Semipotency and the total of rings and modules

Hamza Hakmi *
Department of Mathematics, Faculty of Sciences, Damascus University, Damascus, Syrian Arab Republic

Received 6 October 2011; accepted 17 October 2012
Available online 8 November 2012

Abstract

Let \boldsymbol{M} and \boldsymbol{N} be two modules over a ring \boldsymbol{R}. The object of this paper is the study of substructures of $\operatorname{Hom}_{\boldsymbol{R}}(\boldsymbol{M}, \boldsymbol{N})$ such as, radical, the singular, and co-singular ideal and the total. New results obtained include necessary and sufficient conditions for the total to equal the radical, $\operatorname{Hom}_{\boldsymbol{R}}\left(\boldsymbol{M}, \boldsymbol{J}(\boldsymbol{N})\right.$), a description of ($\Delta_{-,-} \$-, \boldsymbol{I}$) semipotency rings and the endomorphism ring of locally projective module. New structure theorems are obtained by studying the relationship between two concepts of the total and $(\Delta-, \$-, \boldsymbol{I}$) semi-potentness. In addition, locally injective and locally projective modules are characterized in new ways.

Mathematics subject classification: Primary 16E50; 16E60; 16D70
Keywords: (Δ-, $\$$-, $\boldsymbol{I}-$) Semi-potent Rings; $\boldsymbol{I}_{\mathbf{0}}$-Modules; The total; Jacobson radical; (Co) Singular ideal; Endomorphism ring; $\operatorname{Hom}_{\boldsymbol{R}}(\boldsymbol{M}, \boldsymbol{N})$

1. Introduction

In this paper rings R are associative with identity unless otherwise indicated. Modules over a ring R are unitary right modules. A submodule N of a module M is said to be small in M if $N+K \neq M$ for any proper submodule K of M, [8]. A submodule N of a module M is said to be large (essential) in M if $N \cap K \neq 0$ for any nonzero submodule K of M, [8]. If M is an R-module, the radical of M denoted by $J(M)$, is defined to be the intersection of all maximal submodules of M. Also, $J(M)$ coincides with the sum of all small submodules of M. It my happen that M has no maximal submodules in which case $J(M)=M$, [11]. Thus, for a ring $R, J(R)$ is the Jacobson radical of R. For a submodule N of a module M, we use $N \subseteq^{\oplus} M$ to mean that N is a direct summand

[^0]1319-5166 © 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2012.10.001
of M, and we write $N \leqslant_{e} M$ and $N M$ to indicate that N is a large, respectively small, submodule of M. If M_{R} is a module, we use the notation $E_{M}=\operatorname{End}_{R}(M)$ is the ring of endomorphisms of M and we write $\Delta E_{M}=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Ker}(\alpha) \leqslant_{e} M\right\}$, $\$ E_{M}=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) M\right\}$ and $I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$. It is well-known that $\Delta E_{M}, \$ E_{M}$ and $I\left(E_{M}\right)$ are ideals in E_{M}, [8]. It is easy to see that $\$ E_{M} \subseteq I\left(E_{M}\right)$. If M_{R} and N_{R} are modules, we use $[M, N]=\operatorname{Hom}_{R}(M, N)$. Thus $[M, N]$ is an $\left(E_{N}, E_{M}\right)$ -bi-module. Our main concern is about the substructures of $\operatorname{Hom}_{R}(M, N)$ and the $(\Delta$-, $\$-, I-$) semi-potency of $\operatorname{Hom}_{R}(M, N)$ (see [13]).

The total is a concept that was first introduced by Kasch in 1982 [8], and Zhou [13] in 2009. In the study of the total, one of the interesting questions is when the total equals the Jacobson radical, the singular ideal and the co-singular ideal. In Section 2 it is proved that $\operatorname{Tot}(R)=I$ if and only if, R is an I - semi-potent ring and the ideal I contains no nonzero idempotents. In Section 3 it is proved that a quasi-projective module P is semi-potent if and only if E_{P} is an I - semi-potent ring. Interesting corollaries are obtained in this section. In particular, $\operatorname{Tot}[M, N]=\{\alpha: \alpha \in[M, N]$; $\beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$ for all $\left.\beta \in[N, M]\right\}$. In Section 5 it is proved that $[M, N]$ is Δ - semi-potent if and only if $\operatorname{Tot}[M, N]=\Delta[M, N]$. Also, in this section we characterize the modules V and W for which $\operatorname{Tot}[V, N]=\Delta[V, N]$ and $\operatorname{Tot}[M, W]=\Delta[M, W]$ for all $N, M \in \bmod -R$. The main result states that E_{V} is Δ - semi-potent if and only if $\operatorname{Tot}[V, N]=\Delta[V, N]$ for all $N \in \bmod -R$. Also, in this section it is proved that $[M, N]$ is $\$$ - semi-potent if and only if $\operatorname{Tot}[M, N]=\$[M, N]$. Also, in this section, we characterize the modules V and W for which $\operatorname{Tot}[V, N]=\$[V, N]$ and $\operatorname{Tot}[M, W]=\$[M, W]$ for all $M, N \in \bmod -R$. The main result states that E_{V} is $\$$ - semi-potent if and only if $\operatorname{Tot}[V, N]=\$[V, N]$ for all $N \in \bmod -R$ if and only if $\operatorname{Tot}[M, V]=\$[M, V]$ for all $M \in \bmod -R$. In Section 6 it is proved that, a module Q_{R} is a locally injective if and only if $\operatorname{Tot}[N, Q]=\Delta[N, Q]$ for all $N \in \bmod -R$. Also, a module P_{R} is locally projective if and only if $\operatorname{Tot}[P, M]=\$[P, M]$ for all $M \in \bmod -R$. Interesting corollaries are obtained in this section.

2. (I-) Semipotent rings

Recall that a ring R is a semi-potent ring, also called I_{0}-ring by Nicholson [4], Hamza [3], if every principal right ideal not contained in $J(R)$ contains a nonzero idempotent. Examples of such rings include: (a) Exchange ring (see [6, Proposition 1.9], a ring R is an exchange ring, if for every $a \in R$, there exists an idempotent $e \in a R$ such that $a-e \in\left(a^{2}-a\right) R$). (b) Endomorphism rings of injective modules (see [4, Proposition 1.4]). (c) Endomorphism ring of regular modules in the sense Zelmanowitz [14], (see [3, Corollary 4]). Let N and L are submodules of a module M_{R}. N is called a supplement of L in M if $N+L=M$ and $N \cap L$ is small in $N . N$ is said to be a supplement submodule of M if N is a supplement of some submodule of M.

Theorem 2.1. For any ring R the following conditions are equivalent:
(1) R is a semi-potent ring.
(2) For any $a \in R$ there exists $0 \neq x \in R$ such that $R / a x R$ has a projective cover (as a right R-module).
(3) For any $a \in R$ there exists $0 \neq x \in R$ such that ax R has a supplement in R_{R} (as a right R-module) which also has a supplement.

Proof. (1) \Rightarrow (2). Let $a \in R$, if $a \in J(R)$ then for any $x \in R$ the natural epimorphism $R \rightarrow R / a x R$ is a projective cover of $R / a x R$. Suppose that $a \notin J(R)$ then there is $e=a x$, where $e \neq 0$ is an idempotent in R and $a x R=e R$. Since $(1-e) R \cong R / a x R$ we have $R / a x R$ has a projective cover. (2) \Rightarrow (3) follows by [2, Proposition 1.4]. (3) \Rightarrow (1). Let $a \in R, a \notin J(R)$. Then there exists $y \in R$ such that $a y R$ has a supplement L which has also a supplement. By [2, Proposition 1.4], ay R has a supplement K which is a direct summand of R. Thus $R=a y R+K$ and by [2, Proposition 1.2] there exists a direct summand $e R$ of $R, e R \subseteq a y R \subseteq a R$, where e is a non-zero idempotent of R. Thus R is a semi-potent ring.

If T is a left ideal or right ideal of R, we say that idempotents lift modulo T if, whenever $a^{2}-a \in T, a \in R$, there exists $e^{2}=e \in R$ such that $e-a \in T$. Nicholson in [7] gave an example of a commutative semi-potent ring where idempotents do not lift modulo $J(R)$ (see [7, Example 25]). Therefore, we extend this notion as follows:

Lemma 2.2. Let T be an ideal of R and $a \in R, a \notin T$. The following equivalent:
(1) If $a^{2}-a \in T$ there exists $e^{2}=e \in a R, e \notin T$.
(2) If $a^{2}-a \in T$ there exists $e^{2}=e \in R a, e \notin T$.

Proof. Suppose (1) holds. Then $e^{2}=e=a x$ for some $x \in R$ and $e \notin T$. We put $y=x a x$ then $f=y a$ is an idempotent of R and $f \in R a$ and $f \notin T$. (2) \Rightarrow (1) is analogous.

We say that an ideal T of R is weakly lifting, or that idempotents lift weakly modulo T, if for any $a \in R, a^{2}-a \in T, a \notin T$, there exists an idempotent $e=a x \in a R$ such that $e \notin T$.

Proposition 2.3. For any ring R the following conditions are equivalent:
(1) R is a semi-potent ring.
(2) $\bar{R}=R / J(R)$ is semi-potent and $J(R)$ is weakly lifting.

