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Abstract. Let M and N be two modules over a ring R. The object of this paper is the

study of substructures of HomR(M,N) such as, radical, the singular, and co-singular

ideal and the total. New results obtained include necessary and sufficient conditions

for the total to equal the radical, HomR(M,J(N)), a description of (D-, $-, I-) semipo-

tency rings and the endomorphism ring of locally projective module. New structure the-

orems are obtained by studying the relationship between two concepts of the total and

(D-, $-, I-) semi-potentness. In addition, locally injective and locally projective modules

are characterized in new ways.
Mathematics subject classification: Primary 16E50; 16E60; 16D70

Keywords: (D-,$-,I-) Semi-potent Rings; I0-Modules; The total; Jacobson radical; (Co)

Singular ideal; Endomorphism ring; HomR(M,N)
1. INTRODUCTION

In this paper rings R are associative with identity unless otherwise indicated. Modules
over a ring R are unitary right modules. A submodule N of a module M is said to be
small in M if N + K „ M for any proper submodule K of M, [8]. A submodule N of a
moduleM is said to be large (essential) inM if N \ K „ 0 for any nonzero submodule K
of M, [8]. If M is an R-module, the radical of M denoted by J(M), is defined to be the
intersection of all maximal submodules of M. Also, J(M) coincides with the sum of all
small submodules of M. It my happen that M has no maximal submodules in which
case J(M) = M, [11]. Thus, for a ring R, J(R) is the Jacobson radical of R. For a
submodule N of a module M, we use N ˝¯ M to mean that N is a direct summand
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of M, and we write N 6e M and N M to indicate that N is a large, respectively small,
submodule of M. If MR is a module, we use the notation EM = EndR(M) is the ring of
endomorphisms of M and we write DEM = {a:a 2 EM; Ker(a) 6e M},
$EM = {a:a 2 EM; Im(a) M} and I(EM) = {a:a 2 EM; Im(a) ˝ J(M)}. It is well-known
that DEM, $EM and I(EM) are ideals in EM, [8]. It is easy to see that $EM ˝ I(EM). If
MR and NR are modules, we use [M,N] = HomR(M,N). Thus [M,N] is an (EN,EM)-
bi-module. Our main concern is about the substructures of HomR(M,N) and the (D-,
$-, I-) semi-potency of HomR(M,N) (see [13]).

The total is a concept that was first introduced by Kasch in 1982 [8], and Zhou [13]
in 2009. In the study of the total, one of the interesting questions is when the total
equals the Jacobson radical, the singular ideal and the co-singular ideal. In Section 2
it is proved that Tot(R) = I if and only if, R is an I- semi-potent ring and the ideal
I contains no nonzero idempotents. In Section 3 it is proved that a quasi-projective
module P is semi-potent if and only if EP is an I- semi-potent ring. Interesting corol-
laries are obtained in this section. In particular, Tot[M,N] = {a:a 2 [M,N];
ba 2 Tot(EM) for all b 2 [N,M]}. In Section 5 it is proved that [M,N] is D- semi-potent
if and only if Tot[M,N] = D[M,N]. Also, in this section we characterize the modules V
and W for which Tot[V,N] = D[V,N] and Tot[M,W] = D[M,W] for all
N,M 2 mod � R. The main result states that EV is D- semi-potent if and only if
Tot[V,N] = D[V,N] for all N 2 mod � R. Also, in this section it is proved that [M,N]
is $- semi-potent if and only if Tot[M,N] = $[M,N]. Also, in this section, we character-
ize the modules V and W for which Tot[V,N] = $[V,N] and Tot[M,W] = $[M,W] for
all M,N 2 mod � R. The main result states that EV is $- semi-potent if and only if
Tot[V,N] = $[V,N] for all N 2 mod � R if and only if Tot[M,V] = $ [M,V] for all
M 2 mod � R. In Section 6 it is proved that, a module QR is a locally injective if
and only if Tot[N,Q] = D[N,Q] for all N 2 mod � R. Also, a module PR is locally pro-
jective if and only if Tot[P,M] = $ [P,M] for all M 2 mod � R. Interesting corollaries
are obtained in this section.

2. (I-) SEMIPOTENT RINGS

Recall that a ring R is a semi-potent ring, also called I0-ring by Nicholson [4], Hamza
[3], if every principal right ideal not contained in J(R) contains a nonzero idempotent.
Examples of such rings include: (a) Exchange ring (see [6, Proposition 1.9], a ring R is
an exchange ring, if for every a 2 R, there exists an idempotent e 2 aR such that
a � e 2 (a2 � a)R). (b) Endomorphism rings of injective modules (see [4, Proposition
1.4]). (c) Endomorphism ring of regular modules in the sense Zelmanowitz [14], (see
[3, Corollary 4]). Let N and L are submodules of a module MR. N is called a supple-
ment of L in M if N + L = M and N \ L is small in N. N is said to be a supplement
submodule of M if N is a supplement of some submodule of M.

Theorem 2.1. For any ring R the following conditions are equivalent:

(1) R is a semi-potent ring.
(2) For any a 2 R there exists 0 „ x 2 R such that R/axR has a projective cover (as a

right R-module).
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(3) For any a 2 R there exists 0 „ x 2 R such that axR has a supplement in RR (as a
right R-module) which also has a supplement.

Proof. (1)) (2). Let a 2 R, if a 2 J(R) then for any x 2 R the natural epimorphism
R fi R/axR is a projective cover of R/axR. Suppose that a R J(R) then there is
e = ax, where e „ 0 is an idempotent in R and axR = eR. Since (1 � e)R @ R/axR
we have R/axR has a projective cover. (2)) (3) follows by [2, Proposition 1.4].
(3)) (1). Let a 2 R, a R J(R). Then there exists y 2 R such that ayR has a supplement
L which has also a supplement. By [2, Proposition 1.4], ayR has a supplement K which
is a direct summand of R. Thus R = ayR + K and by [2, Proposition 1.2] there exists a
direct summand eR of R, eR ˝ ayR ˝ aR, where e is a non-zero idempotent of R. Thus
R is a semi-potent ring. h

If T is a left ideal or right ideal of R, we say that idempotents lift modulo T if, when-
ever a2 � a 2 T, a 2 R, there exists e2 = e 2 R such that e � a 2 T. Nicholson in [7]
gave an example of a commutative semi-potent ring where idempotents do not lift
modulo J(R) (see [7, Example 25]). Therefore, we extend this notion as follows:

Lemma 2.2. Let T be an ideal of R and a 2 R, a R T. The following equivalent:

(1) If a2 � a 2 T there exists e2 = e 2 aR, e R T.
(2) If a2 � a 2 T there exists e2 = e 2 Ra, e R T.

Proof. Suppose (1) holds. Then e2 = e = ax for some x 2 R and e R T. We put
y = xax then f = ya is an idempotent of R and f 2 Ra and f R T. (2)) (1) is analo-
gous. h

We say that an ideal T of R is weakly lifting, or that idempotents lift weakly modulo
T, if for any a 2 R, a2 � a 2 T, a R T, there exists an idempotent e = ax 2 aR such that
e R T.

Proposition 2.3. For any ring R the following conditions are equivalent:

(1) R is a semi-potent ring.
(2) R ¼ R=JðRÞ is semi-potent and J(R) is weakly lifting.

