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Abstract. New results on the existence, uniqueness and maximal regularity of a solu-
tion are given for a two-space dimensional high-order parabolic equation set in conical
time-dependent domains. The study is performed in the framework of anisotropic weighted
Sobolev spaces. Our method is based on the technique of decomposition of domains.
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1. INTRODUCTION

Let Q be an open set of R3 defined by

Q =

(t, x1, x2) ∈ R3 : (x1, x2) ∈ Ωt, 0 < t < T


where T is a finite positive number and for a fixed t in the interval ]0, T [, Ωt is a bounded
domain of R2 defined by

Ωt =


(x1, x2) ∈ R2 : 0 ≤

x2

1 + x2
2 < ϕ (t)


.
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Here ϕ is a continuous real-valued function defined on [0, T ], Lipschitz continuous on [0, T ]
and such that

ϕ (t) > 0

for every t ∈ ]0, T ]. We assume that

ϕ (0) = 0, (1.1)

ϕ′ (t)ϕm (t) → 0 as t → 0, m ∈ N∗. (1.2)

In Q, consider the boundary value problem
∂tu+ (−1)m

2
j=1

∂2m
xj
u = f ∈ L2

ω (Q) ,

∂k
xj
u

∂QrΓT

= 0, k = 0, . . . ,m − 1; j = 1, 2,
(1.3)

where m ∈ N∗, ∂Q is the boundary of Q and ΓT is the part of the boundary of Q where
t = T . Here, L2

ω (Q) is the space of square-integrable functions on Q with the measure
ωdtdx1dx2, where the weight ω is a real-valued function defined on [0, T ], differentiable on
]0, T ], such that

∀t ∈ [0, T ] : ω (t) > 0, (1.4)

ω is a decreasing function on ]0, T ]. (1.5)

The difficulty related to this kind of problems comes from the fact that the domain Q consid-
ered here is nonstandard since it shrinks at t = 0 (ϕ (0) = 0), which prevents the domain Q
to be transformed into a regular domain without the appearance of some degenerate terms in
the parabolic equation, see for example Sadallah [15].

In this work, we will prove that Problem (1.3) has a solution with optimal regularity, that
is a solution u belonging to the anisotropic weighted Sobolev space

H1,2m
0,ω (Q) :=


u ∈ H1,2m

ω (Q) : ∂k
xj
u

∂QrΓT

= 0, k = 0, . . . ,m − 1; j = 1, 2


,

with

H1,2m
ω (Q) = {u : ∂tu, ∂

αu ∈ L2
ω (Q) , |α| ≤ 2m}

where

α = (i1, i2) ∈ N2, |α| = i1 + i2, ∂αu = ∂i1
x1
∂i2

x2
u.

The space H1,2m
ω (Q) is equipped with the natural norm, that is

∥u∥H1,2m
ω (Q) =

∥∂tu∥2
L2

ω(Q) +


|α|≤2m

∥∂αu∥2
L2

ω(Q)

1/2

.

Remark 1.1. The boundary conditions of Problem (1.3) are equivalent to

∂k
νu

∂QrΓT

= 0, k = 0, . . . ,m − 1,
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where ∂ν stands for the normal derivative. This equivalence can be proved, for instance, by
induction. So Problem (1.3) is also equivalent to∂tu+ (−1)m

2
j=1

∂2m
xj
u = f ∈ L2

ω (Q) ,

∂k
νu

∂QrΓT

= 0, k = 0, . . . ,m − 1.

(1.6)

Observe that the number of the boundary conditions in (1.3) is 2m, but they are not indepen-
dent, while in (1.6), there are m independent boundary conditions.

Our main result is

Theorem 1.1. Let us assume that ϕ satisfies condition (1.1) and the weight function ω verifies
assumptions (1.4) and (1.5). Then, the 2m-th order parabolic operator

L = ∂t + (−1)m
2

j=1

∂2m
xj

is an isomorphism from H1,2m
0,ω (Q) into L2

ω (Q) if one of the following conditions is satisfied
(1) ϕ is an increasing function in a neighborhood of 0,
(2) ϕ verifies the condition (1.2).