Proof. (1) \Rightarrow (2). Suppose R is semi-potent. Obviously \bar{R} is semi-potent. Let $a^{2}-a \in J(R)$ such that $a \notin J(R)$. Then there exists a non-zero idempotent $e=a x \in a R$. Clearly $e \notin J(R)$. Hence $J(R)$ is weakly lifting. (2) \Rightarrow (1). Let $a \in R$ such that $a \notin J(R)$. As \bar{R} is semi-potent, there exists a non-zero idempotent $\bar{f} \in \bar{a} \bar{R}$. Now $f=a r+x$ for some $r \in R$ and $x \in J(R)$. As $f^{2}-f \in J(R)$, there exists a non-zero idempotent $e=f y=a r$ $y+x y \in f R$. As $x y \in J(R)$, there exists $b \in R$ such that $(1-x y) b=1=b(1-x y)$. So, $x y b=b-1$. We can take y such that $y e=y$. Now $e b=a r y b+x y b=a r y b+$ $b-1$, ebe $=$ arybe $+b e-e, e=$ arybe $+(1-e) b e$. Unless $(1-e) b e=0$, we cannot
conclude that $e=$ arybe. However by multiplication by e on the left, we conclude that $e=$ earybe. Let $g=$ arybe. Then $g^{2}=$ arybearybe $=$ arybe $=g$ and $g \in a R$. Hence R is semi-potent.

The semi-potent rings generalize as follows:
Lemma 2.4 [7, Lemma 19]. The following conditions are equivalent for an ideal I of a ring R :
(1) If $T \subsetneq I$ is a right (resp. left) ideal there exists $e^{2}=e \in T \backslash I$.
(2) If $a \notin I$ there exists $e^{2}=e \in a R \backslash I$ (resp. $e \in R a \backslash I$).
(3) If $a \notin I$ there exists $x \in R$ such that $x=x a x \notin I$.

Let R be a ring and I is an ideal of R, recall R is I - semi-potent [7], if the conditions in Lemma 2.4, are satisfied.

Corollary 2.5. Let I be an ideal of a ring R. If R is I - semi-potent then $J(R) \subseteq I$.
Proof. Suppose $J(R) \subsetneq I$ there exists $a \in J(R), a \notin I$, so $x=x a x \notin I$ for some $x \in R$. Since $x \neq 0$ then $0 \neq(a x)^{2}=a x \in J(R)$ this is a contradiction.

Proposition 2.6. Let I be an ideal of a ring R. The following are equivalent:
(1) R is an I - semi-potent ring.
(2) R / I is a semi-potent ring with $J(R / I)=\overline{0}$ and I is weakly lifting.

Proof. Suppose (1) holds. First we prove that $J(R / I)=\overline{0}$. Assume $J(R / I) \neq \overline{0}$ then there exists $\overline{0} \neq \bar{a} \in J(R / I)$. So $a \in R, a \notin I$ therefore $x=x a x \notin I$ for some $x \in R$. Thus, $\overline{0} \neq(\bar{a} \bar{x})^{2}=\bar{a} \bar{x} \in J(R / I)$, a contradiction, so $J(R / I)=\overline{0}$. It is clear that R / I is semi-potent. Finally, we prove that I is a weakly lifting. Let $a^{2}-a \in I$ and $a \in R \backslash I$. Since R is I - semi-potent there exists $y \in R, y=y a y \notin I$, so $0 \neq(a y)^{2}=a y \in a R$, and $a y \notin I$. (2) \Rightarrow (1). Let $a \in R \backslash I$ then $\overline{0} \neq \bar{a} \in R / I$. Since R / I is semi-potent and $J(R / I)=\overline{0}$ then $\bar{x}=\bar{x} \bar{a} \bar{x}$ for some $\overline{0} \neq \bar{x} \in R / I$. Since $(a x)^{2}-a x \in I$ and I is a weakly lifting there exists $0 \neq e^{2}=e \in a x R \subseteq a R$ and $e \notin I$, so R is I - semi-potent.

Following [13], the total of a ring R is
$\operatorname{Tot}(R)=\{a: a \in R ; a R$ contains no idempotents $\}$
$\operatorname{Tot}(R)=\{a: a \in R ; R a$ contains no idempotents $\}$
Y.Zhou, proved that, for a ring R; $\operatorname{Tot}(R)=J(R)$ if and only if R is a semi-potent, [13, Theorem 2.2]. For an I - semi-potent ring we have:

Theorem 2.7. Let I be an ideal of a ring R. The following are equivalent:
(1) $\operatorname{Tot}(R)=I$.
(2) R is an I- semi-potent ring and I contains no nonzero idempotents.
(3) R / I is a semi-potent and $J(R / I)=\overline{0}$ with I contains no nonzero idempotents and I is weakly lifting.

Proof. (1) \Rightarrow (2). It is clear that I contains no nonzero idempotents. Let $a \in R \backslash I$. Then $a R$ contains a nonzero idempotent. This shows that R is an I - semi-potent ring. (2) \Rightarrow (1). Suppose that $\operatorname{Tot}(R) \neq I$, Since $I \subseteq \operatorname{Tot}(R)$ there exists $a \in \operatorname{Tot}(R)$ such that $a \notin I$. So, for some $x \in R, x=x a x \notin I$ and $0 \neq(a x)^{2}=a x \in a R$, a contradiction. (2) \Longleftrightarrow (3). By Proposition 2.6.

3. Semipotent modules

Let M_{R} be a module and $K \subseteq \subseteq^{\oplus} M$. Then $K \subseteq J(M)$ if and only if $K=J(K)$. Put $\Gamma(M)=\left\{K: K \subseteq \subseteq^{\oplus} M ; K \subseteq J(K)\right\}$. Note that for any projective module $P, \Gamma(P)=\{0\}$. In addition to, if $J(M) M$ (or M finitely generated) for some $M \in \bmod -R$ then $\Gamma(M)=\{0\}$. Let M_{R} be a module, letting $I=I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$ It is clear that $I=I\left(E_{M}\right)$ is an ideal in E_{M}.

Recall a module M_{R} is a semi-potent module also, called I_{0} - module [3] and weakly regular module [1] if each submodule of M not contained in $J(M)$ contains a direct summand N of $M, N \notin \Gamma(M)=\left\{T \subseteq^{\oplus} M: J(T)=T\right\}$.

Lemma 3.1. Let M be a semi-potent module. The following holds:
(1) Every submodule N of M such that $J(N)=N \cap J(M)$ is semi-potent.
(2) Every direct summand of M is semi-potent.
(3) Every supplement submodule of M is semi-potent.

Proof. (1). It is clear.
A module P_{R} is called a quasi-projective module [12] if given an epimorphism $\beta \in[P, M]$ and any morphism $\alpha \in[P, M]$ there exists $\lambda \in E_{P}$ such that $\beta \lambda=\alpha$. For a quasi-projective module we have the following:

Theorem 3.2. For any quasi-projective module P the following are equivalent:
(1) P is a semi-potent module.
(2) or any $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$, there exists a direct summand N of P contained in $\operatorname{Im}(\alpha)$ such that $N \notin \Gamma(P)$.
(3) E_{P} is an $I=I\left(E_{P}\right)$ - semi-potent ring.

Proof. (1) \Rightarrow (2). It is clear. (2) \Rightarrow (3). Let $\alpha \in E_{P} \backslash I\left(E_{P}\right), \operatorname{Im}(\alpha) \subsetneq J(P)$ and there exists $N \subseteq^{\oplus} P, N \subseteq \operatorname{Im}(\alpha)$ and $N \notin \Gamma(P)$. Let γ be the projection of P on to N. Then $\operatorname{Im}(\gamma \alpha)=N$, so there exists $\beta \in E_{P}$ such that $\gamma \alpha \beta=\gamma$. We put $\mu=\beta \gamma$, then
$\mu \alpha \mu=\mu \notin I\left(E_{P}\right)$. Because if $\mu \in I\left(E_{P}\right)$ then $\gamma=\gamma \gamma=\gamma \alpha \beta \gamma \in I\left(E_{P}\right)$ that is $N \in \Gamma(P)$ a contradiction. So, E_{P} is I - semi-potent. (3) $\Rightarrow(1)$. Let E_{P} be I - semi-potent, where $I=I\left(E_{P}\right)$. Let K be a submodule of $P, K \subsetneq J(P)$. Then there exists a maximal submodule D of P such that $K \subsetneq D$. Thus $K+D=P$. By [10, Lemma 1.1] there are $f, g \in E_{P}$ such that $1=f+g$ and $\operatorname{Im}(f) \subseteq A, \operatorname{Im}(g) \subseteq D$. It is clear that $f \notin I\left(E_{P}\right)$. By assumption there exists $\varphi \in E_{P}$ such that $\varphi=\varphi f \varphi \notin I\left(E_{P}\right)$. Since $(f \varphi)^{2}=f \varphi$ then $\operatorname{Im}(f \varphi) \subseteq^{\oplus} P$, $\operatorname{Im}(f \varphi) \subseteq A$ and $\operatorname{Im}(f \varphi) \notin \Gamma(P)$. So P is semi-potent.

Corollary 3.3. For any quasi-projective module P the following are equivalent:
(1) P is a semi-potent module and $\Gamma(P)=\{0\}$.
(2) E_{P} is an I-semi-potent ring and $\Gamma(P)=\{0\}$.
(3) $\operatorname{Tot}\left(E_{P}\right)=I\left(E_{P}\right)$.

Proof. (1) $\Longleftrightarrow(2)$. By Theorem 3.2. (2) \Longleftrightarrow (3). By Theorem 2.7 because $\Gamma(P)=\{0\}$ if and only if $I\left(E_{P}\right)$ contain no nonzero idempotents.

