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Abstract. New results on the existence, uniqueness and maximal regularity of a solu-
tion are given for a two-space dimensional high-order parabolic equation set in conical

time-dependent domains. The study is performed in the framework of anisotropic weighted
Sobolev spaces. Our method is based on the technique of decomposition of domains.
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1. INTRODUCTION

Let @ be an open set of R? defined by
Q = {(t,xl,xg) € R?) : ($1,$2) € Qt,O <t < T}

where T is a finite positive number and for a fixed ¢ in the interval |0, T[, {2 is a bounded
domain of R? defined by

= {(xl,xg) €R?:0< /22 + 23 <<p(t)}.
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Here ¢ is a continuous real-valued function defined on [0, T, Lipschitz continuous on [0, T]
and such that

@(t) >0

for every t €0, T']. We assume that
0 (0) =0, (L.1)
o ()™ (t) =0 ast—0,meN". (1.2)

In @, consider the boundary value problem

2
du+ (—1)" > Pmu=fe L2 (Q).
j=1

k
ot

(1.3)

‘ —0, k=0,....m—1;j=1,2,
8Q\FT

where m € N*, 0Q) is the boundary of () and I'r is the part of the boundary of () where
t = T. Here, L2 (Q) is the space of square-integrable functions on @ with the measure
wdtdzdxs, where the weight w is a real-valued function defined on [0, T'], differentiable on
10, T'], such that

vt € [0,T]: w(t) >0, (1.4)
w is a decreasing function on ]0, 7). (1.5)

The difficulty related to this kind of problems comes from the fact that the domain () consid-
ered here is nonstandard since it shrinks at ¢ = 0 (¢ (0) = 0), which prevents the domain Q)
to be transformed into a regular domain without the appearance of some degenerate terms in
the parabolic equation, see for example Sadallah [15].

In this work, we will prove that Problem (1.3) has a solution with optimal regularity, that
is a solution u belonging to the anisotropic weighted Sobolev space

zﬁﬁwa:{ueHym@m:%ﬂaQJT:Qk:o,uﬂn—Lj:LQ}
with

HY™(Q) = {u: 0u,0%u € L2 (Q), |a| < 2m}
where

o = (iy,ip) € N?, || =1 + ia, aau:agla;gu.
The space H1*™ (Q) is equipped with the natural norm, that is

1/2
2 o, |12
[ull grr2m gy = | 0eull2 () + Z [0%ull72 (@)
lor|<2m
Remark 1.1. The boundary conditions of Problem (1.3) are equivalent to

k _ _
@qwd%fm k=0,...,m—1,
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where 0, stands for the normal derivative. This equivalence can be proved, for instance, by
induction. So Problem (1.3) is also equivalent to

2

Ot (=)™ Y 0 u=f € LL(Q), (1.6)

j:
k _ _
Vu|8Q\FT—O, k=0,...,m—1.

Observe that the number of the boundary conditions in (1.3) is 2m, but they are not indepen-
dent, while in (1.6), there are m independent boundary conditions.

Our main result is

Theorem 1.1. Let us assume that @ satisfies condition (1.1) and the weight function w verifies
assumptions (1.4) and (1.5). Then, the 2m-th order parabolic operator

L=0,+ Z oz

is an isomorphism from Hé im (Q) into L? (Q) if one of the following conditions is satisfied
(1) @ is an increasing functzon in a neighborhood of 0,
(2) @ verifies the condition (1.2).

The case m = 1 corresponding to a second-order parabolic equation is studied in [16]
and [9] both in bi-dimensional and multidimensional cases. We can find in Sadallah [15] a
study of such kind of problems in the case of one space variable. Further references on the
analysis of higher-order parabolic problems in non-cylindrical domains are: Baderko [1,2],
Cherepova [4,5], Labbas and Sadallah [10], Galaktionov [6], Mikhailov [13,14] and Kh-
eloufi [8].