The case m = 1 corresponding to a second-order parabolic equation is studied in [16]
and [9] both in bi-dimensional and multidimensional cases. We can find in Sadallah [15] a
study of such kind of problems in the case of one space variable. Further references on the
analysis of higher-order parabolic problems in non-cylindrical domains are: Baderko [1,2],
Cherepova [4,5], Labbas and Sadallah [10], Galaktionov [6], Mikhailov [13,14] and Kh-
eloufi [8].

The organization of this paper is as follows. In Section 2, first we prove a uniqueness
result for Problem (1.3), then we derive some technical lemmas which will allow us to prove
an energy type estimate (in a sense to be defined later). In Section 3, we divide the proof of
Theorem 1.1 into four steps:

(a) Case of a truncated domain,
(b) An energy type estimate in small in time case,
(c) Passage to the limit,
(d) Case of a large in time conical type domain.

2. PRELIMINARIES

Proposition 2.1. Under the assumptions (1.4) and (1.5) on the weight function ω, Prob-
lem (1.3) is uniquely solvable.

Proof. Let us consider u ∈ H1,2m
0,ω (Q) a solution of Problem (1.3) with a null right-hand

side term. So,

∂tu+ (−1)m
2

j=1

∂2m
xj
u = 0 in Q.
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In addition u fulfils the boundary conditions

∂k
xj
u

∂QrΓT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2.

Using Green’s formula, we have
Q


∂tu+ (−1)m

2
j=1

∂2m
xj
u


uω (t) dt dx1dx2

=


∂Q


1
2

|u|2 νt +
2

j=1

m−1
k=0

(∂2m−k−1
xj

u.∂k
xj
u)(−1)k+mνxj


ω (t) dσ

+


Q

∂m
x1
u
2 +

∂m
x2
u
2 dt dx1dx2 −


Q

1
2

|u|2 ω′ (t) dt dx1dx2,

where νt, νx1 , νx2 are the components of the unit outward normal vector at ∂Q.
Taking into account the boundary conditions, all the boundary integrals vanish except

∂Q
|u|2 ω (t) νt dσ. We have

∂Q

|u|2 ω (t) νtdσ =

ΓT

|u|2 ω (T ) dx1dx2.

Then 
Q


∂tu+ (−1)m

2
j=1

∂2m
xj
u


uω (t) dt dx1dx2

=

ΓT

1
2

|u|2 ω (T ) dx1dx2 −


Q

1
2

|u|2 ω′ (t) dt dx1dx2

+


Q

∂m
x1
u
2 +

∂m
x2
u
2 dt dx1dx2 .

Consequently
Q


∂tu+ (−1)m

2
j=1

∂2m
xj
u


uω (t) dt dx1dx2 = 0

yields
Q

∂m
x1
u
2 +

∂m
x2
u
2 dt dx1dx2 = 0,

because
ΓT

1
2

|u|2 ω (t) dx1dx2 −


Q

1
2

|u|2 ω′ (t) dt dx1dx2 ≥ 0

thanks to the conditions (1.4) and (1.5). This implies that
∂m

x1
u
2 +

∂m
x2
u
2 = 0 and con-

sequently ∂2m
x1
u = ∂2m

x2
u = 0. Then, the hypothesis ∂tu + (−1)m

2
j=1 ∂

2m
xj
u = 0 gives

∂tu = 0. Thus, u is constant. The boundary conditions imply that u = 0 in Q. This proves
the uniqueness of the solution of Problem (1.3). �
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Remark 2.1. In the sequel, we will be interested only in the question of the existence of the
solution of Problem (1.3).