Corollary 3.4. Let P be a quasi-projective module with $J(P) P$. Then following are equivalent:
(1) P is a semi-potent module.
(2) For any $\alpha \in E_{P}, \alpha \notin J\left(E_{P}\right)$, there exists $0 \neq N \subseteq{ }^{\oplus} P, N \subseteq \operatorname{Im}(\alpha)$.
(3) E_{P} is a semi-potent ring.
(4) $\operatorname{Tot}\left(E_{P}\right)=J\left(E_{P}\right)=\$ E_{P}=I\left(E_{P}\right)$.

Proof. (1) $\Longleftrightarrow(2) \Longleftrightarrow(3)$ As in Theorem 3.2, because for a quasi-projective module with $J(P) P, J\left(E_{P}\right)=\$ E_{P}=I\left(E_{P}\right)$ by [11, Lemma 2]. (3) \Longleftrightarrow (4) By [13, Theorem 2.2].

A module P_{R} is called a direct-projective module [5], if given any direct summand N of P with projection $\pi: P \rightarrow N$ and any epimorphism $\alpha: P \rightarrow N$ there exists $\beta \in E_{P}$ such that $\alpha \beta=\pi$. If P is a direct-projective module then $\$ E_{P} \subseteq J\left(E_{P}\right)$, (see [5, Theorem 3.1]). For a direct projective modules we have the following:

Proposition 3.5. Let P_{R} be a direct-projective module. If P is semi-potent then:
(1) E_{P} is an I- semi-potent ring.
(2) $J\left(E_{P}\right) \subseteq I\left(E_{P}\right)$.

Proof. (1). Let $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$ there exists $N \subseteq^{\oplus} P, N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$. Let γ be the projection of P on to N. Then $N=\operatorname{Im}(\gamma)=\operatorname{Im}(\gamma \alpha)$. Since P is a direct-projective there exists $\beta \in E_{P}$ such that $\gamma \alpha \beta=\gamma$. Putting $\mu=\beta \gamma$ then $0 \neq \mu \in E_{P}, \mu \alpha \mu=\mu$ and $\mu \notin I\left(E_{P}\right)$, because, if $\mu \in I\left(E_{P}\right)$, so $\gamma=\gamma \alpha \beta \gamma \in I\left(E_{P}\right)$ thus $N=\operatorname{Im}(\gamma) \subseteq J(P)$ this means that $N \in \Gamma(P)$, a contradiction. This shows that E_{P} is I - semi-potent. (2). By Corollary 2.5.

Corollary 3.6. Let P_{R} be a direct-projective module. If P is semi-potent and $J(P) P$ then E_{P} is a semi-potent ring.

Proof. We have by [5, Theorem 3.1], $\$ E_{P} \subseteq J\left(E_{P}\right)$ and by Proposition 3.5, $J\left(E_{P}\right) \subseteq I\left(E_{P}\right)$. Since $J(P) P$ then $I\left(E_{P}\right)=\$ E_{P}$ thus $J\left(E_{P}\right)=\$ E_{P}=I\left(E_{P}\right)$, so E_{P} is a semi-potent ring.

A module P_{R} is called π - projective [10] if, for any two submodules U, V of P with $P=U+V ; E_{P}=[P, U]+[P, V]$. For a π - projective modules we have the following:

Proposition 3.7. Let P_{R} be a π-projective module. The following are equivalent:
(1) P is a semi-potent module.
(2) For any $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$ there exists $N \subseteq^{\oplus} P, N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$.

Proof. (1) \Rightarrow (2). It is clear. (2) \Rightarrow (1). Let A be a submodule of $P, A \subsetneq J(P)$. Then there exists a maximal submodule M of $P, A \subsetneq M$ therefore $P=A+M$. Since P is a π - projective there are $\alpha, \beta \in E_{P}$ such that $1=\alpha+\beta$ and $\operatorname{Im}(\alpha) \subseteq A, \operatorname{Im}(\beta) \subseteq M$. It is clear that $\operatorname{Im}(\alpha) \subsetneq J(P)$, because if $\operatorname{Im}(\alpha) \subseteq J(P)$ we have $P=\operatorname{Im}(\alpha)+\operatorname{Im}(\beta) \subseteq J(P)+$ $M \subseteq M \subseteq P$ thus $P=M$, a contradiction. By assumption $\operatorname{Im}(\alpha) \subseteq A$ contains a direct summand N of $P, N \notin \Gamma(P)$. So P is a semi-potent module.

Corollary 3.8. Let P_{R} be a π-projective module. If E_{P} is an I-semi-potent ring the following hold:
(1) For any $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$ there exists $N \subseteq^{\oplus} P, N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$.
(2) P is a semi-potent module.

Proof. (1). Let $\alpha \in E_{P} \backslash I\left(E_{P}\right)$, so there exists $\gamma \in E_{P} \backslash I\left(E_{P}\right)$ such that $\gamma=\gamma \alpha \gamma$. Since $0 \neq(\alpha \gamma)^{2}=\alpha \gamma \in E_{P}$ then $\operatorname{Im}(\alpha \gamma) \subseteq^{\oplus} P, \operatorname{Im}(\alpha \gamma) \notin \Gamma(P)$ and $\operatorname{Im}(\alpha \gamma) \subseteq \operatorname{Im}(\alpha)$. (2). By (1) and Proposition 3.7.

Proposition 3.9. For any projective module P_{R} the following are equivalent:
(1) P is a semi-potent module and $J(P) P$.
(2) E_{P} is a semi-potent ring.
(3) For any $\alpha \in E_{P}, P / \operatorname{Im}(\alpha \beta)$ has a projective cover for some $0 \neq \beta \in E_{P}$.
(4) For any $\alpha \in E_{P}, \operatorname{Im}(\alpha \beta)$ has a supplement which also has a supplement for some $0 \neq \beta \in E_{P}$.

Proof. (1) \Longleftrightarrow (2). By [3, Theorem 3.5]. (2) \Rightarrow (3). Suppose that E_{P} is a semi-potent ring, by Theorem 2.1, for any $\alpha \in E_{P}$ there exists $0 \neq \beta \in E_{P}$ such that $E_{P} /(\alpha \beta) E_{P}$ has a projective cover, by [2, Proposition 2.9] $P / \operatorname{Im}(\alpha \beta)$ has a projective cover. $(3) \Rightarrow(2)$ follows immediately from [2, Proposition 2.9] and Theorem 2.1. $(3) \Longleftrightarrow$ (4). By [2, Proposition 1.4].

Lemma 3.10. Let M_{R} be a module with E_{M} is a semi-potent ring. Then:
(1) $\$ E_{M} \subseteq J\left(E_{M}\right)$ and $\Delta E_{M} \subseteq J\left(E_{M}\right)$.
(2)] If $\Gamma(M)=\{0\}$ then $I\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.
(3) If $J(M) M$ then $\$ E_{M}=I\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.

Proof.

(1) Let $\alpha \in \$ E_{M}$, so $\operatorname{Im}(\alpha) M$. Suppose that $\alpha \notin J\left(E_{M}\right)$ then $\beta=\beta \alpha \beta$ for some $0 \neq \beta \in E_{M}$. Let $\gamma=\alpha \beta$. Then $0 \neq \gamma^{2}=\gamma \in E_{M}$ and $\operatorname{Im}(\gamma) \subseteq \operatorname{Im}(\alpha) M$. Hence $\operatorname{Im}(\gamma) M$ and $\operatorname{Im}(\gamma)=\operatorname{Im}(\gamma) \oplus \operatorname{Ker}(\gamma)$. Thus $\operatorname{Ker}(\gamma)=M$, and $\gamma=0$ which is a contradiction, hence $\alpha \in J\left(E_{M}\right)$ and $\$ E_{M} \subseteq J\left(E_{M}\right)$.If $g \in \Delta E_{M}$ then $\operatorname{Ker}(g)$ is large in M. Suppose that $g \notin J\left(E_{M}\right)$ then $\mu=\mu g \mu$ for some $0 \neq \mu \in E_{M}$. Let $t=\mu g$, so $0 \neq t^{2}=t \in E_{M}$ and $\operatorname{Ker}(g) \subseteq \operatorname{Ker}(t)$, therefore $\operatorname{Ker}(g) \cap \operatorname{Im}(t)=0$ thus $\operatorname{Im}(t)=0$, hence $\operatorname{Ker}(g)$ is large in M and $t=0$ this is a contradiction, hence $g \in J\left(E_{M}\right)$ and $\Delta E_{M} \subseteq J\left(E_{M}\right)$.
(2) Suppose that $\Gamma(M)=\{0\}$. If $\alpha \in I\left(E_{M}\right)$ then $\operatorname{Im}(\alpha) \subseteq J(M)$. Suppose that $\alpha \notin J\left(E_{M}\right)$ then $\gamma=\gamma \alpha \gamma$ for some $0 \neq \gamma \in E_{M}$. We put $g=\alpha \gamma$ then $0 \neq g^{2}=g \in E_{M}$, $\operatorname{Im}(g) \subseteq \subseteq^{\oplus} M$ and $\operatorname{Im}(g) \subseteq J(M)$, therefore $\operatorname{Im}(g) \in \Gamma(M)=\{0\}$, so $\operatorname{Im}(g)=0$ and $g=0$ this is a contradiction. Thus $\alpha \in J\left(E_{M}\right)$. (3). It is clear.

It is known that for any module $M_{R}, \$ E_{M} \subseteq I\left(E_{M}\right)$. So, if E_{M} is an I - semi-potent ring we have the following:

Lemma 3.11. Let M_{R} be a module and assume that E_{M} is an I-semi-potent ring. Then: $J\left(E_{M}\right) \subseteq I\left(E_{M}\right)$ and $\Delta E_{M} \subseteq I\left(E_{M}\right)$.