Proof. (1)) (2). Suppose R is semi-potent. Obviously R is semi-potent. Let
a2 � a 2 J(R) such that a R J(R). Then there exists a non-zero idempotent e = ax 2 aR.
Clearly e R J(R). Hence J(R) is weakly lifting. (2)) (1). Let a 2 R such that a R J(R). As
R is semi-potent, there exists a non-zero idempotent �f 2 �aR. Now f = ar+ x for some
r 2 R and x 2 J(R). As f2 � f 2 J(R), there exists a non-zero idempotent e = fy= ar-
y + xy 2 fR. As xy 2 J(R), there exists b 2 R such that (1 � xy)b = 1 = b(1 � xy).
So, xyb = b � 1. We can take y such that ye = y. Now eb = aryb + xyb = aryb +
b � 1, ebe = arybe + be � e, e = arybe + (1 � e)be. Unless (1 � e)be = 0, we cannot
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conclude that e = arybe. However by multiplication by e on the left, we conclude that
e = earybe. Let g = arybe. Then g2 = arybearybe = arybe = g and g 2 aR. Hence R
is semi-potent. h

The semi-potent rings generalize as follows:

Lemma 2.4 [7, Lemma 19]. The following conditions are equivalent for an ideal I of a
ring R:

(1) If T ( I is a right (resp. left) ideal there exists e2 = e 2 TnI.
(2) If a R I there exists e2 = e 2 aRnI (resp. e 2 RanI).
(3) If a R I there exists x 2 R such that x = xax R I. h

Let R be a ring and I is an ideal of R, recall R is I- semi-potent [7], if the conditions
in Lemma 2.4, are satisfied.

Corollary 2.5. Let I be an ideal of a ring R. If R is I- semi-potent then J(R) ˝ I.

Proof. Suppose J(R) ( I there exists a 2 J(R), a R I, so x = xax R I for some x 2 R.
Since x „ 0 then 0 „ (ax)2 = ax 2 J(R) this is a contradiction. h

Proposition 2.6. Let I be an ideal of a ring R. The following are equivalent:

(1) R is an I- semi-potent ring.
(2) R/I is a semi-potent ring with JðR=IÞ ¼ �0 and I is weakly lifting.

Proof. Suppose (1) holds. First we prove that JðR=IÞ ¼ �0. Assume JðR=IÞ–�0 then
there exists �0–�a 2 JðR=IÞ. So a 2 R, a R I therefore x = xax R I for some x 2 R. Thus,
�0–ð�a�xÞ2 ¼ �a�x 2 JðR=IÞ, a contradiction, so JðR=IÞ ¼ �0. It is clear that R/I is
semi-potent. Finally, we prove that I is a weakly lifting. Let a2 � a 2 I and a 2 RnI.
Since R is I- semi-potent there exists y 2 R, y = yay R I, so 0 „ (ay)2 = ay 2 aR, and
ay R I. (2)) (1). Let a 2 RnI then �0–�a 2 R=I. Since R/I is semi-potent and
JðR=IÞ ¼ �0 then �x ¼ �x�a�x for some �0–�x 2 R=I. Since (ax)2 � ax 2 I and I is a weakly
lifting there exists 0 „ e2 = e 2 axR ˝ aR and e R I, so R is I- semi-potent. h

Following [13], the total of a ring R is
TotðRÞ ¼ fa : a 2 R; aR contains no idempotentsg
TotðRÞ ¼ fa : a 2 R; Ra contains no idempotentsg
Y.Zhou, proved that, for a ring R; Tot(R) = J(R) if and only if R is a semi-potent, [13,
Theorem 2.2]. For an I- semi-potent ring we have:

Theorem 2.7. Let I be an ideal of a ring R. The following are equivalent:

(1) Tot(R) = I.
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(2) R is an I- semi-potent ring and I contains no nonzero idempotents.
(3) R/I is a semi-potent and JðR=IÞ ¼ �0 with I contains no nonzero idempotents and I is

weakly lifting.

Proof. (1)) (2). It is clear that I contains no nonzero idempotents. Let a 2 RnI. Then
aR contains a nonzero idempotent. This shows that R is an I- semi-potent ring.
(2)) (1). Suppose that Tot(R) „ I, Since I ˝ Tot(R) there exists a 2 Tot(R) such that
a R I. So, for some x 2 R, x = xax R I and 0 „ (ax)2 = ax 2 aR, a contradiction.
(2) () (3). By Proposition 2.6. h
3. SEMIPOTENT MODULES

Let MR be a module and K ˝¯ M. Then K ˝ J(M) if and only if K= J(K). Put
C(M) = {K:K ˝¯ M; K ˝ J(K)}. Note that for any projective module P, C(P) = {0}.
In addition to, if J(M) M (or M finitely generated) for some M 2 mod � R then
C(M) = {0}. Let MR be a module, letting I = I(EM) = {a:a 2 EM;Im(a) ˝ J(M)} It
is clear that I= I(EM) is an ideal in EM.

Recall a module MR is a semi-potent module also, called I0- module [3] and weakly
regular module [1] if each submodule of M not contained in J(M) contains a direct
summand N of M, N R C(M) = {T ˝¯ M:J(T) = T}.

Lemma 3.1. Let M be a semi-potent module. The following holds:

(1) Every submodule N of M such that J(N) = N \ J(M) is semi-potent.
(2) Every direct summand of M is semi-potent.
(3) Every supplement submodule of M is semi-potent.

Proof. (1). It is clear. h

A module PR is called a quasi-projective module [12] if given an epimorphism
b 2 [P,M] and any morphism a 2 [P,M] there exists k 2 EP such that bk = a. For a
quasi-projective module we have the following:

Theorem 3.2. For any quasi-projective module P the following are equivalent:

(1) P is a semi-potent module.
(2) or any a 2 EP, a R I(EP), there exists a direct summand N of P contained in Im(a)

such that N R C(P).
(3) EP is an I = I(EP)- semi-potent ring.
Proof. (1)) (2). It is clear. (2)) (3). Let a 2 EPnI(EP), Im(a) ( J(P) and there exists
N ˝¯ P, N ˝ Im(a) and N R C(P). Let c be the projection of P on to N. Then
Im(ca) = N, so there exists b 2 EP such that cab = c. We put l = bc, then
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lal = l R I(EP). Because if l 2 I(EP) then c = cc = cabc 2 I(EP) that is N 2 C(P) a
contradiction. So, EP is I- semi-potent. (3)) (1). Let EP be I- semi-potent, where
I = I(EP). Let K be a submodule of P, K ( J(P). Then there exists a maximal submod-
ule D of P such that K ( D. Thus K+ D = P. By [10, Lemma 1.1] there are f,g 2 EP

such that 1 = f + g and Im(f) ˝ A, Im(g) ˝ D. It is clear that f R I(EP). By assumption
there exists u 2 EP such that u = u fu R I(EP). Since (fu)2 = fu then Im(fu) ˝¯ P,
Im(fu) ˝ A and Im(fu) R C(P). So P is semi-potent. h

Corollary 3.3. For any quasi-projective module P the following are equivalent:

(1) P is a semi-potent module and C(P) = {0}.
(2) EP is an I- semi-potent ring and C(P) = {0}.
(3) Tot(EP) = I(EP).