The following result is well known (see, for example, [12])

Lemma 2.1. Let B (0, 1) be the unit disk of R2. Then, the operator

A : H2m (B (0, 1)) ∩ Hm
0 (B (0, 1)) −→ L2 (B (0, 1)) ,

v → Av = (−1)m
2

j=1

∂2m
xj
v

is an isomorphism. Moreover, there exists a constant C > 0 such that

∥v∥H2m(B(0,1)) ≤ C ∥Av∥L2(B(0,1)) , ∀v ∈ H2m (B (0, 1)) ∩ Hm
0 (B (0, 1)) .

In the above lemma, H2m and Hm
0 are the usual Sobolev spaces defined, for instance, in

Lions–Magenes [12]. In Section 3, we will need the following result.

Lemma 2.2. For a fixed t ∈ ]0, T [, there exists a constant C > 0 such that for each u ∈
H2m (Ωt), we have∂l

xj
u
2

L2(Ωt)
≤ Cϕ2(2m−l) (t) ∥Au∥2

L2(Ωt)
, l = 0, 1, . . . , 2m − 1; j = 1, 2.

Proof. It is a direct consequence of Lemma 2.1. Indeed, let t ∈ ]0, T [ and define the following
change of variables

B (0, 1) → Ωt, (x1, x2) −→ (ϕ (t)x1, ϕ (t)x2) = (x′
1, x

′
2) .

Set v (x1, x2) = u (x′
1, x

′
2), then if v ∈ H2m (B (0, 1)), u belongs toH2m (Ωt). For j = 1, 2,

we have∂l
xj
v
2

L2(B(0,1))
=


B(0,1)


∂l

xj
v
2

(x1, x2) dx1dx2

=

Ωt


∂l

x′
j
u
2

(x′
1, x

′
2)ϕ

2l (t)
1

ϕ2 (t)
dx′

1dx
′
2

= ϕ2l−2 (t)

Ωt


∂l

x′
j
u
2

(x′
1, x

′
2) dx

′
1dx

′
2

= ϕ2l−2 (t)
∂l

x′
j
u
2

L2(Ωt)

where l ∈ {0, 1, . . . , 2m − 1}. On the other hand, we have

∥Av∥2
L2(B(0,1)) =


B(0,1)


(−1)m

2
j=1

∂2m
xj
v (x1, x2)

2

dx1dx2

=

Ωt


2

j=1

ϕ2m (t) ∂2m
x′

j
u

2

(x′
1, x

′
2)

1
ϕ2 (t)

dx′
1dx

′
2



170 A. Kheloufi, B.-K. Sadallah

= ϕ4m−2 (t)

Ωt


2

j=1

∂2m
x′

j
u

2

(x′
1, x

′
2) dx

′
1dx

′
2

= ϕ4m−2 (t) ∥Au∥2
L2(Ωt)

.

Using the inequality∂l
xj
v
2

L2(B(0,1))
≤ C ∥Av∥2

L2(B(0,1))

of Lemma 2.1, we obtain the desired inequality∂l
x′

j
u
2

L2(Ωt)
≤ Cϕ2(2m−l) (t) ∥Au∥2

L2(Ωt)
. �

Remark 2.2. In Lemma 2.2 we can replace ∥.∥L2 by ∥.∥L2
ω

.

3. PROOF OF THEOREM 1.1

3.1. Case of a truncated domain Qn

In this subsection, we replace Q by Qn, n ∈ N∗ and 1
n < T :

Qn =


(t, x1, x2) ∈ Q :
1
n
< t < T


.

Theorem 3.1. For each n ∈ N∗ such that 1
n < T , the problem

∂tun + (−1)m
2

j=1

∂2m
xj
un = fn ∈ L2

ω (Qn) ,

∂k
xj
un


∂QnrΓT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2,
(3.1)

where fn = f |Qn
admits a unique solution un ∈ H1,2m

ω (Qn).