Proof. By Corollary 2.5 we have $J\left(E_{M}\right) \subseteq I\left(E_{M}\right)$. If $\alpha \in \Delta E_{M}$, then $\operatorname{Ker}(\alpha) \leqslant{ }_{e} M$. Suppose $\alpha \notin I\left(E_{M}\right)$ then $\gamma=\gamma \alpha \gamma$ for some $\gamma \in E_{M}, \gamma \notin I\left(E_{M}\right)$. If $t=\gamma \alpha$, then $0 \neq t^{2}=t \in E_{M}$ and $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(t)$, therefore $\operatorname{Ker}(\alpha) \cap \operatorname{Im}(t)=0$ thus $\operatorname{Im}(t)=0$, so $t=0$ this is a contradiction, hence $\alpha \in I\left(E_{M}\right)$.

4. Semipotent $[M, N]$

Following [13], let M_{R}, N_{R} be two modules. Then $[M, N]=\operatorname{Hom}_{R}(M, N)$ is an $\left(E_{N}, E_{M}\right)-$ bi-module. The following are defined:

- Radical:

$$
\begin{aligned}
& J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in J\left(E_{M}\right) \text { for all } \beta \in[N, M]\right\} \\
& J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in J\left(E_{N}\right) \text { for all } \beta \in[N, M]\right\}
\end{aligned}
$$

Thus $J[M, M]=J\left(E_{M}\right)$. In particular $J[R, R]=J(R)$.

- Singular ideal:

$$
\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}(\alpha) \leqslant_{e} M\right\}
$$

- Co-singular ideal:

$$
\nabla[M, N]=\{\alpha: \alpha \in[M, N] ; \operatorname{Im}(\alpha) \ll N\}
$$

- Total:
$\operatorname{Tot}[M, N]=\{\alpha: \alpha \in[M, N] ;[N, M] \alpha$ contains no nonzero idempotents $\}$
$\operatorname{Tot}[M, N]=\{\alpha: \alpha \in[M, N] ; \alpha[N, M]$ contains no nonzero idempotents $\}$

Lemma 4.1. Let M_{R}, N_{R} be modules then:
(1) $\operatorname{Tot}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\operatorname{Tot}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \operatorname{Tot}\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.

Proof. (1) Let $\alpha \in \operatorname{Tot}[M, N]$. If $\beta \alpha \notin \operatorname{Tot}\left(E_{M}\right)$ for some $\beta \in[N, M]$ there exists $\gamma \in E_{M}$ such that $0 \neq \gamma(\beta \alpha)=[\gamma(\beta \alpha)]^{2} \in E_{M}$. Since $\gamma \beta \in[N, M]$ then $0 \neq(\gamma \beta) \alpha=[(\gamma \sigma$ $\beta) \alpha]^{2} \in[N, M] \alpha$, a contradiction. Let $\alpha \in[M, N]$ such that $\beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$ for all $\beta \in[N, M]$. If $\alpha \notin \operatorname{Tot}[M, N]$, then $[N, M] \alpha$ contains a nonzero idempotent. So there exists $\gamma \in[N, M]$ such that $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ and $\gamma \alpha \in(\gamma \alpha) E_{M}$, so $\gamma \alpha \notin \operatorname{Tot}\left(E_{M}\right)$, a contradiction. Similarly (2) holds.

Lemma 4.2. [13, Lemma 2.1]Let M_{R}, N_{R} be modules. The following are equivalent:
(1) If $\alpha \in[M, N] \backslash J[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$.
(2) If $\alpha \in[M, N] \backslash J[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$.
(3) If $\alpha \in[M, N] \backslash J[M, N]$, there exists $\gamma \in[N, M]$ such that $\gamma \alpha \gamma=\gamma \notin J[N, M]$.

Following [13], we say that [M, N] is semi-potent if the conditions in Lemma 4.2, are satisfied.

Lemma 4.3. Let M_{R}, N_{R} be modules and $[M, N]$ is semi-potent. Then:
(1) $\Delta[M, N] \subseteq J[M, N]$ and $\$[M, N] \subseteq J[M, N]$.
(2) If $\Gamma(M)=\{0\}$ then $I[M, N] \subseteq J[M, N]$.
(3) If $\Gamma(N)=\{0\}$ then $I[M, N] \subseteq J[M, N]$.

Proof. Suppose that [M, N] is semi-potent.
(1) Let $\alpha \in \Delta[M, N]$, so $\operatorname{Ker}(\alpha) \leqslant{ }_{e} M$. Suppose that $\alpha \notin J[M, N]$ then there exists $\beta \in$ $[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. Since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$ then $\operatorname{Ker}(\alpha) \cap \operatorname{Im}(\beta \alpha) \subseteq$ $\operatorname{Ker}(\beta \alpha) \cap \operatorname{Im}(\beta \alpha)=0$. Thus, $\operatorname{Im}(\beta \alpha)=0$ and $\beta \alpha=0$ this is a contradiction. Hence $\alpha \in J[M, N]$. Let $\alpha \in \$[M, N]$ then $\operatorname{Im}(\alpha) N$. Suppose that $\alpha \notin J[M, N]$ then there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$. Since $\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha)$ then $\operatorname{Im}(\alpha \beta) N$ and $N=\operatorname{Ker}(\alpha \beta)$. So, $\operatorname{Ker}(\alpha \beta) \cap \operatorname{Im}(\alpha \beta)=\operatorname{Im}(\alpha \beta)=0$. Thus, $\beta \alpha=0$ this is a contradiction. Hence $\alpha \in J[M, N]$. (2). Suppose that $\Gamma(M)=\{0\}$. Let $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$. Assume that $\alpha \notin J[M, N]$ then there exists $\beta \in[N, M]$ such that
$0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. So $\operatorname{Im}(\beta \alpha) \subseteq^{\oplus} M$ and $\operatorname{Im}(\beta \alpha) \subseteq J(M)$ thus $\operatorname{Im}(\beta \alpha) \in \Gamma(M)=\{0\}$, so $\beta \alpha=0$ a contradiction. Thus $\alpha \in J[M, N]$. Similarly, (3) holds.

Proposition 4.4. Let M_{R}, N_{R} be modules, the following hold:
(1) If $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ then $\operatorname{Tot}[M, N]=J[M, N]$.
(2) If $\operatorname{Tot}\left(E_{N}\right)=J\left(E_{N}\right)$ then $\operatorname{Tot}[M, N]=J[M, N]$.
(3) If E_{M} is a semi-potent ring then $[M, N]$ is semi-potent.
(4) If E_{N} is a semi-potent ring then $[M, N]$ is semi-potent.

Proof. (1) Suppose that $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$. It is clear that $J[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ then by Lemma 4.1 for any $\beta \in[N, M] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ so $\alpha \in J[M, N]$. The proof of (2) is analogous. (3) Suppose that E_{M} is a semi-potent ring then by [13, Theorem 2.2] $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ and by (1) $\operatorname{Tot}[M, N]=J[M, N]$, again by [13, Theorem 2.2], [M, N] is semi-potent. The proof of (4) is analogous.

Remark. Zhou [13], gave an example of two modules M_{R}, N_{R} such that [M, N] is semi-potent, but neither E_{M}, nor E_{N} is semi-potent, (see [13, Example 4.9]). So in general, if $\operatorname{Tot}[M, N]=J[M, N]$ then $\operatorname{Tot}\left(E_{M}\right) \neq J\left(E_{M}\right)$ and $\operatorname{Tot}\left(E_{N}\right) \neq J\left(E_{N}\right)$. Hence it is possible that $\operatorname{Tot}[M, N]=J[M, N]$ while $\operatorname{Tot}\left(E_{M}\right) \neq J\left(E_{M}\right)$ and $\operatorname{Tot}\left(E_{N}\right) \neq J\left(E_{N}\right)$.

Following [13], let

$$
\begin{aligned}
& \Phi(R)=\{M \in \bmod -R: \quad \operatorname{Tot}[M, N]=J[M, N] \forall N \in \bmod -R\} \\
& \Gamma(R)=\{N \in \bmod -R: \operatorname{Tot}[M, N]=J[M, N] \forall M \in \bmod -R\}
\end{aligned}
$$

Corollary 4.5. [13, Theorem 4.5]. The following holds:
(1) $\Phi(R)=\left\{M \in \bmod -R: E_{M}\right.$ is a semi-potent ring $\}$.
(2) $\Gamma(R)=\left\{N \in \bmod -R: E_{N}\right.$ is a semi-potent ring $\}$.
(3) $\Phi(R)=\Gamma(R)$.

Proof. (1) (\Rightarrow). If $M \in \Phi(R)$, then $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$, so E_{M} is semi-potent by [13, Theorem 2.2]. (\Leftarrow). Let $M \in \bmod -R$ with E_{M} is semi-potent, then for any $N \in \bmod -R ;[M, N]$ is semi-potent by Proposition 4.4, so $M \in \Phi(R)$. Similarly (2) holds. (3) By (1) and (2).

5. (D-, \$-, I-) Semipotent [M,N]

Proposition 5.1. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $\Delta[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\Delta[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=\Delta[M, N]$ then
(1) $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.

Proof.