The organization of this paper is as follows. In Section 2, first we prove a uniqueness
result for Problem (1.3), then we derive some technical lemmas which will allow us to prove
an energy type estimate (in a sense to be defined later). In Section 3, we divide the proof of
Theorem 1.1 into four steps:

(a) Case of a truncated domain,

(b) An energy type estimate in small in time case,
(c) Passage to the limit,

(d) Case of a large in time conical type domain.

2. PRELIMINARIES

Proposition 2.1. Under the assumptions (1.4) and (1.5) on the weight function w, Prob-
lem (1.3) is uniquely solvable.

Proof. Let us consider u € H& im (Q) a solution of Problem (1.3) with a null right-hand
side term. So,

Opu + ( Z 82mu =0 inQ.



168 A. Kheloufi, B.-K. Sadallah

In addition u fulfils the boundary conditions

a’;,u‘ —0, k=0,1,....,m—1;j=1,2.
7 1loQ~TI'r

Using Green’s formula, we have

2
/ <3tu+ Z z u uw()dtdfﬂldfﬂg
Q 1

‘7_
2 m—
- / 2 [ul* v Z Z 02;"_k_1u_a§ju)(_l)k-&-m%]} w(t)do
00 p
/ (| u| + (o, |2) dtdwld@_/ 1|U|2wl (t) dt daqdas,
Q2

where vy, vy, Vg, are the components of the unit outward normal vector at 0Q.
Taking into account the boundary conditions, all the boundary integrals vanish except
Joo lu|® w (t) v¢ do. We have

/ |u|2w(t)1/tdaz/ lu? w (T) dz1das.
oQ I'r

Then

/ <8tu+ Za%u) uw (t) dt deidxs
Q
1
:/ “ufw(T )d:cldef/ = Jul? W' (t) dt daydacy
I'r 2 Q 2
/ <| u| + |8mu| ) dtdx1dzs .

Consequently

/ <3fu +( Z@Qmu> uw (t) dtdxidzs =0
Q

yields
/ <| u| + |8mu| ) dt dx1dze = 0,

because

1 1
/ 3 lul® w (t) doydzy — / 3 lul> & () dt dzydzy >0
I'r Q

thanks to the conditions (1.4) and (1.5). This implies that ] u‘ + ] u’ = 0 and con-
sequently 02y = 02™u = 0. Then, the hypothesis O,u + (—1)™ 23:1 8§Z”u = 0 gives
Ogu = 0. Thus, u is constant. The boundary conditions imply that « = 0 in ). This proves
the uniqueness of the solution of Problem (1.3). [
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Remark 2.1. In the sequel, we will be interested only in the question of the existence of the
solution of Problem (1.3).

The following result is well known (see, for example, [12])

Lemma 2.1. Let B (0, 1) be the unit disk of R2. Then, the operator

A:H?*™(B(0,1))n HY (B(0,1)) — L*(B(0,1)),
v— Av=(-1)" Z@i:’lv

j=1
is an isomorphism. Moreover, there exists a constant C > 0 such that

[Vl gr2m 0,1y < C 1AV L2 (B0,1)), YV € H*™ (B (0,1)) N Hy* (B(0,1)).

In the above lemma, H?™ and H{* are the usual Sobolev spaces defined, for instance, in
Lions—Magenes [12]. In Section 3, we will need the following result.

Lemma 2.2. For a fixed t €]0,T)|, there exists a constant C > 0 such that for each u €
H?™ (§2,), we have

2
lo

l
.,Cju’

oy = Co* D (1) | Aullfzg,, 1=0,1,....2m—1;j = 1,2

Proof. Itis a direct consequence of Lemma 2.1. Indeed, let ¢ € ]0, T'[ and define the following
change of variables

B(Oa 1) - Qt? (1’1,%2) — (90 (t) .’E1,<p(t) xQ) = (xllaxé) .