Proof of Theorem 3.1. The change of variables

(t, x1, x2) → (t, y1, y2) =

t,

x1

ϕ (t)
,
x2

ϕ (t)


transformsQn into the cylinder Pn = ] 1

n , T [×B (0, 1), whereB (0, 1) is the unit disk of R2.
Putting un (t, x1, x2) = vn (t, y1, y2) and fn (t, x1, x2) = gn (t, y1, y2), then Problem (3.1)
is transformed, in Pn into the following variable-coefficient parabolic problem

∂tvn +
(−1)m

ϕ2m (t)

2
j=1

∂2m
yj
vn +

ϕ′ (t)
ϕ (t)

2
j=1

yj∂yj
vn = gn

∂k
yj
vn


∂PnrΣT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2
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where ΣT is the part of the boundary of Pn where t = T . The above change of variables
conserves the spaces L2

ω and H1,2m
ω because (−1)m

ϕ2m(t) and ϕ′(t)
ϕ(t) are bounded functions when

t ∈ ] 1
n , T [. In other words

fn ∈ L2
ω (Qn) ⇐⇒ gn ∈ L2

ω (Pn) , un ∈ H1,2m
ω (Qn) ⇐⇒ vn ∈ H1,2m

ω (Pn) .

Proposition 3.1. For each n ∈ N∗ such that 1
n < T , the following operator is compact

ϕ′ (t)
ϕ (t)

2
j=1

yj∂yj
: H1,2m

0,ω (Pn) −→ L2
ω (Pn) .

Proof. Pn has the “horn property” of Besov (see [3]). So, for j = 1, 2

∂yj
: H1,2m

0,ω (Pn) −→ H
1− 1

2m ,2m−1
ω (Pn) , v −→ ∂yj

v,

is continuous. Since Pn is bounded, the canonical injection is compact from

H
1− 1

2m ,2m−1
ω (Pn) into L2

ω (Pn) (see for instance [3]), where

H
1− 1

2m ,2m−1
ω (Pn) = L2


1
n
, T ;H2m−1 (B (0, 1))


∩ H1− 1

2m


1
n
, T ;L2 (B (0, 1))


.

For the complete definitions of the Hr,s Hilbertian Sobolev spaces, see for instance [12].
Consider the composition

∂yj
: H1,2m

0,ω (Pn) → H
1− 1

2m ,2m−1
ω (Pn) → L2

ω (Pn) , v → ∂yj
v → ∂yj

v,

then ∂yj is a compact operator fromH1,2m
0,ω (Pn) into L2

ω (Pn). Since ϕ′(t)
ϕ(t) is a bounded func-

tion for 1
n < t < T , the operators ϕ′(t)yj

ϕ(t) ∂yj
, j = 1, 2 are also compact from H1,2m

0,ω (Pn)
into L2

ω (Pn). Consequently,

ϕ′ (t)
ϕ (t)

N
j=1

yj∂yj

is compact from H1,2m
0,ω (Pn) into L2

ω (Pn). �

So, thanks to Proposition 3.1, to complete the proof of Theorem 3.1, it is sufficient to show
that the operator

∂t +
(−1)m

ϕ2m (t)

N
j=1

∂2m
yj

is an isomorphism from H1,2m
0,ω (Pn) into L2

ω (Pn).
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Lemma 3.1. For each n ∈ N∗ such that 1
n < T , the operator

∂t +
(−1)m

ϕ2m (t)

2
j=1

∂2m
yj

is an isomorphism from H1,2m
0,ω (Pn) into L2

ω (Pn).

Proof. Thanks to Remark 1.1, the problem
∂tvn +

(−1)m

ϕ2m (t)

2
j=1

∂2m
yj
vn = gn

∂k
yj
vn


∂PnrΣT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2,

is equivalent to the following problem∂tvn +
(−1)m

ϕ2m (t)

2
j=1

∂2m
yj
vn = gn

∂k
ν vn


∂PnrΣT

= 0, k = 0, . . . ,m − 1.