(a) (1) Let $\alpha \in \Delta[M, N]$, so $\operatorname{Ker}(\alpha) \leqslant{ }_{e} M$, and for any $\beta \in[N, M], \operatorname{Ker}(\beta \alpha) \leqslant{ }_{e} M$ hence $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$, this follows that $\beta \alpha \in \Delta E_{M}$. (2) If $\alpha \in \Delta[M, N]$, then $\operatorname{Ker}(\alpha) \leqslant{ }_{e} M$. Let $\beta \in[N, M]$ and K be a submodule of N such that $\operatorname{Ker}(\alpha \beta) \cap K=0$. Hence $\operatorname{Ker}(-$ $\beta) \subseteq \operatorname{Ker}(\alpha \beta)$ then $\operatorname{Ker}(\beta) \cap K=0$. Let $y \in \operatorname{Ker}(\alpha) \cap \beta(K)$ then $y \in \operatorname{Ker}(\alpha)$, so $\alpha(y)=0$ and $y \in \beta(K)$ therefore $y=\beta(x)$ for some $x \in K$. So $0=\alpha(y)=\alpha \beta(x)$ thus $x \in \operatorname{Ker}(\alpha \beta), x \in K$, so $x \in \operatorname{Ker}(\alpha \beta) \cap K=0$ thus, $x=0$, so $y=\beta(x)=0$ thus, $\operatorname{Ker}(-$ $\alpha) \cap \beta(K)=0$. Since $\operatorname{Ker}(\alpha) \leqslant{ }_{e} M$ follows that $\beta(K)=0$ so $K \subseteq \operatorname{Ker}(\beta)$ thus $K=\operatorname{Ker}(\beta) \cap K=0$ so $\operatorname{Ker}(\alpha \beta) \leqslant{ }_{e} N$, thus $\alpha \beta \in \Delta E_{N}$.
(b) Suppose that $\operatorname{Tot}[M, N]=\Delta[M, N]$. (1) We have by (a) $\Delta[M, N] \subseteq\{\alpha: \alpha \in[M, N]$; $\beta \alpha \in \Delta E_{M}$ for all $\left.\beta \in[N, M]\right\}$. Let $\alpha \in[M, N]$ such that $\beta \alpha \in \Delta E_{M}$ for all $\beta \in[N, M]$. Suppose $\alpha \notin \Delta[M, N]$. Then $\alpha \notin \operatorname{Tot}[M, N]$, so there exists $\gamma \in[N, M]$ such that $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$. Therefore $M=\operatorname{Im}(\gamma \alpha) \oplus \operatorname{Ker}(\gamma \alpha)$. Since $\operatorname{Ker}(-$ $\gamma \alpha) \cap \operatorname{Im}(\gamma \alpha)=0$ and $\operatorname{Ker}(\gamma \alpha) \leqslant{ }_{e} M$, it follows that $\operatorname{Im}(\gamma \alpha)=0$, so $\gamma \alpha=0$, a contradiction. Thus, $\alpha \in \Delta[M, N]$. Similarly (2) holds.

Lemma 5.2. Let M_{R}, N_{R} be modules. The following are equivalent:
(1) If $\alpha \in[M, N] \backslash \Delta[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$.
(2) If $\alpha \in[M, N] \backslash \Delta[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$.
(3) If $\alpha \in[M, N] \backslash \Delta[M, N]$, there exists $\gamma \in[N, M]$ such that $\gamma=\gamma \alpha \gamma \notin \Delta[N, M]$.

Proof. Suppose (1) holds. Then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some $\beta \in[N, M]$. Let $\gamma=\beta \alpha \beta \in[N, M]$ we have $\gamma \alpha \gamma=\gamma \neq 0$ and $\gamma \notin \Delta[N, M]$ because $0 \neq \alpha \gamma=(\alpha \gamma)^{2}$, giving (3). Suppose (3) holds, then $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ for some $\gamma \in[N, M] \backslash \Delta[N, M]$, gives (1). Similarly, the equivalence (2) \Longleftrightarrow (3) holds.

We say that $[M, N]$ is Δ - semi-potent if the conditions in Lemma 5.2 are satisfied.
Theorem 5.3. Let M_{R}, N_{R} be modules. $[M, N]$ is Δ - semi-potent if and only if, $\operatorname{Tot}[M, N]=\Delta[M, N]$. In particular, E_{M} is a Δ-semi-potent if andonly if, $\operatorname{Tot}\left(E_{M}\right)=\Delta E_{M}$.

Proof.

(\Rightarrow) Suppose that $\operatorname{Tot}[M, N] \neq \Delta[M, N]$, Since $\Delta[M, N] \subseteq \operatorname{Tot}[M, N]$, there exists $\alpha \in \operatorname{Tot}[M, N]$ such that $\alpha \notin \Delta[M, N]$. So, for any $\beta \in[N, M]$, either $\alpha \beta=0$ or $\alpha \beta \neq(\alpha \beta)^{2}$. Hence $[M, N]$ is not Δ - semi-potent.
(\Leftarrow) If $\alpha \in[M, N] \backslash \Delta[M, N]$, then $\alpha \notin \operatorname{Tot}[M, N]$. So $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$ for some $\beta \in[N, M]$. This shows that $[M, N]$ is Δ - semi-potent.

Let

$$
\begin{aligned}
& \Delta \Phi(R)=\{M \in \bmod -R: \quad \operatorname{Tot}[M, N]=\Delta[M, N] \quad \forall N \in \bmod -R\} \\
& \Delta \Gamma(R)=\{N \in \bmod -R: \operatorname{Tot}[M, N]=\Delta[M, N] \forall M \in \bmod -R\}
\end{aligned}
$$

We define the following two sets:
(a) $\Delta S \Phi(R)$ the set of all modules $M \in \bmod -R$ which have the following two properties:
(1) E_{M} is a Δ - semi-potent ring.
(2) For any $N \in \bmod -R$;

$$
\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M} ; \text { for all } \beta \in[N, M]\right\}
$$

(b) $\Delta S \Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfy the following two properties:
(1) E_{N} is a Δ - semi-potent ring.
(2) For any $M \in \bmod -R$;

$$
\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N} ; \text { for all } \beta \in[N, M]\right\} .
$$

Theorem 5.4. The following are holds:
(1) $\Delta \Phi(R)=\Delta S \Phi(R)$.
(2) $\Delta \Gamma(R)=\Delta S \Gamma(R)$.
(3) $\Delta \Phi(R)=\Delta \Gamma(R)$.

Proof. (1) (\Rightarrow). Let $M \in \Delta \Phi(R)$, $\operatorname{Tot}[M, N]=\Delta[M, N]$ for any $N \in \bmod -R$; by Proposition 5.1(b) we have $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$; for all $\left.\beta \in[N, M]\right\}$. It is clear that E_{M} is a Δ - semi-potent ring, so $M \in \Delta S \Phi(R)$.
(\Leftarrow). Let $M \in \Delta S \Phi(R)$, for any $N \in \bmod -R$ we have $\Delta[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$, by Lemma 4.1, for any $\beta \in[N, M] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$. Since E_{M} is Δ-semi-potent, by Theorem 5.3 $\operatorname{Tot}\left(E_{M}\right)=\Delta E_{M}$, so $\beta \alpha \in \Delta E_{M}$ for all $\beta \in[M, N]$ thus, $M \in \Delta \Phi(R)$.
(2) (\Rightarrow). Let $N \in \Delta \Gamma(R)$, so for any $M \in \bmod -R ; \operatorname{Tot}[M, N]=\Delta[M, N]$ by proposition 5.1(b) we have $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$; for all $\left.\beta \in[N, M]\right\}$ and E_{N} is a Δ - semi-potent ring, so $N \in \Delta S \Gamma(R)$.
(\Leftarrow). Let $N \in \Delta S \Gamma(R)$, so for any $M \in \bmod -R$ we have $\Delta[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ by Lemma 4.1 for any $\beta \in[N, M] ; \alpha \beta \in \operatorname{Tot}\left(E_{N}\right)$. Since E_{N} is a Δ - semi-potent ring by Theorem 5.3, $\operatorname{Tot}\left(E_{N}\right)=\Delta E_{N}$ so $\alpha \beta \in \Delta E_{N}$ for all $\beta \in[N, M]$ by assumption $\alpha \in \Delta[M, N]$. Thus, $N \in \Delta \Gamma(R)$.
(3) By (1) and (2).

Proposition 5.5. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $\$[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \$ E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\$[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \$ E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=\$[M, N]$ then
(1) $\$[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \$ E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $S[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \$ E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.

Proof. (a) (1) Let $\alpha \in \$[M, N]$. So for any $\beta \in[N, M], \operatorname{Im}(\beta \alpha) M$ thus $\beta \alpha \in \$ E_{M}$. (2) If $\alpha \in \$[M, N]$ then $\operatorname{Im}(\alpha) N$, since for any $\beta \in[N, M], \operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha)$ then $\operatorname{Im}(\alpha \beta) N$ so $\alpha \beta \in \$ E_{N}$.
(b) Suppose that $\operatorname{Tot}[M, N]=\$[M, N]$. (1) We have by (a) $\$[M, N] \subseteq\{\alpha: \alpha \in[M, N]$; $\beta \alpha \in \$ E_{M}$ for all $\left.\beta \in[N, M]\right\}$. Let $\alpha \in[M, N]$ such that $\beta \alpha \in \$ E_{M}$ for all $\beta \in[N, M]$, suppose $\alpha \notin \$[M, N]$, so there exists $\gamma \in[N, M]$ such that $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ therefore $0 \neq \operatorname{Im}(\gamma \alpha) \subseteq^{\oplus} M$. Since $\gamma \alpha \in \$ E_{M}, \operatorname{Im}(\gamma \alpha) M$ so $\operatorname{Im}(\gamma \alpha)=0$, a contradiction. Thus, $\alpha \in \$[M, N]$. Similarly (2) holds.

Lemma 5.6. Let M_{R}, N_{R} be modules. The following are equivalent:
(1) If $\alpha \in[M, N] \backslash \$[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$.
(2) If $\alpha \in[M, N] \backslash \$[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$.
(3) If $\alpha \in[M, N] \backslash \$[M, N]$, there exists $\gamma \in[N, M]$ such that $\gamma=\gamma \alpha \gamma \notin \$[N, M]$.

