isomorphism, since M_{R} is a Hopfian right R-module. To prove that α is injective, let $\varphi \in B_{A}$ be such that $\alpha(\varphi)=0$.

It follows that $h(\varphi(0))=\alpha(\varphi)(0)=0$. Then $\varphi(0)=0$, since h is an R-isomorphism. Suppose that $u \in S$ and for any $v \in S$ with $v<u, \varphi(v)=0$. We show that $\varphi(u)=0$. Define $\psi \in B_{A}$ via

$$
\psi(s)= \begin{cases}\varphi(u), & \text { if } s=u \\ 0, & \text { if } s \neq u\end{cases}
$$

Thus $(\varphi-\psi)(s)=0$, for any $s \leq u$, and it follows that $\pi(\varphi-\psi)>u$. Using Lemma 2, we have $\pi(\alpha(\varphi-\psi))>u$. Hence

$$
\begin{aligned}
\alpha(\psi)(u) & =\alpha(\psi)(u)+0=\alpha(\psi)(u)+\alpha(\varphi-\psi)(u) \\
& =\alpha(\psi+\varphi-\psi)(u)=\alpha(\varphi)(u)=0 .
\end{aligned}
$$

Consider the following computation, for any $s \in S$

$$
\begin{aligned}
\left(d_{\varphi(u)}^{0} e_{u}\right)(s) & =\sum_{(x, y) \in X_{s}\left(d_{\varphi(u)}^{0}, e_{u}\right)} d_{\varphi(u)}^{0}(x) \omega_{x}\left(e_{u}(y)\right) \\
& =d_{\varphi(u)}^{0}(0) \omega_{0}\left(e_{u}(s)\right) \\
& =\varphi(u) e_{u}(s) \\
& = \begin{cases}\varphi(u), & \text { if } s=u \\
0, & \text { if } s \neq u\end{cases} \\
& =\psi(s)
\end{aligned}
$$

It follows that $\psi=d_{\varphi(u)}^{0} e_{u}$. Thus

$$
\begin{aligned}
h(\varphi(u)) & =f \alpha\left(d_{\varphi(u)}^{0}\right)=\alpha\left(d_{\varphi(u)}^{0}\right)(0)=\left(\alpha\left(d_{\varphi(u)}^{0}\right) e_{u}\right)(u) \\
& =\alpha\left(d_{\varphi(u)}^{0} e_{u}\right)(u)=\alpha(\psi)(u)=0
\end{aligned}
$$

which implies that $\varphi(u)=0$, since h is an R-isomorphism. Hence $\varphi(s)=0$ for any $s \in S$, and so $\varphi=0$. Therefore α is an A-isomorphism and B_{A} is a Hopfian right A-module.

Conversely, suppose that B_{A} is a Hopfian right A-module. Let $h: M_{R} \longrightarrow M_{R}$ be any surjective R-homomorphism. We want to prove that h is injective.

Define $\alpha: B_{A} \longrightarrow B_{A}$ via $\alpha(\varphi)(s)=h(\varphi(s))$ for any $\varphi \in B_{A}$ and $s \in S$. We show that α is an A-isomorphism.
(1) α is an A-homomorphism: For any $\varphi \in B_{A}, f \in A$ and $s \in S$, we set

$$
\begin{aligned}
& X_{1}=\left\{(u, v) \in X_{s}(\varphi, f) \mid h(\varphi(u))=\alpha(\varphi)(u)=0\right\} \quad \text { and } \\
& X_{2}=\left\{(u, v) \in X_{s}(\varphi, f) \mid h(\varphi(u))=\alpha(\varphi)(u) \neq 0\right\}
\end{aligned}
$$

Then clearly $X_{2}=X_{s}(\alpha(\varphi), f)$. Consider the following computation, for any $s \in S$

$$
\begin{aligned}
\alpha(\varphi f)(s) & =h((\varphi f)(s))=h\left(\sum_{(u, v) \in X_{s}(\varphi, f)} \varphi(u) \omega_{u}(f(v))\right) \\
& =\sum_{(u, v) \in X_{s}(\varphi, f)} h(\varphi(u)) \omega_{u}(f(v))
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{(u, v) \in X_{1}} h(\varphi(u)) \omega_{u}(f(v))+\sum_{(u, v) \in X_{2}} h(\varphi(u)) \omega_{u}(f(v)) \\
& =0+\sum_{(u, v) \in X_{2}} h(\varphi(u)) \omega_{u}(f(v)) \\
& =\sum_{(u, v) \in X_{s}(\alpha(\varphi), f)} \alpha(\varphi)(u) \omega_{u}(f(v)) \\
& =(\alpha(\varphi) f)(s) .
\end{aligned}
$$

Thus $\alpha(\varphi f)=\alpha(\varphi) f$.
(2) α is a surjective map: For any $\psi \in B_{A}$ and any $s \in \operatorname{supp}(\psi)$, there exists an element $m_{s} \in M$ such that $h\left(m_{s}\right)=\psi(s)$, since h is a surjective map.