Since the coefficient 1
ϕ2m(t) is bounded in Pn, the optimal regularity is given by Ladyzhen-

skaya, Solonnikov and Ural’tseva [11]. �

We shall need the following result in order to justify the calculus of this section.

Lemma 3.2. For each n ∈ N∗ such that 1
n < T , the space

v ∈ H2m (Pn) : ∂k
xj
v

∂pPn

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2


is dense in the space
v ∈ H1,2m (Pn) : ∂k

xj
v

∂pPn

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2


.

Here, ∂pPn is the parabolic boundary of Pn and H2m stands for the usual Sobolev space
defined, for instance, in Lions–Magenes [12].

The proof of the above lemma may be found in [12].

Remark 3.1. In Lemma 3.2, we can replace Pn by Qn with the help of the change of
variables defined above.

3.2. Case of a “small” conical domain

Now, we return to the conical domain Q and we suppose that the function ϕ satisfies
conditions (1.1) and (1.2).

For each n ∈ N∗ such that 1
n < T , we denote fn = f |Qn

and un ∈ H1,2m
ω (Qn) the

solution of Problem (1.3) in Qn. Such a solution exists by Theorem 3.1.
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Proposition 3.2. For T small enough, there exists a constant K1 independent of n such that

∥un∥H1,2m
ω (Qn) ≤ K1 ∥fn∥L2

ω(Qn) ≤ K1 ∥f∥L2
ω(Q) .

Remark 3.2. Let ϵ > 0 be a real number which we will choose small enough. The hypothesis
(1.2) implies the existence of a real number T > 0 small enough such that

∀t ∈ (0, T ) , |ϕ′ (t)ϕm(t)| ≤ ϵ. (3.2)

In order to prove Proposition 3.2, we need the following result which is a consequence of
Lemma 2.2 and Grisvard–Looss [7, Theorem 2.2].

Lemma 3.3. There exists a constant C > 0 independent of n such that
|α|=2m

∥∂αun∥2
L2

ω(Qn) ≤ C ∥Aun∥2
L2

ω(Qn) .

Proof of Proposition 3.2. Let us denote the inner product in L2
ω (Qn) by ⟨., .⟩, then we have

∥fn∥2
L2

ω(Qn) = ⟨∂tun + Aun, ∂tun + Aun⟩

= ∥∂tun∥2
L2

ω(Qn) + ∥Aun∥2
L2

ω(Qn) + 2⟨∂tun, Aun⟩.

Estimation of 2⟨∂tun, Aun⟩: We have

∂tun.Aun =
2

j=1


m−1
k=0

∂xj


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+m +

1
2
∂t


∂m

xj
un

2


.

Then

2⟨∂tun, Aun⟩ = 2


Qn

∂tun.Aun.ω (t) dtdx1dx2

= 2


Qn

2
j=1

m−1
k=0

∂xj


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+m

.ω (t) dtdx1dx2

+


Qn

∂t

2
j=1


∂m

xj
un

2

.ω (t) dtdx1dx2

= 2


∂Qn

2
j=1

m−1
k=0


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+m

νxj
.ω (t) dσ

+


∂Qn

2
j=1


∂m

xj
un

2

νt.ω (t) dσ −


Qn

2
j=1


∂m

xj
un

2

.ω′ (t) dtdx1dx2

with νt, νx1 , νx2 are the components of the unit outward normal vector at ∂Qn. We shall
rewrite the boundary integral making use of the boundary conditions. On the part of the
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boundary of Qn where t = 1
n , we have ∂k

xj
un = 0, k = 0, . . . ,m − 1; j = 1, 2 and conse-

quently the corresponding boundary integral vanishes. On the part of the boundary where t =
T , we have νxj

= 0, j = 1, 2 and νt = 1. Accordingly, the corresponding boundary integral
ΓT

2
j=1


∂m

xj
un

2

(T, x1, x2) .ω (T ) dx1dx2

is nonnegative. On the part Γ1 of ∂Qn defined by

Γ1 =


(t, x1, x2) :

x2

1 + x2
2 = ϕ (t)


,

we have

νt =
−ϕ′ (t)

1 + (ϕ′)2 (t)
,

νx1 =
cos θ

1 + (ϕ′)2 (t)
,

νx2 =
sin θ

1 + (ϕ′)2 (t)
,

and

∂k
xj
un(t, ϕ (t) cos θ, ϕ (t) sin θ) = 0, k = 0, . . . ,m − 1; j = 1, 2.