Proof. (1) \Rightarrow (3). Let $\alpha \in[M, N] \backslash \$[M, N]$. Then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some β $\in[N, M]$. Let $\gamma=\beta \alpha \beta$. Then $\gamma \alpha \gamma=\gamma \notin \$[N, M]$ because $\beta \alpha \notin \$ E_{M}$. Suppose (3) holds, if $\alpha \in[M, N] \backslash \$[M, N]$ then $\gamma=\gamma \alpha \gamma$ for some $\gamma \in[N, M] \backslash \$[N, M]$, so $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$, gives (1). Similarly, the equivalence (2) \Longleftrightarrow (3) holds.

We say that $[M, N]$ is $\$$ - semi-potent if the conditions in Lemma 5.6 are satisfied.
Theorem 5.7. Let M_{R}, N_{R} be modules. $[M, N]$ is $\$$ - semi-potent if and only if, $\operatorname{Tot}[M, N]=\$[M, N]$. In particular, E_{M} is a $\$$ - semi-potent if and only if, $\operatorname{Tot}\left(E_{M}\right)=\$ E_{M}$.

Proof. (\Rightarrow). Suppose that $\operatorname{Tot}[M, N] \neq \$[M, N]$, Since $\$[M, N] \subseteq \operatorname{Tot}[M, N]$, there exists α $\in \operatorname{Tot}[M, N]$ such that $\alpha \notin \$[M, N]$. So, for any $\beta \in[N, M]$, either $\alpha \beta=0$ or $\alpha \beta \neq(\alpha \beta)^{2}$. Hence $[M, N]$ is not $\$$ - semi-potent.
(\Leftarrow). If $\alpha \in[M, N] \backslash \$[M, N]$, then $\alpha \notin \operatorname{Tot}[M, N]$. So $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$ for some $\beta \in[N, M]$. This shows that $[M, N]$ is $\$$ - semi-potent.

Let

$$
\begin{aligned}
& \nabla \Phi(R)=\{M \in \bmod -R: \quad \operatorname{Tot}[M, N]=\nabla[M, N] \quad \forall N \in \bmod -R\} \\
& \nabla \Gamma(R)=\{N \in \bmod -R: \quad \operatorname{Tot}[M, N]=\nabla[M, N] \quad \forall M \in \bmod -R\}
\end{aligned}
$$

We define the following two sets:
(a) $\$ S \Phi(R)$ the set of all modules $M \in \bmod -R$ which have the following two properties:
(1) E_{M} is a $\$$ - semi-potent ring.
(2) For any $N \in \bmod -R$;

$$
\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M} ; \text { for all } \beta \in[N, M]\right\}
$$

(b) $\$ S \Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfy the following two properties:
(1) E_{N} is a $\$$ - semi-potent ring.
(2) For any $M \in \bmod -R$;

$$
\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \nabla E_{N} ; \text { for all } \beta \in[N, M]\right\} .
$$

Theorem 5.8. The following hold:
(1) $\$ \Phi(R)=\$ S \Phi(R)$.
(2) $\$ \Gamma(R)=\$ S \Gamma(R)$.
(3) $\$ \Phi(R)=\$ \Gamma(R)$.

Proof. (1) (\Rightarrow). If $M \in \$ \Phi(R)$. Then for any $N \in \bmod -R$; $\operatorname{Tot}[M, N]=\$[M, N]$ by Proposition 5.5(b), $\$[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \$ E_{M}\right.$; for all $\left.\beta \in[N, M]\right\}$ in addition, E_{M} is a $\$$ - semi-potent ring, so $M \in \$ S \Phi(R)$.
(\Leftarrow). Let $M \in \$ S \Phi(R)$. So, for any $N \in \bmod -R, \quad \$[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ then by Lemma 4.1 for any $\beta \in[N, M] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$. Since E_{M} is $\$$ -semi-potent then by Theorem 5.7 $\operatorname{Tot}\left(E_{M}\right)=\$ E_{M}$, so $\beta \alpha \in \$ E_{M}$ for all $\beta \in[M, N]$ thus, $M \in \$ \Phi(R)$.
(2) (\Rightarrow). If $N \in \$ \Gamma(R)$, for any $M \in \bmod -R$; $\operatorname{Tot}[M, N]=\$[M, N]$ by proposition 5.5(b) we have $\$[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \$ E_{N}\right.$; for all $\left.\beta \in[N, M]\right\}$. In addition, E_{N} is a \$- semi-potent ring, so $N \in \$ S \Gamma(R)$.
(\Leftarrow). Let $N \in \$ S \Gamma(R)$, for any $M \in \bmod -R$ we have $\$[M, N] \subseteq \operatorname{Tot}[M, N]$. Let α $\in \operatorname{Tot}[M, N]$ by Lemma 4.1 for any $\beta \in[N, M] ; \alpha \beta \in \operatorname{Tot}\left(E_{N}\right)$. Since E_{N} is a $\$$ - semipotent ring then by Theorem 5.7, $\operatorname{Tot}\left(E_{N}\right)=\$ E_{N}$ so $\alpha \beta \in \$ E_{N}$ for all $\beta \in[N, M]$ by assumption $\alpha \in \$[M, N]$. Thus, $N \in \$ \Phi(R)$.
(3) By (1) and (2).

Let M_{R}, N_{R} be modules. We put

$$
I[M, N]=\{\alpha: \alpha \in[M, N] ; \operatorname{Im}(\alpha) \subseteq J(N)\}
$$

Since any small submodule of N contained in $J(N)$ then $\$[M, N] \subseteq I[M, N]$. If $J(N) N$ then $I[M, N]=\$[M, N]$. Thus $I=I\left(E_{M}\right)=I[M, M]=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$. In particular for a ring $R, I(R)=I[R, R]=J[R, R]=J(R)$. Recall that for a module M_{R} we defined $\Gamma(M)=\left\{K: K \subseteq \subseteq^{\oplus} M\right.$ and $\left.K \subseteq J(M)\right\}$.

Proposition 5.9. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $I[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $I[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(M)=\{0\}$, then

$$
I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right) \text { for all } \beta \in[N, M]\right\}
$$

(c) If $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(N)=\{0\}$, then

$$
I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right) \text { for all } \beta \in[N, M]\right\}
$$

Proof.

(a) (1) If $\alpha \in I[M, N]$, then $\operatorname{Im}(\alpha) \subseteq J(N)$, so for any $\beta \in[N, M] ; \beta \alpha \in E_{M}$ and $\operatorname{Im}(\beta \alpha) \subseteq J(M)$. Thus, $\beta \alpha \in I\left(E_{M}\right)$. (2). If $\alpha \in I[M, N]$, then $\operatorname{Im}(\alpha) \subseteq J(N)$, so for any $\beta \in[N, M] ; \alpha \beta \in E_{N}$ and $\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha) \subseteq J(N)$. Thus, $\alpha \beta \in I\left(E_{N}\right)$.
(b) Suppose that $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(M)=\{0\}$. Let $\alpha \in[M, N]$ such that $\beta \alpha \in I\left(E_{M}\right)$ for all $\beta \in[N, M]$. Suppose $\alpha \notin I[M, N]$, so there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$, since $\operatorname{Im}(\beta \alpha) \subseteq J(M)$ and $\operatorname{Im}(\beta \alpha) \subseteq^{\oplus} M$, then $\operatorname{Im}(\beta \alpha) \in$ $\Gamma(M)=\{0\}$, a contradiction.
(c) Suppose that $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(N)=\{0\}$. Let $\alpha \in[M, N]$ such that $\alpha \beta \in I\left(E_{N}\right)$ for all $\beta \in[N, M]$. Suppose $\alpha \notin I[M, N]$, so there exists $\gamma \in[N, M]$ such that $\quad 0 \neq \alpha \gamma=(\alpha \gamma)^{2} \in E_{N}$. Since $\quad \operatorname{Im}(\alpha \gamma) \subseteq J(N) \quad$ and $\quad \operatorname{Im}(\alpha \gamma) \subseteq^{\oplus} N$ then $\operatorname{Im}(\alpha \gamma) \in \Gamma(N)=\{0\}$, a contradiction. Thus $\alpha \in I[M, N]$.

Lemma 5.10. Let M_{R}, N_{R} be modules. The following are equivalent:
(1) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\beta \in[N, M] ; 0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}, \beta \alpha \notin I\left(E_{M}\right)$.
(2) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\beta \in[N, M] ; 0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}, \alpha \beta \notin I\left(E_{N}\right)$.
(3) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\gamma \in[N, M] ; \gamma \alpha \gamma=\gamma \notin I[N, M]$.

Proof. Suppose (1) holds. Then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ and $\beta \alpha \notin I\left(E_{M}\right)$ for some $\beta \in[N, M]$. By letting $\gamma=\beta \alpha \beta \in[N, M]$ we have $\gamma \alpha \gamma=\gamma \neq 0$ and $\gamma \notin I[N, M]$ because $\beta \alpha \notin I\left(E_{M}\right)$, giving (3). Suppose (3) holds. Then $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ and $\gamma \alpha \notin I\left(E_{M}\right)$ because $\gamma \notin I[N, M]$ gives (1). Similarly, the equivalence (2) \Longleftrightarrow (3) holds.

We say that $[M, N]$ is I - semi-potent if the conditions in lemma 5.10 are satisfied.
Theorem 5.11. Let M_{R}, N_{R} be modules. Then the following hold:
(1) If $\Gamma(M)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is I - semi-potent.
(2) If $\Gamma(N)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is I - semi-potent.