Proof. (1) () (2). By Theorem 3.2. (2) () (3). By Theorem 2.7 because
C(P) = {0} if and only if I(EP) contain no nonzero idempotents. h

Corollary 3.4. Let P be a quasi-projective module with J(P) P. Then following are
equivalent:

(1) P is a semi-potent module.
(2) For any a 2 EP, a R J(EP), there exists 0 „ N ˝¯ P, N ˝ Im(a).
(3) EP is a semi-potent ring.
(4) Tot(EP) = J(EP) = $EP = I(EP).

Proof. (1) () (2) () (3) As in Theorem 3.2, because for a quasi-projective module
with J(P) P, J(EP) = $EP = I(EP) by [11, Lemma 2]. (3) () (4) By [13, Theo-
rem 2.2]. h

A module PR is called a direct-projective module [5], if given any direct summand N
of P with projection p:P fi N and any epimorphism a:P fi N there exists b 2 EP such
that ab = p. If P is a direct-projective module then $EP ˝ J(EP), (see [5, Theorem 3.1]).
For a direct projective modules we have the following:

Proposition 3.5. Let PR be a direct-projective module. If P is semi-potent then:

(1) EP is an I- semi-potent ring.
(2) J(EP) ˝ I(EP).
Proof. (1). Let a 2 EP, a R I(EP) there existsN ˝¯ P,N R C(P) andN ˝ Im(a). Let c be the
projection ofP on toN. ThenN= Im(c) = Im(ca). SinceP is a direct-projective there exists
b 2 EP such that cab = c. Putting l = bc then 0 „ l 2 EP, lal = l and l R I(EP), because,
if l 2 I(EP), so c = cabc 2 I(EP) thusN= Im(c) ˝ J(P) thismeans thatN 2 C(P), a contra-
diction. This shows that EP is I- semi-potent. (2). By Corollary 2.5. h
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Corollary 3.6. Let PR be a direct-projective module. If P is semi-potent and J(P) P then
EP is a semi-potent ring.

Proof. We have by [5, Theorem 3.1], $EP ˝ J(EP) and by Proposition 3.5,
J(EP) ˝ I(EP). Since J(P) P then I(EP) = $EP thus J(EP) = $EP = I(EP), so EP is a
semi-potent ring. h

A module PR is called p- projective [10] if, for any two submodules U,V of P with
P = U + V; EP = [P,U] + [P,V]. For a p- projective modules we have the following:

Proposition 3.7. Let PR be a p-projective module. The following are equivalent:

(1) P is a semi-potent module.
(2) For any a 2 EP, a R I(EP) there exists N ˝¯ P, N R C(P) and N ˝ Im(a).

Proof. (1)) (2). It is clear. (2)) (1). Let A be a submodule of P, A ( J(P). Then there
exists a maximal submodule M of P, A (M therefore P = A+ M. Since P is a p- pro-
jective there are a,b 2 EP such that 1 = a + b and Im(a) ˝ A, Im(b) ˝ M. It is clear that
Im(a) ( J(P), because if Im(a) ˝ J(P) we have P = Im(a) + Im(b) ˝ J(P) +
M ˝ M ˝ P thus P = M, a contradiction. By assumption Im(a) ˝ A contains a direct
summand N of P, N R C(P). So P is a semi-potent module. h

Corollary 3.8. Let PR be a p-projective module. If EP is an I- semi-potent ring the follow-
ing hold:

(1) For any a 2 EP, a R I(EP) there exists N ˝¯ P, N R C(P) and N ˝ Im(a).
(2) P is a semi-potent module.

Proof. (1). Let a 2 EPnI(EP), so there exists c 2 EPnI(EP) such that c = ca c. Since
0 „ (ac)2 = ac 2 EP then Im(ac) ˝¯ P, Im(a c) R C(P) and Im(ac) ˝ Im(a). (2). By (1)
and Proposition 3.7. h

Proposition 3.9. For any projective module PR the following are equivalent:

(1) P is a semi-potent module and J(P) P.
(2) EP is a semi-potent ring.
(3) For any a 2 EP, P/Im(ab) has a projective cover for some 0 „ b 2 EP.
(4) For any a 2 EP, Im(ab) has a supplement which also has a supplement for some

0 „ b 2 EP.
Proof. (1) () (2). By [3, Theorem 3.5]. (2)) (3). Suppose that EP is a semi-potent
ring, by Theorem 2.1, for any a 2 EP there exists 0 „ b 2 EP such that EP/(ab)EP

has a projective cover, by [2, Proposition 2.9] P/Im(ab) has a projective cover.
(3)) (2) follows immediately from [2, Proposition 2.9] and Theorem 2.1.
(3) () (4). By [2, Proposition 1.4]. h
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Lemma 3.10. Let MR be a module with EM is a semi-potent ring. Then:

(1) $EM ˝ J(EM) and D EM ˝ J(EM).
(2)] If C(M) = {0} then I(EM) ˝ J(EM).
(3) If J(M) M then $EM = I(EM) ˝ J(EM).

Proof.

(1) Leta 2 $EM, so Im(a) M. Suppose thata R J(EM) thenb = bab for some0 „ b 2 EM.
Let c = ab. Then 0 „ c2 = c 2 EM and Im(c) ˝ Im(a) M. Hence Im(c) M and
Im(c) = Im(c) ¯ Ker(c). ThusKer(c) =M, and c = 0which is a contradiction, hence
a 2 J(EM) and $ EM ˝ J(EM).If g 2 DEM then Ker(g) is large in M. Suppose that
g R J(EM) then l = lgl for some 0 „ l 2 EM. Let t= lg, so 0 „ t2 = t 2 EM and
Ker(g) ˝ Ker(t), therefore Ker(g) \ Im(t) = 0 thus Im(t) = 0, hence Ker(g) is large
inM and t= 0 this is a contradiction, hence g 2 J(EM) and DEM ˝ J(EM).

(2) Suppose thatC(M) = {0}. If a 2 I(EM) then Im(a) ˝ J(M). Suppose that a R J(EM)
then c = cac for some 0 „ c 2 EM. We put g = ac then 0 „ g2 = g 2 EM,
Im(g) ˝¯ M and Im(g) ˝ J(M), therefore Im(g) 2 C(M) = {0}, so Im(g) = 0 and
g = 0 this is a contradiction. Thus a 2 J(EM). (3). It is clear. h

It is known that for any module MR, $EM ˝ I(EM). So, if EM is an I- semi-potent
ring we have the following:

Lemma 3.11. Let MR be a module and assume that EM is an I- semi-potent ring. Then:
J(EM) ˝ I(EM) and DEM ˝ I(EM).