Setv (z1,22) = u (2}, ), thenifv € H*™ (B (0,1)), u belongs to H*™ (2;).For j = 1,2,
we have

Jo

Tj

2 2

v :/ ((“)i.v) (z1,22) dz1dxs
L2(B(0,1)) B,1) N’
/ (8l )2(/ /) 2l(t) 1 dz’ dx’

= ) (zh,x5) @ ———dxdx
2, . 1 2 @2 (t) 1 2

2
=20 [ (o) (ot defay

20—-2 2
= 22 (1) |

ok, u‘

J

L2(2:)

where [ € {0,1,...,2m — 1}. On the other hand, we have

2
||-/4”||L2(B(0,1)) = /

B(0,1)

5 2
l(l)mzaiznv (Il,Ig)] dxidzs
Jj=1
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) 2
— pim=2 (t)/ﬂ (Z Gﬁlfu) (2}, xh) dx'y d),

j=1
_ 2
= o2 () | Aull g2 g, -
Using the inequality
‘al, < CO)Av|>.
Tj L2(B(0,1)) L2(B(0,1))

of Lemma 2.1, we obtain the desired inequality

Remark 2.2. In Lemma 2.2 we can replace ||.|[ ;2 by ||.|| 2

2

6llu‘
J

x’.

m— 2
L2(02¢) = 0@2(2 ) (t) HAu||L2(Qt) .

3. PROOF OF THEOREM 1.1

3.1. Case of a truncated domain Q,,

In this subsection, we replace @ by @),,,n € N* and % <T:

Qn = {(t,xhxg) €qQ: % <t<T}.

Theorem 3.1. For each n € N* such that % < T, the problem

2
Ot + (—=1)™ > 0w, = fr € L2 (Qn),
j=1
k _ _ L s
2, Un 00 I =0, k=0,1,....m—1;5=1,2,

where f, = [l admits a unique solution u, € HL*™ (Qy).

Proof of Theorem 3.1. The change of variables

(t,21,22) (t,yl,y2)<tv;(1t)’;(2t)>

3.1

transforms Q,, into the cylinder P,, = |2, T[x B (0, 1), where B (0, 1) is the unit disk of R?.
Putting w,, (¢, z1,22) = vy, (t,y1,y2) and fp, (¢, 21, 22) = gn (t,y1,y2), then Problem (3.1)

is transformed, in P, into the following variable-coefficient parabolic problem

(_1)m 2 ,t 2
Ovn + gy D_ O3 'S 0y, = 0
prm(t) = (1) =
O v, =0, k=0,1,...,m—1;j=1,2
7 OP, YT
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where Y is the part of the boundary of P, where ¢ = T'. The above change of variables

conserves the spaces L2 and H 1,2m because (27}3 and £ £ (1) are bounded functions when
(t) w(t)

t €], T[. In other words

fn € L2 (Qn) < gn € L2 (P,), u, € HY*™(Q,) <= v, € H.*™(P,).

Proposition 3.1. For each n € N* such that % < T, the following operator is compact

@ (¢)
@ (t)

2
Zyj g, Ho 2™ (Pa) — L2 (Py).

Proof. P, has the “horn property” of Besov (see [3]). So, for j = 1,2

0y, : Ho2™ (P) — HY 7" H(P), v 0,0,

0,w
is continuous. Since P, 1is bounded, the canonical injection is compact from
1—5- 2m—1 . .
H, 7" (P,) into L? (P,) (see for instance [3]), where

H 7N (p)y = L2< T H?>™~ 1(B(0,1))>

N H-o <:L,T;L2 (B(O,l)))

For the complete definitions of the H"® Hilbertian Sobolev spaces, see for instance [12].
Consider the composition

Sl oo
: Héfjm (P,) — Hy 72mt (P,) — L2 (P,), v = Oy, v = 0y,

Yi

d,,

J

then 0y, is a compact operator from H& 2™ (P,) into L2 (P,,). Since £ ((tt)) is a bounded func-

tion for < t < T, the operators % o0 t;” Oy;» j = 1,2 are also compact from Hé ,2m (P)
into L?, (Pn) Consequently,

¢ () o
510 2%

j=1

is compact from Hy 2™ (P,) into L2 (P,). O

So, thanks to Proposition 3.1, to complete the proof of Theorem 3.1, it is sufficient to show
that the operator

(_1)771 Y 82m

2 Yj
A (t) e "

o +

is an isomorphism from H& 27 (P.) into L2 (Py).
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Lemma 3.1. For each n € N* such that % < T, the operator

_1)m
( 2m )(t) agam
¢ =
is an isomorphism from H&im (P,) into L? (P,).