In particular, if $\Gamma(M)=\{0\}$ then $\operatorname{Tot}\left(E_{M}\right)=I\left(E_{M}\right)$ if and only if, E_{M} is an I-semi-potent ring.

Proof. (1) Suppose that $\Gamma(M)=\{0\}$. (\Rightarrow). let $\alpha \in[M, N] \backslash I[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$, so $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some $\beta \in[N, M]$ and $\beta \alpha \notin I\left(E_{M}\right)$ because $\Gamma(M)=\{0\}$. This shows that $[M, N]$ is I - semi-potent.
(\Leftarrow). Since $\Gamma(M)=\{0\}$ it is easy to see that $I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ and suppose $\alpha \notin I[M, N]$ so, for any $\beta \in[N, M]$, either $\alpha \beta=0$ or $\alpha \beta \neq(\alpha \beta)^{2}$. Hence [M, N] is not I-semi-potent. Similarly (2) holds.

Let

$$
\begin{aligned}
& I \Phi(R)=\{M \in \bmod -R: \Gamma(M)=\{0\} \text { and } \operatorname{Tot}[M, N]=I[M, N] ; \text { for all } N \in \bmod -R\} \\
& I \Gamma(R)=\{N \in \bmod -R: \Gamma(N)=\{0\} \text { and } \operatorname{Tot}[M, N]=I[M, N] ; \text { for all } M \in \bmod -R\}
\end{aligned}
$$

We define the following two sets:
(a) $I S \Phi(R)$ the set of all modules $M \in \bmod -R$ which have the following properties:
(1) $\Gamma(M)=\{0\}$.
(2) E_{M} is an I-semi-potent ring.
(3) For any $N \in \bmod -R$;

$$
I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right) \text { for all } \beta \in[N, M]\right\} .
$$

(b) $I S \Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfies the following properties:
(1) $\Gamma(N)=\{0\}$.
(2) E_{N} is an I - semi-potent ring.
(3) For any $M \in \bmod -R$;

$$
I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right) \text { for all } \beta \in[N, M]\right\}
$$

Theorem 5.12. The following are holds:
(1) $I \Phi(R)=I S \Phi(R)$.
(2) $I \Gamma(R)=I S \Gamma(R)$.
(3) $I \Phi(R)=I \Gamma(R)$.

Proof. (1) (\Rightarrow). Let $M \in I \Phi(R)$. Then $\Gamma(M)=\{0\}$ and $\operatorname{Tot}[M, N]=I[M, N]$ for all $N \in \bmod -R$. So, $\operatorname{Tot}\left(E_{M}\right)=I\left(E_{M}\right)$ by Theorem $5.11, E_{M}$ is an I - semi-potent ring. On the other hand, by Proposition $5.9(\mathrm{~b})$ for any $N \in \bmod -R$; $I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$. So, $M \in \operatorname{IS\Phi }(R)$.
(\Leftarrow). If $M \in I S \Phi(R)$, then $\Gamma(M)=\{0\}$. Let $N \in \bmod -R$ and $\alpha \in I[M, N]$, so $\operatorname{Im}(\alpha) \subseteq J(N)$. Suppose that $\alpha \notin \operatorname{Tot}[M, N]$, there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. So, $0 \neq \operatorname{Im}(\beta \alpha) \subseteq^{\oplus} M$ and $\operatorname{Im}(\beta \alpha) \in \Gamma(M)=\{0\}$, a contradiction.

Thus, $\quad I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$, suppose that $\alpha \notin I[M, N]$, since $M \in I S \Phi(R)$ there exists $\beta \in[N, M]$ such that $\beta \alpha \notin I\left(E_{M}\right)$. Since E_{M} is an I-semi-potent ring there exists $\gamma \in E_{M}$ such that $\gamma(\beta \alpha) \gamma=\gamma \notin I\left(E_{M}\right)$ thus, $0 \neq(\gamma \beta) \alpha=[(\gamma \beta) \alpha]^{2} \in E_{M}$ and $\gamma \beta \in[N, M]$, a contradiction. Hence $\alpha \in \operatorname{Tot}[M, N]$, therefore $\alpha \in I[M, N]$. Thus, $\operatorname{Tot}[M, N]=I[M, N]$ for any $N \in \bmod -R$, so $M \in I \Phi(R)$.
(2) (\Rightarrow). Let $N \in I \Gamma(R)$. Then $\Gamma(N)=\{0\}$ and $\operatorname{Tot}[M, N]=I[M, N]$ for all $M \in \bmod -R$. So, $\operatorname{Tot}\left(E_{N}\right)=I\left(E_{N}\right)$ by Theorem 5.11, E_{N} is I - semi-potent. On the other hand, by Proposition 5.9(c) for any $M \in \bmod -R ; I[M, N]=\{\alpha: \alpha \in[M, N] ;$ $\alpha \beta \in I\left(E_{N}\right)$ for all $\left.\beta \in[N, M]\right\}$. So, $N \in I S \Gamma(R)$.
(\Leftarrow). If $N \in I S \Gamma(R)$, then $\Gamma(N)=\{0\}$. Let $M \in \bmod -R, \alpha \in I[M, N]$, so $\operatorname{Im}(\alpha) \subseteq J(N)$. Suppose that $\alpha \notin \operatorname{Tot}[M, N]$, so there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$. So, $0 \neq \operatorname{Im}(\alpha \beta) \subseteq^{\oplus} N$ and $\operatorname{Im}(\alpha \beta) \in \Gamma(N)=\{0\}$, a contradiction. Thus, $\quad I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$, suppose that $\alpha \notin I[M, N]$, since $N \in I S \Gamma(R)$ there exists $\beta \in[N, M]$ such that $\alpha \beta \notin I\left(E_{N}\right)$. Since E_{N} is I - semi-potent there exists $\gamma \in E_{N}$ such that $\gamma(\alpha \beta) \gamma=\gamma \notin I\left(E_{N}\right)$ thus, $0 \neq(\alpha \beta) \gamma=[(\alpha \beta) \gamma]^{2} \in E_{N}$ and $\beta \gamma \in[N, M]$, a contradiction. Therefore $\alpha \in I[M, N]$. Thus, $\operatorname{Tot}[M, N]=I[M, N]$ for any $M \in \bmod -R$, so $N \in I \Gamma(R)$. (3). By (1) and (2).

6. Locally injective and locally projective modules

Recall a module Q_{R} is locally injective [9] if, for every submodule $A \subseteq Q$, which is not large in Q, there exists an injective submodule $0 \neq B \subseteq Q$ with $A \cap B=0$.

Lemma 6.1. Let Q_{R} be a locally injective module. Then for any module $N \in \bmod -R$ the following hold:
(1) $\operatorname{Tot}[Q, N]=\Delta[Q, N]$.
(2) $J[Q, N] \subseteq \Delta[Q, N]$.
(3) $\$[Q, N] \subseteq \Delta[Q, N]$.

In particular, $J\left(E_{Q}\right) \subseteq \Delta E_{Q}=\operatorname{Tot}\left(E_{Q}\right)$ and $\$ E_{Q} \subseteq \Delta E_{Q}$.
Proof. (1) By Kasch [9]. (2). Since $J[Q, N] \subseteq \operatorname{Tot}[Q, N]$, so by (1) $J[Q, N] \subseteq \Delta[Q, N]$. (3). Let $\alpha \in \$[Q, N]$ and suppose that $\alpha \notin \Delta[Q, N]$ then $\operatorname{Ker}(\alpha)$ is not large in Q, so there exists an injective module $0 \neq A \subseteq Q$ such that $A \cap \operatorname{Ker}(\alpha)=0$. Since A is injective there exists $\beta: N \rightarrow A$ such that $\left.\beta \alpha\right|_{A}=i_{A}$ so $\beta=\beta \alpha \beta$. Thus $0 \neq(\alpha \beta)^{2}=\alpha \beta \in E_{N}$, $\operatorname{Im}(\alpha \beta) \subseteq \subseteq^{\oplus} N$ and $\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha) N$, so $\operatorname{Im}(\alpha \beta)=0$ and $\alpha \beta=0$, a contradiction. Thus $\alpha \in \Delta[Q, N]$.

Zhou gave an example of a locally injective module which does not have a semi-potent endomorphism ring [13, Example 4.2]. The following Theorem gives us a necessary and sufficient conditions for the endomorphism ring of a locally injective module to be semi-potent ring.

Theorem 6.2. Let Q_{R} be a locally injective module. For any module $N \in \bmod -R$ the following are equivalent:
(1) $[Q, N]$ is a semi-potent.
(2) $\operatorname{Tot}[Q, N]=J[Q, N]=\Delta[Q, N]$.
(3) For any $\alpha \in[Q, N] \backslash J[Q, N]$ there exists $\beta \in[N, Q]$ with $0 \neq \operatorname{Ker}(\beta \alpha) \subseteq^{\oplus} Q$.

In particular, E_{Q} is a semi-potent ring if and only if, for any $\alpha \in E_{Q} \backslash J\left(E_{Q}\right)$ there exists $0 \neq \beta \in E_{Q}$ such that $\operatorname{Ker}(\beta \alpha) \subseteq^{\oplus} Q$.