Proof. By Corollary 2.5 we have J(EM) ˝ I(EM). If a 2 DEM, then Ker(a) 6 eM. Sup-
pose a R I(EM) then c = cac for some c 2 EM, c R I(EM). If t = ca, then
0 „ t2 = t 2 EM and Ker(a) ˝ Ker(t), therefore Ker(a) \ Im(t) = 0 thus Im(t) = 0, so
t = 0 this is a contradiction, hence a 2 I(EM). h
4. SEMIPOTENT [M,N]

Following [13], letMR, NR be two modules. Then [M,N] = HomR(M,N) is an (EN,EM)-
bi-module. The following are defined:

� Radical:
J½M;N� ¼ fa : a 2 ½M;N�; ba 2 JðEMÞ for all b 2 ½N;M�g
J½M;N� ¼ fa : a 2 ½M;N�; ab 2 JðENÞ for all b 2 ½N;M�g
Thus J[M,M] = J(EM). In particular J[R,R] = J(R).
� Singular ideal:
D½M;N� ¼ fa : a 2 ½M;N�; KerðaÞ6eMg
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� Co-singular ideal:

r½M;N� ¼ fa : a 2 ½M;N�; ImðaÞ � Ng
� Total:

Tot½M;N� ¼ fa : a 2 ½M;N�; ½N;M�a contains no nonzero idempotentsg
Tot½M;N� ¼ fa : a 2 ½M;N�; a½N;M� contains no nonzero idempotentsg
Lemma 4.1. Let MR, NR be modules then:

(1) Tot[M,N] = {a:a 2 [M,N]; ba 2 Tot(EM) for all b 2 [N,M]}.
(2) Tot[M,N] = {a:a 2 [M,N]; ab 2 Tot(EN) for all b 2 [N,M]}.

Proof. (1) Let a 2 Tot[M,N]. If ba R Tot(EM) for some b 2 [N,M] there exists c 2 EM

such that 0 „ c(ba) = [c(ba)]2 2 EM. Since cb 2 [N,M] then 0 „ (cb)a = [(c-
b)a]2 2 [N,M]a, a contradiction. Let a 2 [M,N] such that ba 2 Tot(EM) for all
b 2 [N,M]. If a R Tot[M,N], then [N,M]a contains a nonzero idempotent. So there exists
c 2 [N,M] such that 0 „ ca = (ca)2 2 EM and ca 2 (ca)EM, so ca R Tot(EM), a contra-
diction. Similarly (2) holds. h

Lemma 4.2. [13, Lemma 2.1]Let MR, NR be modules. The following are equivalent:

(1) If a 2 [M,N]nJ[M,N], there exists b 2 [N,M]such that 0 „ ba = (ba)2 2 EM.
(2) If a 2 [M,N]nJ[M,N], there exists b 2 [N,M]such that 0 „ ab = (ab)2 2 EN.
(3) If a 2 [M,N]nJ[M,N], there exists c 2 [N,M]such that cac = c R J[N,M]. h

Following [13], we say that [M,N] is semi-potent if the conditions in Lemma 4.2, are
satisfied.

Lemma 4.3. Let MR, NR be modules and [M,N] is semi-potent. Then:

(1) D[M,N] ˝ J[M,N] and $[M,N] ˝ J[M,N].
(2) If C(M) = {0} then I[M,N] ˝ J[M,N].
(3) If C(N) = {0} then I[M,N] ˝ J[M,N].
Proof. Suppose that [M,N] is semi-potent.

(1) Let a 2 D[M,N], so Ker(a) 6 eM. Suppose that a R J[M,N] then there exists b 2
[N,M] such that 0 „ ba = (ba)2 2 EM. Since Ker(a) ˝ Ker(ba) then Ker(a) \ Im(ba) ˝
Ker(ba) \ Im(ba) = 0. Thus, Im(ba) = 0 and ba = 0 this is a contradiction. Hence
a 2 J[M,N]. Let a 2 $[M,N] then Im(a) N. Suppose that a R J[M,N] then there exists
b 2 [N,M] such that 0 „ ab = (ab)2 2 EN. Since Im(ab) ˝ Im(a) then Im(ab) N and
N = Ker(ab). So, Ker(ab) \ Im(ab) = Im(ab) = 0. Thus, ba = 0 this is a contradic-
tion. Hence a 2 J[M,N]. (2). Suppose that C(M) = {0}. Let a 2 I[M,N] then
Im(a) ˝ J(N). Assume that a R J[M,N] then there exists b 2 [N,M] such that
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0 „ ba = (ba)2 2 EM. So Im(ba) ˝¯ M and Im(ba) ˝ J(M) thus Im(ba) 2 C(M) = {0},
so ba = 0 a contradiction. Thus a 2 J[M,N]. Similarly, (3) holds. h

Proposition 4.4. Let MR, NR be modules, the following hold:

(1) If Tot(EM) = J(EM) then Tot[M,N] = J[M,N].
(2) If Tot(EN) = J(EN) then Tot[M,N] = J[M,N].
(3) If EM is a semi-potent ring then [M,N] is semi-potent.
(4) If EN is a semi-potent ring then [M,N] is semi-potent.

Proof. (1) Suppose that Tot(EM) = J(EM). It is clear that J[M,N] ˝ Tot[M,N]. Let
a 2 Tot[M,N] then by Lemma 4.1 for any b 2 [N,M]; ba 2 Tot(EM) = J(EM) so
a 2 J[M,N]. The proof of (2) is analogous. (3) Suppose that EM is a semi-potent ring
then by [13, Theorem 2.2] Tot(EM) = J(EM) and by (1) Tot[M,N] = J[M,N], again
by [13, Theorem 2.2], [M,N] is semi-potent. The proof of (4) is analogous. h

Remark. Zhou [13], gave an example of two modules MR, NR such that [M,N] is
semi-potent, but neither EM, nor EN is semi-potent, (see [13, Example 4.9]). So in
general, if Tot[M,N] = J[M,N] then Tot(EM) „ J(EM) and Tot(EN) „ J(EN). Hence it
is possible that Tot[M,N] = J[M,N] while Tot(EM) „ J(EM) and Tot(EN) „ J(EN).

Following [13], let
UðRÞ ¼ fM 2 mod� R : Tot½M;N� ¼ J½M;N� 8 N 2 mod� Rg
CðRÞ ¼ fN 2 mod� R : Tot½M;N� ¼ J½M;N� 8 M 2 mod� Rg
Corollary 4.5. [13, Theorem 4.5]. The following holds:

(1) U(R) = {M 2 mod � R: EM is a semi-potent ring}.
(2) C(R) = {N 2 mod � R: EN is a semi-potent ring}.
(3) U(R) = C(R).

Proof. (1) ()). If M 2 U(R), then Tot(EM) = J(EM), so EM is semi-potent by [13, Theo-
rem 2.2]. (�). Let M 2 mod� R with EM is semi-potent, then for any N 2 mod� R; [M,N]
is semi-potent by Proposition 4.4, soM 2 U(R). Similarly (2) holds. (3) By (1) and (2). h
5. (D-, $-, I-) SEMIPOTENT [M,N]

Proposition 5.1. Let MR, NR be modules.

(a) The following hold:

(1) D[M,N] ˝ {a:a 2 [M,N]; ba 2 DEM for all b 2 [N,M]}.
(2) D[M,N] ˝ {a:a 2 [M,N]; ab 2 DEN for all b 2 [N,M]}.
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(b) If Tot[M,N] = D[M,N] then

(1) D[M,N] = {a:a 2 [M,N]; ba 2 DEM for all b 2 [N,M]}.
(2) D[M,N] = {a:a 2 [M,N]; ab 2 DEN for all b 2 [N,M]}.
Proof.