Proof. Thanks to Remark 1.1, the problem

()" §
— 2m —
Oyvop, + @Qm (t) ]Z 81/;‘ Un = Gn

k

y; Un

j=1
=0, k=0,1,....m—1; j=1,2,
6PH\ET

is equivalent to the following problem

(_1)m 2
Oy, + 82,mvn = 9gn
@Qm (t) ]Zl Yj

k _: —
@%b&Qh_Q k=0,...,m—1.

Since the coefficient W is bounded in P,, the optimal regularity is given by Ladyzhen-

skaya, Solonnikov and Ural’tseva [11]. O

We shall need the following result in order to justify the calculus of this section.

Lemma 3.2. For each n € N* such that % < T, the space

Tj

{ve_Hﬂm(fg):aEu
Op Py,

is dense in the space

Tj

{v € HY™(P,): 0% v

:Qk:QL“wm—hj:L2}
Op Pn,

Here, 0, P, is the parabolic boundary of P, and H>™ stands for the usual Sobolev space
defined, for instance, in Lions—Magenes [12].

The proof of the above lemma may be found in [12].

Remark 3.1. In Lemma 3.2, we can replace P, by (), with the help of the change of
variables defined above.

3.2. Case of a “small” conical domain

Now, we return to the conical domain () and we suppose that the function ¢ satisfies
conditions (1.1) and (1.2).

For each n € N* such that £ < T, we denote f, = f|, and u, € H*™ (Qy) the
solution of Problem (1.3) in @,,. Such a solution exists by Theorem 3.1.
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Proposition 3.2. For T small enough, there exists a constant Ky independent of n such that
lunllgazm g,y < K llfnlliz @,y < K1 llfllz o) -
Remark 3.2. Let e > 0 be a real number which we will choose small enough. The hypothesis

(1.2) implies the existence of a real number 7" > 0 small enough such that

vt e (0,7), ¢ (t) ™ ()] <e (3.2)

In order to prove Proposition 3.2, we need the following result which is a consequence of
Lemma 2.2 and Grisvard—Looss [7, Theorem 2.2].

Lemma 3.3. There exists a constant C' > O independent of n such that

Z H@“unHLz Qn) = C”AUnHm

|a|=2m

Proof of Proposition 3.2. Let us denote the inner product in L2 (Q,,) by (., .), then we have

2 2
= ||atuﬂ||Li(Qn) + ||Au"||Li(Qn) + 2<5tun,.,4un>.

Estimation of 2(0;u,,, Au,,): We have

Dyt Au,, = i rzl Ory (08 Opun 2 M, ) (~1)FF 4 %at (a;;_;un)gl .

j=1 Lk=0

Then

2(Optip, Auy) = 2 Optt - Aup.w (t) dtdrydxs

Qn
2
=2
2

1
j=1 0
2

WLZ ax7 (8 atun 82m k= 1 ) (71)k+m W (t) dtd’l}ldl’g
k=
+ /Q K ; (amun)Q w (t) dtdzdas

-2
0Qn 4

2
+/8Qn Z 9 jun)Qut.w (t)do — /Qn; (a;jun)Q.w’ (t) dtdads

j=1

3

3 a j@tunﬁg;”_k_lun> (1) v, w () do

2
J
j=1 k=0

with v, vy, , vy, are the components of the unit outward normal vector at 9Q),,. We shall
rewrite the boundary integral making use of the boundary conditions. On the part of the
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boundary of Q,, where t = 1, we have 9F Un = 0,k=0,. —1;5 = 1,2 and conse-

quently the corresponding boundary 1ntegral vanishes. On the part of the boundary where ¢ =
T, wehave v,; =0, j =1,2and vy = 1. Accordingly, the corresponding boundary integral