Define $\beta: S \longrightarrow M$ via

$$
\beta(s)= \begin{cases}m_{s}, & \text { if } s \in \operatorname{supp}(\psi) \\ 0, & \text { if } s \notin \operatorname{supp}(\psi)\end{cases}
$$

Clearly, $\operatorname{supp}(\beta) \subseteq \operatorname{supp}(\psi)$, which implies that $\operatorname{supp}(\beta)$ is an artinian and narrow subset of S and thus $\beta \in B_{A}$.

If $s \in \operatorname{supp}(\psi)$, then

$$
\alpha(\beta)(s)=h(\beta(s))=h\left(m_{s}\right)=\psi(s)
$$

If $s \notin \operatorname{supp}(\psi)$, then

$$
\alpha(\beta)(s)=h(\beta(s))=h(0)=0
$$

Thus $\alpha(\beta)=\psi$. Hence α is a surjective A-homomorphism which must be an isomorphism, since B_{A} is a Hopfian right A-module. To prove that h is injective, let $m \in M$ be such that $h(m)=0$. Then for any $s \in S$,

$$
\alpha\left(d_{m}^{0}\right)(s)=h\left(d_{m}^{0}(s)\right)= \begin{cases}h\left(d_{m}^{0}(0)\right)=h(m)=0, & \text { if } s=0 \\ h(0)=0, & \text { if } s \neq 0\end{cases}
$$

Thus $\alpha\left(d_{m}^{0}\right)=0$ and so $m=0$, since α is an A-isomorphism. Therefore h is an R isomorphism and M_{R} is a Hopfian right R-module.

If we set $\omega(s)=\operatorname{Id}_{R}$, for every $s \in S$, we get the following result as a corollary.
Corollary 4 ([9]). Suppose that (S, \leq) is a strictly totally ordered monoid which is finitely generated and satisfies the condition that $0 \leq s$ for every $s \in S$. Then M_{R} is a Hopfian right R-module if and only if $\left[\left[M^{S, \leq]}\right]_{\left[\left[R^{S, \leq]]}\right.\right.}\right.$ is a Hopfian right $\left[\left[R^{S, \leq]]] \text {-module. }}\right.\right.$

References

[1] G. Baumslag, Hopficity and abelian groups, in: J. Irwin, E.A. Walker (Eds.), Topics in Abelian Groups, Scott Foresmann and Company, 1963, pp. 331-335.
[2] R. Gilmer, Commutative Semigroup Rings, University of Chicago press, Chicago, 1984.
[3] V. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986) 895-900.
[4] P. Ribenboim, Semisimple rings and Von Neumann regular rings of generalized power series, J. Algebra 198 (1997) 327-338.
[5] K. Varadarajan, Hopfian and Co-Hopfian objects, Publ. Mat. 36 (1992) 293-317.
[6] K. Varadarajan, A note on the Hopficity of $M[x]$ or $M[[x]][J]$, Nat. Acad. Sci. Lett. 15 (1992) 53-56.
[7] K. Varadarajan, Generalized power series modules, Comm. Algebra 29 (3) (2001) 1281-1294.
[8] R. Zhao, Y. Jiao, Principal quasi-Baerness of modules of generalized power series, Taiwanese J. Math. 15 (2) (2011) 711-722.
[9] L. Zhongkui, A note on Hopfian modules, Comm. Algebra 28 (6) (2000) 3031-3040.
[10] L. Zhongkui, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006) 989-998.

[^0]: * Corresponding author at: Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, Saudi Arabia.
 E-mail addresses: refaat_salem@cic-cairo.com (R. Salem), m_farahat79@yahoo.com (M. Farahat), hanan_abdelmalk@yahoo.com (H. Abd-Elmalk).
 Peer review under responsibility of King Saud University.