(a) (1) Let a 2 D[M,N], so Ker(a)6 eM, and for any b 2 [N,M], Ker(ba)6 eM hence
Ker(a) ˝ Ker(ba), this follows that ba 2 DEM. (2) If a 2 D[M,N], then Ker(a)6 eM.
Let b 2 [N,M] and K be a submodule of N such that Ker(ab) \ K= 0. Hence Ker(-
b) ˝ Ker(ab) then Ker(b) \ K= 0. Let y 2 Ker(a) \ b(K) then y 2 Ker(a), so
a(y) = 0 and y 2 b(K) therefore y= b(x) for some x 2 K. So 0 = a(y) = ab(x) thus
x 2 Ker(ab),x 2 K, sox 2 Ker(ab) \ K= 0thus,x= 0, so y= b(x) = 0 thus,Ker(-
a) \ b(K) = 0. Since Ker(a)6 eM follows that b(K) = 0 so K ˝ Ker(b) thus
K=Ker(b) \ K= 0 so Ker(ab) 6 eN, thus ab 2 DEN.

(b) Suppose that Tot[M,N] = D[M,N]. (1) We have by (a) D[M,N] ˝ {a:a 2 [M,N];
ba 2 DEM for all b 2 [N,M]}. Let a 2 [M,N] such that ba 2 DEM for all
b 2 [N,M]. Suppose a R D[M,N]. Then a R Tot[M,N], so there exists c 2 [N,M]
such that 0 „ ca = (ca)2 2 EM. Therefore M = Im(ca) ¯ Ker(ca). Since Ker(-
ca) \ Im(ca) = 0 and Ker(ca) 6 eM, it follows that Im(ca) = 0, so ca = 0, a con-
tradiction. Thus, a 2 D[M,N]. Similarly (2) holds. h

Lemma 5.2. Let MR, NR be modules. The following are equivalent:

(1) If a 2 [M,N]nD[M,N], there exists b 2 [N,M] such that 0 „ ba = (ba)2 2 EM.
(2) If a 2 [M,N]nD[M,N], there exists b 2 [N,M] such that 0 „ ab = (ab)2 2 EN.
(3) If a 2 [M,N]nD[M,N], there exists c 2 [N,M] such that c = cac R D [N,M].

Proof. Suppose (1) holds. Then 0 „ ba = (ba)2 2 EM for some b 2 [N,M]. Let
c = bab 2 [N,M] we have cac = c „ 0 and c R D [N,M] because 0 „ ac = (ac)2, giving
(3). Suppose (3) holds, then 0 „ ca = (ca)2 2 EM for some c 2 [N,M]nD[N,M], gives
(1). Similarly, the equivalence (2) () (3) holds. h

We say that [M,N] is D- semi-potent if the conditions in Lemma 5.2 are satisfied.

Theorem 5.3. Let MR, NR be modules. [M,N] is D- semi-potent if and only if,
Tot[M,N] = D[M,N]. In particular, EM is aD-semi-potent if and only if, Tot (EM) = DEM.

Proof.

()) Suppose that Tot[M,N] „ D [M,N], Since D[M,N] ˝ Tot[M,N], there exists
a 2 Tot[M,N] such that a R D[M,N]. So, for any b 2 [N,M], either ab = 0 or
ab „ (ab)2. Hence [M,N] is not D- semi-potent.
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(�) If a 2 [M,N]nD[M,N], then a R Tot[M,N]. So 0 „ ab = (ab)2 2 EN for some
b 2 [N,M]. This shows that [M,N] is D- semi-potent. h

Let
DUðRÞ ¼ fM 2 mod� R : Tot½M;N� ¼ D½M;N� 8 N 2 mod� Rg
DCðRÞ ¼ fN 2 mod� R : Tot½M;N� ¼ D½M;N� 8 M 2 mod� Rg
We define the following two sets:

(a) DSU(R) the set of all modules M 2 mod � R which have the following two
properties:

(1) EM is a D- semi-potent ring.
(2) For any N 2 mod � R;

D½M;N� ¼ fa : a 2 ½M;N�; ba 2 DEM; for all b 2 ½N;M�g:
(b) DSC(R) the set of all modules N 2 mod � R which satisfy the following two
properties:

(1) EN is a D- semi-potent ring.
(2) For any M 2 mod � R;

D½M;N� ¼ fa : a 2 ½M;N�; ab 2 DEN; for all b 2 ½N;M�g:
Theorem 5.4. The following are holds:

(1) DU(R) = DSU(R).
(2) DC(R) = DSC(R).
(3) DU(R) = DC(R).

Proof. (1) ()). Let M 2 DU(R), Tot[M,N] = D[M,N] for any N 2 mod � R; by Prop-
osition 5.1(b) we have D[M,N] = {a:a 2 [M,N]; ba 2 DEM; for all b 2 [N,M]}. It is
clear that EM is a D- semi-potent ring, so M 2 DS U(R).

(�). Let M 2 DSU(R), for any N 2 mod � R we have D[M,N] ˝ Tot[M,N]. Let
a 2 Tot[M,N], by Lemma 4.1, for any b 2 [N,M]; ba 2 Tot(EM). SinceEM isD- semi-potent,
by Theorem 5.3 Tot(EM) = DEM, so ba 2 DEM for all b 2 [M,N] thus, M 2 DU(R).

(2) ()). Let N 2 DC(R), so for any M 2 mod � R; Tot[M,N] = D[M,N] by
proposition 5.1(b) we have D[M,N] = {a:a 2 [M,N]; ab 2 D EN; for all b 2 [N,M]}
and EN is a D- semi-potent ring, so N 2 DSC(R).

(�). Let N 2 DSC(R), so for any M 2 mod � R we have D[M,N] ˝ Tot[M,N]. Let
a 2 Tot[M,N] by Lemma 4.1 for any b 2 [N,M]; ab 2 Tot(EN). Since EN is a
D- semi-potent ring by Theorem 5.3, Tot(EN) = DEN so ab 2 DEN for all b 2 [N,M]
by assumption a 2 D[M,N]. Thus, N 2 DC(R).

(3) By (1) and (2). h
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Proposition 5.5. Let MR, NR be modules.

(a) The following hold:

(1) $[M,N] ˝ {a:a 2 [M,N]; ba 2 $EM for all b 2 [N,M]}.
(2) $[M,N] ˝ {a:a 2 [M,N]; ab 2 $EN for all b 2 [N,M]}.
(b) If Tot[M,N] = $[M,N] then

(1) $[M,N] = {a:a 2 [M,N]; ba 2 $EM for all b 2 [N,M]}.
(2) $[M,N] = {a:a 2 [M,N]; ab 2 $EN for all b 2 [N,M]}.
Proof. (a) (1) Let a 2 $[M,N]. So for any b 2 [N,M], Im(ba) M thus ba 2 $EM. (2) If
a 2 $[M,N] then Im(a) N, since for any b 2 [N,M], Im(ab) ˝ Im(a) then Im(ab) N so
ab 2 $EN.