/ Z 8mun Txl,arg) w (T)dxidzs
I'r

j=1

is nonnegative. On the part I'; of 9Q),, defined by

ri={(tana) A+ =o 0],

we have

-
V14 (@)@
cos 6

N

sin 0

i)

8§jun(t,<p(t)cos&,cp(t)sinﬁ) =0, k=0,....m—1,7=1,2.

and

Let us denote

—1

2
=2 /F > (a’;jatun.agf—k—lun) (D)™™ v, w(t) do.

3

1j=1 k=0
We have
2
I= 2/ Z (8tun.8§:"*1un> (=)™ vg,.w (t) do
Flj 1 ’
2 m-—2
/ > (a{;jatun.aggn*k*un) (—1) "y w (t) do
1 j=1 k=1
2
_ 2/ Z (8;’;*18tun.8$un) Vg, w (1) do
Flj 1
=Ig+1 +1p_1.
(a) Estimation of [, = 2 fr (8tun Bgfflu,) (=)™ vg,.w (t) do:
We have

Un, (t, 0 (t) cos b, (t)sinh) =0
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Differentiating with respect to ¢, we obtain
Oy, = —p' () (08 0.0, Up + sin 0.0,,u,) = 0.

So, the boundary integral I, vanishes.
(b) Estimation of I; = 2 [, 37| 37172 (08 Qyun,. 02, ) (—1)F ™y, w(t)do:
We have

8§jun (t,p(t)cosh,p(t)sinf) =0, k=1,....,m—2;5=1,2.
Differentiating with respect to ¢, we obtain

0,08 un = —¢' (t) [cos0.05  uy, +5i060.0,,08 w,|, k=1,...,m—2
and

0,0F un = —¢' (t) [c080.05,0F up +sin0.05 |, k=1,...,m—2.
The Dirichlet boundary conditions on [ lead to

0,08 up = —¢' ()50 0.0,,0% up, k=1,...,m—2
and

0,08 up = —¢' (t)c080.05,0% up, k=1,...,m—2.
Now, differentiating the formula

8’;J_un (t,o(t)cosb,p(t)sinf) =0, k=1,....,m—2;5=1,2
with respect to 6, we obtain

sin 9.6’;jlun = cos 9.8:,028’;111“, k=1,...,m—2
and

cos Hﬁfjlun = sin@.axlalafzun, k=1,...,m—2.
The Dirichlet boundary conditions on I lead to

Oy OF Uy = 05,08 up =0, k=1,...,m—2
and consequently

OOF upy = 00F up =0, k=1,....,m—2.
So, the boundary integral I; vanishes.
(c) Estimation of 1,,,_; = —2 fFl 23:1 (ag;*latun.ag;un) Vg, w (t) do
We have
8;’;_111” (t,p (t)cosh,p(t)sinh) =0, j=1,2.
Differentiating with respect to ¢, we obtain

0,00 uy = —¢' (t) [(c08 0.7 w4 8in0.0,,07" uy,) |

T2¥xy
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and

0,00 My, = —¢' (t) [c08 0.0, 002 Py, + sin 0.0 uy | -
Differentiating with respect to 6, we obtain

€08 6.0, 5‘;’:*1un = sin 0.0, u,,

sin 9.81182;_11% = c0s 0.0, Uy
Taking into account these relationships we deduce

Iml

2
= 2/ / cos? 0.0 un, + sin 6 cos 0.0y, O~ n} Tung () ¢ (t) .w (t) dtdd
27
+ 2/ /1 cos 0sin 0.0y, 3;?_1un + sin? 9.8;2 un} 8;,2 uncpl (t) o (1) .w (t) dtdo
0 B

=2 /0% /; [(am“”f + (6«;’3%)2} ¢ (t) ¢ () .w (t) dtdo.