Proof. (1) \Rightarrow (2). Suppose that $[Q, N]$ is semi-potent, by [13, Theorem 2.2] $\operatorname{Tot}[Q, N]=J[Q, N]$ and by Lemma $6.1 \quad J[Q, N]=\Delta \quad[Q, N]$. (2) \Rightarrow (1). Since $J[Q, N]=\Delta[Q, N]=\operatorname{Tot}[Q, N]$, so by [13, Theorem 2.2] [Q,N] is semi-potent. $(1) \Rightarrow(3)$. Let $\alpha \in[Q, N] \backslash J[Q, N]$ then there exists $\beta \in[N, Q]$ such that $0 \neq(\beta \alpha)^{2}=\beta \alpha \in E_{Q}$, so $0 \neq \operatorname{Ker}(\beta \alpha) \subseteq^{\oplus} Q$. (3) $\Rightarrow(2)$. Since Q is a locally injective then by Lemma $6.1 J[Q, N] \subseteq \Delta[Q, N]$. Let $\alpha \in \Delta[Q, N]$ and suppose that $\alpha \notin J[Q, N]$ then there exists $\beta \in[N, Q]$ such that $0 \neq \operatorname{Ker}(\beta \alpha) \subseteq^{\oplus} Q$ and $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$. Since $\operatorname{Ker}(-$ $\alpha) \leqslant e Q$ then $\operatorname{Ker}(\beta \alpha) \leqslant e Q$ and $\operatorname{Ker}(\beta \alpha) \cap \operatorname{Im}(\beta \alpha)=0$ so $\operatorname{Im}(\beta \alpha)=0$ and $\beta \alpha=0$, a contradiction. Thus, $\alpha \in J[Q, N]$.

Theorem 6.3. Let Q_{R} be a module. The following conditions are equivalent:
(1) Q is a locally injective module.
(2) $\operatorname{Tot}[Q, N]=\Delta[Q, N]$ for all $N \in \bmod -R$.
(3) $\operatorname{Tot}[N, Q]=\Delta[N, Q]$ for all $N \in \bmod -R$.
(4) $[Q, N]$ is a Δ-semi-potent for all $N \in \bmod -R$.
(5) $[N, Q]$ is a Δ-semi-potent for all $N \in \bmod -R$.

Proof. (1) \Longleftrightarrow (2). By Kasch [9]. (2) \Longleftrightarrow (3). By Theorem 5.4. (3) \Longleftrightarrow (4) and (2) \Longleftrightarrow (5) By Theorem 5.3.

Recall a module P_{R} is locally projective [9] if, for every submodule $B \subseteq P$, which is not small in P there exists a projective direct summand $0 \neq W \subseteq^{\oplus} P$ with $W \subseteq B$.

Lemma 6.4. Let P_{R} be a locally projective module. Then for any module $M \in \bmod -R$ the following hold:
(1) $\operatorname{Tot}[M, P]=\$[M, P]$.
(2) $J[M, P] \subseteq \$[M, P]$.
(3) $\Delta[M, P] \subseteq \$[M, P]$.

In particular, $J\left(E_{P}\right) \subseteq \$ E_{P}=\operatorname{Tot}\left(E_{P}\right)$ and $\Delta E_{P} \subseteq \$ E_{P}$.
Proof. (1) By Kasch [9]. (2) Since $J[M, P] \subseteq \operatorname{Tot}[M, P]$, so by (1) $J[M, P] \subseteq \$[M, P]$. (3) We have by (1), $[M, P]$ is a $\$$ - semi-potent. Let $\alpha \in \Delta[M, P]$ suppose that $\alpha \notin \$[M, P]$ then there exists $\beta \in[P, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. Since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$ and
$\alpha \in \Delta[M, P]$ then $\operatorname{Ker}(\beta \alpha) \leqslant{ }_{e} M$, so $\operatorname{Im}(\beta \alpha)=0$, hence $\operatorname{Ker}(\beta \alpha) \cap \operatorname{Im}(\beta \alpha)=0$. Thus, $\beta \alpha=0$ a contradiction, so $\alpha \in \$[M, P]$.

Theorem 6.5. Let P_{R} be a locally projective module. For any module $M \in \bmod -R$ the following are equivalent:
(1) $[M, P]$ is a semi-potent.
(2) $\operatorname{Tot}[M, P]=J[M, P]=\$[M, P]$.
(3) For any $\alpha \in[M, P] \backslash J[M, P]$ there exists $\beta \in[P, M]$ with $0 \neq \operatorname{Im}(\alpha \beta) \subseteq^{\oplus} P$.

In particular, E_{P} is a semi-potent ring if and only if, for any $\alpha \in E_{P} \backslash J\left(E_{P}\right)$ there exists $0 \neq \beta \in E_{P}$ such that $\operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} P$.

Proof. (1) \Rightarrow (2). Suppose that $[M, P]$ is semi-potent then [13, Theorem 2.2] $\operatorname{Tot}[M, P]=J[M, P]$ and by Lemma $6.4 \quad J[M, P]=\$[M, P] . \quad(2) \Rightarrow(1)$. Since $\operatorname{Tot}[M, P]=J[M, P]$ then by [13, Theorem 2.2] $[M, P]$ is semi-potent. (1) \Rightarrow (3). Let $\alpha \in[M, P] \backslash J[M, P]$ then there exists $\beta \in[P, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{P}$, so $0 \neq$ $\operatorname{Im}(\alpha \beta) \subseteq^{\oplus} P$. (3) $\Rightarrow(2)$. Since P is locally projective then by Lemma 6.4 $J[M, P] \subseteq \$[M, P]$. Let $\alpha \in \$[M, P]$, suppose that $\alpha \notin J[M, P]$ then there exists $\beta \in[P, M]$ such that $0 \neq \operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} P$. Since $\alpha \in \$[M, P]$ and $\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha)$ then $\operatorname{Im}(\alpha \beta) P$. Therefore $\operatorname{Im}(\alpha \beta)=0$ and $\alpha \beta=0$, a contradiction. Thus, $\alpha \in J[M, P]$.

Theorem 6.6. Let P_{R} be a module. The following conditions are equivalent:
(1) P is a locally projective module.
(2) $\operatorname{Tot}[M, P]=\$[M, P]$ for all $M \in \bmod -R$.
(3) $\operatorname{Tot}[P, M]=\$[P, M]$ for all $M \in \bmod -R$.
(4) $[P, M]$ is a $\$$ - semi-potent for all $M \in \bmod -R$.
(5) $[M, P]$ is a $\$$ - semi-potent for all $M \in \bmod -R$.

Proof. (1) \Longleftrightarrow (2). By Kasch [9]. (2) \Longleftrightarrow (3). By Theorem 5.8. (3) \Longleftrightarrow (4) and $(2) \Longleftrightarrow(5)$ By Theorem 5.7.

Corollary 6.7. The following conditions are equivalent for a ring R :
(1) Every module $M \in \bmod -R$ with E_{M} a Δ-semi-potent ring, is injective.
(2) $\Phi(R)=\Delta \Phi(R)$.
(3) Every module $M \in \bmod -R$ with E_{M} is a semi-potent ring, is injective.
(4) R is a semi-simple Artinian ring.
(5) Every module $M \in \bmod -R$ with E_{M} a semi-potent ring, is projective.
(6) $\Gamma(R)=\$ \Gamma(R)$.
(7) Every module $M \in \bmod -R$ with E_{M} a $\$$ - semi-potent ring, is projective.

Proof. See [13, Corollary 4.7] and Theorems 6.2, 6.5.

Corollary 6.8. The following conditions are equivalent for a ring R :
(1) R is a semi-potent ring and $J(R)$ is left T - nilpotent.
(2) E_{P} is a semi-potent ring for every projective module $P \in \bmod -R$.
(3) E_{P} is a $\$$ - semi-potent ring for every projective module $P \in \bmod -R$.
(4) E_{F} is a semi-potent ring for every free module $F \in \bmod -R$.
(5) E_{F} is a $\$$ - semi-potent ring for every free module $F \in \bmod -R$.

Proof. By [13, Theorem 4.10] since for any projective module $P \in \bmod -R$; $J\left(E_{P}\right)=\$ E_{P}$, by [11, Proposition 1.1] (See also, [3, Theorem 3.8]).

References

[1] A.N. Abyzov, Weakly regular modules over normal rings, Siberain Math. J. 49 (4) (2008) 575-586.
[2] G. Azumaya, F-Semi-perfect modules, J. Algebra 136 (1991) 73-85.
[3] H. Hamza, I_{0}-Rings and I_{0}-modules, Math. J. Okayama Univ. 40 (1988) 91-97.
[4] W.K. Nicholson, I-Rings, Trans. Am. Math. Soc. 207 (1975) 361-373.
[5] W.K. Nicholson, Semi-regular modules and rings, Can. J. Math. 28 (5) (1976) 1105-1120.
[6] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229 (1977) 269-278.
[7] W.K. Nicolson, Y. Zhou, Strong lifting, J. Algebra 285 (2) (2005) 795-818.
[8] F. Kasch, Modules and Rings, London, New York, 1982.
[9] F. Kasch, Locally injective modules and locally projective modules, Rocky Mountain J. Math. 32 (4) (2002) 1493-1504.
[10] A.A. Tuganbaev, Modules over hereditary rings, Math. Zametke. 68 (5) (2000) 739-755, in Russian.
[11] R. Ware, Endomorphism rings of projective modules, Trans. Am. Math. Soc. 155 (1971) 233-256.
[12] R. Ware, J. Zelmanowitz, The Jacobson radical of projective module, Proc. Am.Math.Soc. 26 (1) (1970) 15-20.
[13] Y. Zhou, On (semi)regularity and total of rings and modules, J. Algebra 322 (2009) 562-578.
[14] J. Zelmanowitz, Regular modules, Trans. Am. Math. Soc. 163 (1972) 341-355.

[^0]: * Tel.: +963 312119253.

 E-mail addresses: hhakmi-64@hotmail.com, hhakmi@nbu.edu.sa.
 Peer review under responsibility of King Saud University.