(b) Suppose that Tot[M,N] = $[M,N]. (1) We have by (a) $[M,N] ˝ {a:a 2 [M,N];
ba 2 $ EM for all b 2 [N,M]}. Let a 2 [M,N] such that ba 2 $EM for all b 2 [N,M],
suppose a R $[M,N], so there exists c 2 [N,M] such that 0 „ ca = (ca)2 2 EM therefore
0 „ Im(ca) ˝¯ M. Since ca 2 $EM, Im(ca) M so Im(ca) = 0, a contradiction. Thus,
a 2 $[M,N]. Similarly (2) holds. h

Lemma 5.6. Let MR, NR be modules. The following are equivalent:

(1) If a 2 [M,N]n$[M,N], there exists b 2 [N,M] such that 0 „ ba = (ba)2 2 EM.
(2) If a 2 [M,N]n$[M,N], there exists b 2 [N,M] such that 0 „ ab = (ab)2 2 EN.
(3) If a 2 [M,N]n$[M,N], there exists c 2 [N,M] such that c = cac R $ [N,M].
Proof. (1)) (3). Let a 2 [M,N]n$[M,N]. Then 0 „ ba = (ba)2 2 EM for some b
2 [N,M]. Let c = bab. Then cac = c R $[N,M] because ba R $EM. Suppose (3) holds,
if a 2 [M,N]n $[M,N] then c = cac for some c 2 [N,M]n$[N,M], so
0 „ ca = (ca)2 2 EM, gives (1). Similarly, the equivalence (2) () (3) holds. h

We say that [M,N] is $- semi-potent if the conditions in Lemma 5.6 are satisfied.

Theorem 5.7. Let MR, NR be modules. [M,N] is $- semi-potent if and only if,
Tot[M,N] = $[M,N]. In particular, EM is a $- semi-potent if and only if, Tot (EM) = $EM.

Proof. ()). Suppose that Tot[M,N] „ $[M,N], Since $[M,N] ˝ Tot[M,N], there exists a
2 Tot[M,N] such that a R $[M,N]. So, for any b 2 [N,M], either ab = 0 or ab „ (ab)2.
Hence [M,N] is not $- semi-potent.

(�). If a 2 [M,N]n$[M,N], then a R Tot[M,N]. So 0 „ ab = (ab)2 2 EN for some
b 2 [N,M]. This shows that [M,N] is $- semi-potent. h

Let
rUðRÞ ¼ fM 2 mod� R : Tot½M;N� ¼ r½M;N� 8 N 2 mod� Rg
rCðRÞ ¼ fN 2 mod� R : Tot½M;N� ¼ r½M;N� 8 M 2 mod� Rg
We define the following two sets:
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(a) $SU(R) the set of all modules M 2 mod � R which have the following two
properties:

(1) EM is a $- semi-potent ring.
(2) For any N 2 mod � R;

r½M;N� ¼ fa : a 2 ½M;N�; ba 2 rEM; for all b 2 ½N;M�g:
(b) $SC(R) the set of all modules N 2 mod � R which satisfy the following two
properties:

(1) EN is a $- semi-potent ring.
(2) For any M 2 mod � R;

r½M;N� ¼ fa : a 2 ½M;N�; ab 2 rEN; for all b 2 ½N;M�g:
Theorem 5.8. The following hold:

(1) $U(R) = $SU(R).
(2) $C(R) = $SC(R).
(3) $U(R) = $C(R).

Proof. (1) ()). If M 2 $U(R). Then for any N 2 mod � R; Tot[M,N] = $[M,N] by
Proposition 5.5(b), $[M,N] = {a:a 2 [M,N]; ba 2 $EM; for all b 2 [N,M]} in addition,
EM is a $- semi-potent ring, so M 2 $SU(R).

(�). Let M 2 $SU(R). So, for any N 2 mod � R, $[M,N] ˝ Tot[M,N]. Let
a 2 Tot[M,N] then by Lemma 4.1 for any b 2 [N,M]; ba 2 Tot(EM). Since EM is $-
semi-potent then by Theorem 5.7 Tot(EM) = $EM, so ba 2 $EM for all b 2 [M,N] thus,
M 2 $U(R).

(2) ()). If N 2 $C(R), for any M 2 mod � R; Tot[M,N] = $[M,N] by proposition
5.5(b) we have $[M,N] = {a:a 2 [M,N]; ab 2 $EN; for all b 2 [N,M]}. In addition, EN is
a $- semi-potent ring, so N 2 $SC(R).

(�). Let N 2 $SC(R), for any M 2 mod � R we have $[M,N] ˝ Tot[M,N]. Let a
2 Tot[M,N] by Lemma 4.1 for any b 2 [N,M]; ab 2 Tot(EN). Since EN is a $- semi-
potent ring then by Theorem 5.7, Tot(EN) = $EN so ab 2 $EN for all b 2 [N,M] by
assumption a 2 $[M,N]. Thus, N 2 $U(R).

(3) By (1) and (2). h

Let MR, NR be modules. We put
I½M;N� ¼ fa : a 2 ½M;N�; ImðaÞ# JðNÞg

Since any small submodule of N contained in J(N) then $ [M,N] ˝ I[M,N]. If J(N) N
then I[M,N] = $[M,N]. Thus I = I(EM) = I[M,M] = {a:a 2 EM; Im(a) ˝ J(M)}. In
particular for a ring R, I(R) = I[R,R] = J[R,R] = J(R). Recall that for a module
MR we defined C(M) = {K:K ˝¯ M and K ˝ J(M)}.
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Proposition 5.9. Let MR, NR be modules.

(a) The following hold:

(1) I[M,N] ˝ {a:a 2 [M,N]; ba 2 I(EM) for all b 2 [N,M]}.
(2) I[M,N] ˝ {a:a 2 [M,N]; ab 2 I(EN) for all b 2 [N,M]}.
(b) If Tot[M,N] = I[M,N] and C(M) = {0}, then
I½M;N� ¼ fa : a 2 ½M;N�; ba 2 IðEMÞ for all b 2 ½N;M�g:

(c) If Tot[M,N] = I[M,N] and C(N) = {0}, then
I½M;N� ¼ fa : a 2 ½M;N�; ab 2 IðENÞ for all b 2 ½N;M�g:
Proof.

(a) (1) If a 2 I[M,N], then Im(a) ˝ J(N), so for any b 2 [N,M]; ba 2 EM and
Im(ba) ˝ J(M). Thus, ba 2 I(EM). (2). If a 2 I[M,N], then Im(a) ˝ J(N), so for
any b 2 [N,M]; ab 2 EN and Im(ab) ˝ Im(a) ˝ J(N). Thus, ab 2 I(EN).

(b) Suppose that Tot[M,N] = I[M,N] and C(M) = {0}. Let a 2 [M,N] such that
ba 2 I(EM) for all b 2 [N,M]. Suppose a R I[M,N], so there exists b 2 [N,M] such
that 0 „ ba = (ba)2 2 EM, since Im(ba) ˝ J(M) and Im(ba) ˝¯ M, then Im(ba) 2
C(M) = {0}, a contradiction.