Finally
2(Oytun, Auy) = / ' (22: 8 i ) ' (8 (t) w (t) dtdo
+/F (22: (3 un)> (T, 21, 22) w (T) drv1dxy
_ /Q n (i (amun> ) ' (t) dtdzxydas. (3.3)

Remark 3.3. Observe that the integrals

2

2
/FT (Z <a$jun> > (T, o xz) W (T) drydzs

and
2

/ (Z (8’%“) ) W (t) dtdzy dzs,

which appear in the last formula are nonnegative thanks to the assumptions (1.4) and (1.5) on
the weight function w. This is a good sign for our estimate because we can deduce immedi-
ately

Hf"||L2(Q,L) Z ||atunHLz oot H-AUn“L2 (@Qn)

i /02" L (Z_: (833“71 ) w (t) dtde.
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So, if ¢ is an increasing function in the interval ( %, T), then

/027r /1T <§; (82“")2> ¢ (t) p (t) .w (t)dtdd > 0.

Consequently,

2 2 2
1£nllz2 (@) 2 N9eunllzz @,y + Munllzz q.) - (3.4

But, thanks to Lemma 2.2 and since ¢ is bounded in (0, T'), there exists a constant C’ > 0
such that

‘ 2(Qn)

Taking into account Lemma 3.3 and estimate (3.4), this proves the desired estimate of Propo-
sition 3.2.

So, it remains to establish the estimate of Proposition 3.2 under the hypothesis (1.2). For
this purpose, we need the following lemma

< O Aunlia .y, 1=0.1,...2m—1;j=1.2.

Lemma 3.4. One has

, /2
2(Optt, Auy) = 2/ % (Z zjﬁg;un> Auy,.w (t) dtdzydas

Jj=1

/ Z 8;2%1 T$1,$2).w(T)dx1dx2.
I'r

j=1
Proof. This result can be obtained by following step by step the proof of [9, Lemma 3.4]. [

Now, we continue the proof of Proposition 3.2. We have

/ 2
/ % (Z Ijai’jun> Aty w (t) dtdzyday

< ||AUnHL2 (Qn )Z 3033 ;Un )
j=1 LZ(Qn)
but Lemma 2.2 yields for j = 1,2
0 2 T T 2 2
‘ ;05 Uy, = / @' (t)/ ( ] ) (8;’11%) w (t) dtdzydzo
2 2@, Ji 2 \p (1) ’

T 2
1 2 J

T

< 02/ (™ ()¢ (t))z/ (Aun)? .w () dtdzide,
1 2

< C%e ||AUnH2Lg(Qn) )
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since (¢™ (t) ¢’ (t)) < e thanks to the condition (3.2). Then

;[ 2
/n % (Z xjagzun> Auy.w (1) dtdzydzy

< 2Ce || Aun72 o,

Therefore, Lemma 3.4 shows that

/ 2
/ % (Z xj(?;’jun> Au,.w () dtdey das

j=1

12(0ptn, Auy,)| > —2

/ Z 8mun Txl,xg).w(T)dxldxg.
FT

—4Ce |\Aun||Lg<Qn>

v

Hence
2 2 2
an”Lg(Qn) = ||8tunHLg(Qn) + HAun”Lg(Qn) + 2(0yun, Aun)
2 2
> [10sunllzz (q,) + (1 = 4C¢) [Aun1z q,)

Then, it is sufficient to choose € such that 1 —4C'e > 0 to get a constant Ky > 0 independent
of n such that

1l .y 2 Bollunllgrem g, -

and since

1Fall 22 @n) < 1F122 @) -

there exists a constant K; > 0, independent of n satisfying
lall giem gy < K M fllzz gy < Ko 112 () -
This completes the proof of Proposition 3.2.

3.3. Passage to the limit

Choose a sequence (Qy,),,cy- Of the domains defined above (see Section 3.1), such that
Qn C Q. Then, we have Q,, — @, as n — oo. Consider the solution u,, € H.?™ (Q,,) of
the Cauchy—Dirichlet problem

Dyt + ( Za’mun = fn € L (Qn).