(c) Suppose that Tot[M,N] = I[M,N] and C(N) = {0}. Let a 2 [M,N] such that
ab 2 I(EN) for all b 2 [N,M]. Suppose a R I[M,N], so there exists c 2 [N,M] such
that 0 „ ac = (ac)2 2 EN. Since Im(ac) ˝ J(N) and Im(ac) ˝¯ N then
Im(ac) 2 C(N) = {0}, a contradiction. Thus a 2 I[M,N]. h

Lemma 5.10. Let MR, NR be modules. The following are equivalent:

(1) If a 2 [M,N]nI[M,N], there exists b 2 [N,M]; 0 „ ba = (ba)2 2 EM, ba R I(EM).
(2) If a 2 [M,N]nI[M,N], there exists b 2 [N,M]; 0 „ ab = (ab)2 2 EN, ab R I(EN).
(3) If a 2 [M,N]nI[M,N], there exists c 2 [N,M]; cac = c R I[N,M].

Proof. Suppose (1) holds. Then 0 „ ba = (ba)2 2 EM and ba R I(EM) for some
b 2 [N,M]. By letting c = bab 2 [N,M] we have cac = c „ 0 and c R I[N,M] because
ba R I(EM), giving (3). Suppose (3) holds. Then 0 „ ca = (ca)2 2 EM and ca R I(EM)
because c R I[N,M] gives (1). Similarly, the equivalence (2) () (3) holds. h

We say that [M,N] is I- semi-potent if the conditions in lemma 5.10 are satisfied.

Theorem 5.11. Let MR, NR be modules. Then the following hold:

(1) If C(M) = {0} then Tot[M,N] = I[M,N] if and only if, [M,N] is I- semi-potent.
(2) If C(N) = {0} then Tot[M,N] = I[M,N] if and only if, [M,N] is I- semi-potent.
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In particular, if C(M) = {0} then Tot(EM) = I(EM) if and only if, EM is an I-
semi-potent ring.

Proof. (1) Suppose that C(M) = {0}. ()). let a 2 [M,N]nI[M,N] then a R Tot[M,N], so
0 „ ba = (ba)2 2 EM for some b 2 [N,M] and ba R I(EM) because C(M) = {0}. This
shows that [M,N] is I- semi-potent.

(�). Since C(M) = {0} it is easy to see that I[M,N] ˝ Tot[M,N]. Let a 2 Tot[M,N]
and suppose a R I[M,N] so, for any b 2 [N,M], either ab = 0 or ab „ (ab)2. Hence
[M,N] is not I- semi-potent. Similarly (2) holds. h

Let
IUðRÞ ¼ fM 2 mod� R : CðMÞ ¼ f0g and Tot½M;N� ¼ I½M;N�; for all N 2 mod� Rg
ICðRÞ ¼ fN 2 mod� R : CðNÞ ¼ f0g and Tot½M;N� ¼ I½M;N�; for all M 2 mod� Rg
We define the following two sets:

(a) ISU(R) the set of all modules M 2 mod � R which have the following properties:

(1) C(M) = {0}.
(2) EM is an I- semi-potent ring.
(3) For any N 2 mod � R;

I½M;N� ¼ fa : a 2 ½M;N�; ba 2 IðEMÞ for all b 2 ½N;M�g:
(b) ISC(R) the set of all modules N 2 mod � R which satisfies the following
properties:

(1) C(N) = {0}.
(2) EN is an I- semi-potent ring.
(3) For any M 2 mod � R;

I½M;N� ¼ fa : a 2 ½M;N�; ab 2 IðENÞ for all b 2 ½N;M�g:
Theorem 5.12. The following are holds:

(1) IU(R) = I SU(R).
(2) IC(R) = I SC(R).
(3) IU(R) = IC(R).

Proof. (1) ()). Let M 2 IU(R). Then C(M) = {0} and Tot[M,N] = I[M,N] for all
N 2 mod � R. So, Tot(EM) = I(EM) by Theorem 5.11, EM is an I- semi-potent ring.
On the other hand, by Proposition 5.9(b) for any N 2 mod � R;
I[M,N] = {a:a 2 [M,N]; ba 2 I(EM) for all b 2 [N,M]}. So, M 2 ISU(R).

(�). If M 2 ISU(R), then C(M) = {0}. Let N 2 mod � R and a 2 I[M,N], so
Im(a) ˝ J(N). Suppose that a R Tot[M,N], there exists b 2 [N,M] such that
0 „ ba = (ba)2 2 EM. So, 0 „ Im(ba) ˝¯ M and Im(ba) 2 C(M) = {0}, a contradiction.



Semipotency and the total of rings and modules 125
Thus, I[M,N] ˝ Tot[M,N]. Let a 2 Tot[M,N], suppose that a R I[M,N], since
M 2 ISU(R) there exists b 2 [N,M] such that ba R I(EM). Since EM is an I- semi-potent
ring there exists c 2 EM such that c(ba)c = c R I(EM) thus, 0 „ (cb)a = [(cb)a]2 2 EM

and cb 2 [N,M], a contradiction. Hence a 2 Tot[M,N], therefore a 2 I[M,N]. Thus,
Tot[M,N] = I[M,N] for any N 2 mod � R, so M 2 IU(R).

(2) ()). Let N 2 IC(R). Then C(N) = {0} and Tot[M,N] = I[M,N] for all
M 2 mod � R. So, Tot(EN) = I(EN) by Theorem 5.11, EN is I- semi-potent. On the
other hand, by Proposition 5.9(c) for any M 2 mod � R; I[M,N] = {a:a 2 [M,N];
ab 2 I(EN) for all b 2 [N,M]}. So, N 2 ISC(R).

(�). If N 2 ISC(R), then C(N) = {0}. Let M 2 mod � R, a 2 I[M,N], so
Im(a) ˝ J(N). Suppose that a R Tot[M,N], so there exists b 2 [N,M] such that
0 „ ab = (ab)2 2 EN. So, 0 „ Im(ab) ˝¯ N and Im(ab) 2 C(N) = {0}, a contradiction.
Thus, I[M,N] ˝ Tot[M,N]. Let a 2 Tot[M,N], suppose that a R I[M,N], since
N 2 ISC(R) there exists b 2 [N,M] such that ab R I(EN). Since EN is I- semi-potent
there exists c 2 EN such that c(ab)c = c R I(EN) thus, 0 „ (ab)c = [(ab)c]2 2 EN and
bc 2 [N,M], a contradiction. Therefore a 2 I[M,N]. Thus, Tot[M,N] = I[M,N] for any
M 2 mod � R, so N 2 IC(R). (3). By (1) and (2). h
6. LOCALLY INJECTIVE AND LOCALLY PROJECTIVE MODULES

Recall a module QR is locally injective [9] if, for every submodule A ˝ Q, which is not
large in Q, there exists an injective submodule 0 „ B ˝ Q with A \ B = 0.

Lemma 6.1. Let QR be a locally injective module. Then for any module N 2 mod � R the
following hold:

(1) Tot[Q,N] = D[Q,N].
(2) J[Q,N] ˝ D[Q,N].
(3) $[Q,N] ˝ D[Q,N].

In particular, J(EQ) ˝ DEQ = Tot(EQ) and $EQ ˝ DEQ.