Jj=1
k — _ Ca
IjunaQn\FT—O, k=0,1,....m—1; j=1,2,

where f, = f|Qn' Such a solution u,, exists by Theorem 3.1. Let u,, be the 0-extension of
Uy, to Q. In virtue of Proposition 3.2 for T" small enough, we know that there exists a constant

C such that
’ —_—~—
L2(Q) Z 9

FUp,
1<]a|<2m

Tl 2 ) + || Oem Clfle o

L, (Q)
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This means that w,,, Oy, 0%u,, for 1 < |a| < 2m are bounded functions in L2 (Q). So, for
a suitable increasing sequence of integers ng, k = 1,2, ..., there exist functions

u,vand v, 1 < |a] < 2m
in L2 (Q) such that

Un, — u  weaklyin L2 (Q), k — oo
Opun, — v weaklyin L2 (Q), k — oo

0%u,, — v, weaklyin L2 (Q), k — oo,
1 < || < 2m. Clearly,
v = Osu, Vo = 0%, 1< |af <2m

in the sense of distributions in Q and so in L2 (Q). So, u € H.?*™ (Q) and
2
Opu+ (—1)™ > 07 Mu=f inQ.
j=1

On the other hand, the solution w satisfies the boundary conditions

Ol un =0, k=0,1,...,m—1;j=1,2,

BQT,,\FT

since
Vn €N, ulg = un.

This proves the existence of a solution to Problem (1.3). This ends the proof of Theorem 1.1
in the case of 7" small enough.

3.4. The general case

Assume that @) satisfies (1.1). In the case where 7" is not small enough, we set Q =
D, U Dy U I'y where

Dy ={(t,x1,22) €Q: 0 <t < T}
Dy = {(t,x1,22) €Q: Ty <t <T}

FT1 = {(Thxlax?) ER?’: OS \/ l’?—f—it% SLP(Tl)}

with T small enough. In the sequel, f stands for an arbitrary fixed element of L2 (Q) and
fi = f| p,» @ = 1, 2. We know that (see Section 3.3) there exists a unique solution w; €
HL2™ (Dy) of the problem

2
Opwy + (=)™ Y 2wy = fr € L2 (Dy),
j=1 3.5)

85101‘ —0, k=0,....m—1;j=1,2.
7 aDl\FTl
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Hereafter, we denote the trace w1 | rp. by ¢ which is in the Sobolev space H}! (I'r, ) because
1
wy € HY?™ (Dy) (see [12]). Now, consider the following problem in Dy

2
Opwy + (—1)™ 2wy = fo € L2 (D2),
j=1

Wl py, = 36)

ok =0, k=0,....m—1;j=1,2.
x7w2 8D2\(FT1UI‘T) m ]

We use the following result, which is a consequence of [12, Theorem 4.3, Vol. 2], to solve
Problem (3.6).

Proposition 3.3. Let R be the cylinder |0, T[ x B (0,1) where B (0, 1) is the unit disk of R?,
f € L2 (R)and ug € H™ (o). Then, the problem

2

Opu+ (=)™ Z aﬁgnu =f inR,

j=1
ul’Yo = Uo,
Ou =0, k=0,....m-1j=12
71
where v = {0} x B(0,1), v = ]0,T[x9B(0,1), admits a (unique) solution
u € HY?™ (R) if and only if the following compatibility conditions are fulfilled
%uﬂ —0, k=0,....m—1;j=12
’ 90

Thanks to the transformation

(t7$17x2) — (t7y1’y2) = (taw(t) 331,(,0(75) 332),

we deduce the following result:

Proposition 3.4. Problem (3.6) admits a (unique) solution wy € HL?™ (Dy) if and only if
the following compatibility conditions are fulfilled

ok =0, k=0,...,m—1;j=1,2.
5% o, m J

Remark 3.4. We can observe that the boundary conditions of Problems (3.5) and (3.6) yield
'U}1|FT1 — w2‘FT1

c HL (I'r,); 4,7 = 1,2. Then the compatibility conditions

and OF w;
J T

8"',‘ -0, k=0,....m—1;5=1,2
xj,(/)ale m ]

are satisfied since w | re, =
1
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Now, define the function u in ) by

wi in Dy
U= .
wg in Doy

where w; and wy are the solutions of Problem (3.5) and Problem (3.6) respectively. Observe
that wy | I, = wa| Ir, > S€€ Remark 3.4, so

k
8xj w1

=0 ws| , k=0,...,m-1j=1,2

T I'r,

This implies that u € H'?™ (Q) and u is the (unique) solution of Problem (1.3) for an
arbitrary T'. This ends the proof of Theorem 1.1.

ACKNOWLEDGMENT

We are thankful to the referee for the valuable remarks which led to an improvement of
the original manuscript.

REFERENCES

[1] E.A. Baderko, The solvability of boundary value problems for higher order parabolic equations in domains

with curvilinear lateral boundaries, Differ. Uravn. 10 (12) (1976) 1781-1792.
[2] E.A. Baderko, On the solution of boundary value problems for linear parabolic equations of arbitrary order in

noncylindrical domains by the method of boundary integral equations (Ph.D. thesis), Moscow, 1992.
[3] V. Besov, Continuation of functions from L’ and W', Proc. Steklov Inst. Math. 89 (1967) 5-17.
[4] MLE. Cherepova, On the solvability of boundary value problems for a higher order parabolic equation with
growing coefficients, Dokl. Math. 74 (3) (2006) 819-820.
[5] M.E. Cherepova, Regularity of solutions of boundary value problems for a second order parabolic equation in
weighted Holder spaces, Differ. Equ. 1 (49) (2013) 79-87.
[6] V.A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-
type criterion by blow-up approach, Nonlinear Differential Equations Appl. 5 (16) (2009) 597-655.
[7] P. Grisvard, G. Looss, Problemes aux limites unilatéraux dans des domaines non réguliers, J. Equ. Dériv. Part.
(1976) 1-26.
[8] A. Kheloufi, On a fourth order parabolic equation in a nonregular domain of R3, Mediterr. J. Math. (2015),
http://dx.doi.org/10.1007/s00009-014-0429-7.
[9] A. Kheloufi, B.K. Sadallah, Study of the heat equation in a symmetric conical type domain of RV+1, Math.
Methods Appl. Sci. 37 (2014) 1807-1818.
[10] R. Labbas, B.K. Sadallah, Smoothness of the solution of a fourth order parabolic equation in a polygonal
domain, Int. J. Appl. Math. 1 (1999) 75-90.
[11] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type,
A.M.S, Providence, Rhode Island, 1968.
[12] J.L. Lions, E. Magenes, Problémes aux limites non homogenes et applications, 1, 2, Dunod, Paris, 1968.
[13] V.P. Mikhailov, The Dirichlet problem for a parabolic equation, I, Mat. Sb. 61 (103) (1963) 40-64.
[14] V.P. Mikhailov, The Dirichlet problem for a parabolic equation, II, Mat. Sb. 62 (104) (1963) 140-159.
[15] B.K. Sadallah, Etude d’un probléme 2m-parabolique dans des domaines plan non rectangulaires, Boll. Unione
Mat. Ital. 2B (5) (1983) 51-112.
[16] B.K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. Okayama Univ. 56 (2014) 157-169.


http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref1
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref3
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref4
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref5
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref6
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref7
http://dx.doi.org/10.1007/s00009-014-0429-7
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref9
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref10
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref11
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref12
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref13
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref14
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref15
http://refhub.elsevier.com/S1319-5166(15)00019-5/sbref16

	Resolution of a high-order parabolic equation in conical time-dependent domains of  R3 
	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Case of a truncated domain  Qn 
	Case of a ``small'' conical domain
	Passage to the limit
	The general case

	Acknowledgment
	References