Proof. (1) By Kasch [9]. (2). Since J[Q,N] ˝ Tot[Q,N], so by (1) J[Q,N] ˝ D[Q,N]. (3).
Let a 2 $[Q,N] and suppose that a R D[Q,N] then Ker(a) is not large in Q, so there
exists an injective module 0 „ A ˝ Q such that A \ Ker(a) = 0. Since A is injective
there exists b:N fi A such that baŒA = iA so b = bab. Thus 0 „ (ab)2 = ab 2 EN,
Im(a b) ˝¯ N and Im(ab) ˝ Im(a) N, so Im(ab) = 0 and ab = 0, a contradiction. Thus
a 2 D[Q,N]. h

Zhou gave an example of a locally injective module which does not have a
semi-potent endomorphism ring [13, Example 4.2]. The following Theorem gives us
a necessary and sufficient conditions for the endomorphism ring of a locally injective
module to be semi-potent ring.
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Theorem 6.2. Let QR be a locally injective module. For any module N 2 mod � R the
following are equivalent:

(1) [Q,N] is a semi-potent.
(2) Tot[Q,N] = J[Q,N] = D[Q,N].
(3) For any a 2 [Q,N]nJ[Q,N] there exists b 2 [N,Q] with 0 „ Ker(ba) ˝¯ Q.

In particular, EQ is a semi-potent ring if and only if, for any a 2 EQnJ(EQ) there exists
0 „ b 2 EQ such that Ker(ba) ˝¯ Q.

Proof. (1)) (2). Suppose that [Q,N] is semi-potent, by [13, Theorem 2.2]
Tot[Q,N] = J[Q,N] and by Lemma 6.1 J[Q,N] = D [Q,N]. (2)) (1). Since
J[Q,N] = D[Q,N] = Tot[Q,N], so by [13, Theorem 2.2] [Q,N] is semi-potent.
(1)) (3). Let a 2 [Q,N]nJ[Q,N] then there exists b 2 [N,Q] such that
0 „ (ba)2 = ba 2 EQ, so 0 „ Ker(ba) ˝¯ Q. (3)) (2). Since Q is a locally injective then
by Lemma 6.1 J[Q,N] ˝ D [Q,N]. Let a 2 D[Q,N] and suppose that a R J[Q,N] then
there exists b 2 [N,Q] such that 0 „ Ker(ba) ˝¯ Q and Ker(a) ˝ Ker(ba). Since Ker(-
a) 6 eQ then Ker(ba) 6 eQ and Ker(ba) \ Im(ba) = 0 so Im(ba) = 0 and ba = 0, a
contradiction. Thus, a 2 J[Q,N]. h

Theorem 6.3. Let QR be a module. The following conditions are equivalent:

(1) Q is a locally injective module.
(2) Tot[Q,N] = D[Q,N] for all N 2 mod � R.
(3) Tot[N,Q] = D[N,Q] for all N 2 mod � R.
(4) [Q,N] is a D- semi-potent for all N 2 mod � R.
(5) [N,Q] is a D- semi-potent for all N 2 mod � R.
Proof. (1) () (2). By Kasch [9]. (2) () (3). By Theorem 5.4. (3) () (4) and
(2) () (5) By Theorem 5.3. h

Recall a module PR is locally projective [9] if, for every submodule B ˝ P, which is
not small in P there exists a projective direct summand 0 „ W ˝¯ P with W ˝ B.

Lemma 6.4. Let PR be a locally projective module. Then for any module M 2 mod � R
the following hold:

(1) Tot[M,P] = $[M,P].
(2) J[M,P] ˝ $[M,P].
(3) D[M,P] ˝ $[M,P].

In particular, J(EP) ˝ $EP = Tot(EP) and DEP ˝ $EP.

Proof. (1) By Kasch [9]. (2) Since J[M,P] ˝ Tot[M,P], so by (1) J[M,P] ˝ $[M,P]. (3)
We have by (1), [M,P] is a $- semi-potent. Let a 2 D[M,P] suppose that a R $[M,P] then
there exists b 2 [P,M] such that 0 „ ba = (ba)2 2 EM. Since Ker(a) ˝ Ker(ba) and
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a 2 D [M,P] then Ker(ba) 6 eM, so Im(ba) = 0, hence Ker(ba) \ Im(ba) = 0. Thus,
ba = 0 a contradiction, so a 2 $[M,P]. h

Theorem 6.5. Let PR be a locally projective module. For any module M 2 mod � R the
following are equivalent:

(1) [M,P] is a semi-potent.
(2) Tot[M,P] = J[M,P] = $[M,P].
(3) For any a 2 [M,P]nJ[M,P] there exists b 2 [P,M] with 0 „ Im(ab) ˝¯ P.

In particular, EP is a semi-potent ring if and only if, for any a 2 EPnJ(EP) there exists
0 „ b 2 EP such that Im(ab) ˝¯ P.

Proof. (1)) (2). Suppose that [M,P] is semi-potent then [13, Theorem 2.2]
Tot[M,P] = J[M,P] and by Lemma 6.4 J[M,P] = $[M,P]. (2)) (1). Since
Tot[M,P] = J[M,P] then by [13, Theorem 2.2] [M,P] is semi-potent. (1)) (3). Let
a 2 [M,P]nJ[M,P] then there exists b 2 [P,M] such that 0 „ ab = (ab)2 2 EP, so 0 „
Im(ab) ˝¯ P. (3)) (2). Since P is locally projective then by Lemma 6.4
J[M,P] ˝ $[M,P]. Let a 2 $[M,P], suppose that a R J[M,P] then there exists b 2 [P,M]
such that 0 „ Im(ab) ˝¯ P. Since a 2 $[M,P] and Im(ab) ˝ Im(a) then Im(ab) P.
Therefore Im(ab) = 0 and ab = 0, a contradiction. Thus, a 2 J[M,P]. h

Theorem 6.6. Let PR be a module. The following conditions are equivalent:

(1) P is a locally projective module.
(2) Tot[M,P] = $[M,P] for all M 2 mod � R.
(3) Tot[P,M] = $[P,M] for all M 2 mod � R.
(4) [P,M] is a $- semi-potent for all M 2 mod � R.
(5) [M,P] is a $- semi-potent for all M 2 mod � R.

Proof. (1) () (2). By Kasch [9]. (2) () (3). By Theorem 5.8. (3) () (4) and
(2) () (5) By Theorem 5.7. h

Corollary 6.7. The following conditions are equivalent for a ring R:

(1) Every module M 2 mod � R with EM a D- semi-potent ring, is injective.
(2) U(R) = DU(R).
(3) Every module M 2 mod � R with EM is a semi-potent ring, is injective.
(4) R is a semi-simple Artinian ring.
(5) Every module M 2 mod � R with EM a semi-potent ring, is projective.
(6) C(R) = $C(R).
(7) Every module M 2 mod � R with EM a $- semi-potent ring, is projective.

Proof. See [13, Corollary 4.7] and Theorems 6.2, 6.5. h
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Corollary 6.8. The following conditions are equivalent for a ring R:

(1) R is a semi-potent ring and J(R) is left T- nilpotent.
(2) EP is a semi-potent ring for every projective module P 2 mod � R.
(3) EP is a $- semi-potent ring for every projective module P 2 mod � R.
(4) EF is a semi-potent ring for every free module F 2 mod � R.
(5) EF is a $- semi-potent ring for every free module F 2 mod � R.

Proof. By [13, Theorem 4.10] since for any projective module P 2 mod � R;
J(EP) = $EP, by [11, Proposition 1.1] (See also, [3, Theorem 3.8]). h
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