Let us denote

I = 2

Γ1

2
j=1

m−1
k=0


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+m

νxj
.ω (t) dσ.

We have

I = 2

Γ1

2
j=1


∂tun.∂

2m−1
xj

un


(−1)m

νxj .ω (t) dσ

+ 2

Γ1

2
j=1

m−2
k=1


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+m

νxj .ω (t) dσ

− 2

Γ1

2
j=1


∂m−1

xj
∂tun.∂

m
xj
un


νxj

.ω (t) dσ

= I0 + I1 + Im−1.

(a) Estimation of I0 = 2

Γ1

2
j=1


∂tun.∂

2m−1
xj

un


(−1)m

νxj
.ω (t) dσ:

We have

un (t, ϕ (t) cos θ, ϕ (t) sin θ) = 0.
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Differentiating with respect to t, we obtain

∂tun = −ϕ′ (t) (cos θ.∂x1un + sin θ.∂x2un) = 0.

So, the boundary integral I0 vanishes.
(b) Estimation of I1 = 2


Γ1

2
j=1

m−2
k=1


∂k

xj
∂tun.∂

2m−k−1
xj

un


(−1)k+mνxj

.ω(t)dσ:
We have

∂k
xj
un (t, ϕ (t) cos θ, ϕ (t) sin θ) = 0, k = 1, . . . ,m − 2; j = 1, 2.

Differentiating with respect to t, we obtain

∂t∂
k
x1
un = −ϕ′ (t)


cos θ.∂k+1

x1
un + sin θ.∂x2∂

k
x1
un


, k = 1, . . . ,m − 2

and

∂t∂
k
x2
un = −ϕ′ (t)


cos θ.∂x1∂

k
x2
un + sin θ.∂k+1

x2
un


, k = 1, . . . ,m − 2.

The Dirichlet boundary conditions on Γ1 lead to

∂t∂
k
x1
un = −ϕ′ (t) sin θ.∂x2∂

k
x1
un, k = 1, . . . ,m − 2

and

∂t∂
k
x2
un = −ϕ′ (t) cos θ.∂x1∂

k
x2
un, k = 1, . . . ,m − 2.

Now, differentiating the formula

∂k
xj
un (t, ϕ (t) cos θ, ϕ (t) sin θ) = 0, k = 1, . . . ,m − 2; j = 1, 2

with respect to θ, we obtain

sin θ.∂k+1
x1

un = cos θ.∂x2∂
k
x1
un, k = 1, . . . ,m − 2

and

cos θ.∂k+1
x2

un = sin θ.∂x1∂
k
x2
un, k = 1, . . . ,m − 2.

The Dirichlet boundary conditions on Γ1 lead to

∂x1∂
k
x2
un = ∂x2∂

k
x1
un = 0, k = 1, . . . ,m − 2

and consequently

∂t∂
k
x1
un = ∂t∂

k
x2
un = 0, k = 1, . . . ,m − 2.

So, the boundary integral I1 vanishes.

(c) Estimation of Im−1 = −2

Γ1

2
j=1


∂m−1

xj
∂tun.∂

m
xj
un


νxj .ω (t) dσ

We have

∂m−1
xj

un (t, ϕ (t) cos θ, ϕ (t) sin θ) = 0, j = 1, 2.

Differentiating with respect to t, we obtain

∂t∂
m−1
x1

un = −ϕ′ (t)


cos θ.∂m
x1
un + sin θ.∂x2∂

m−1
x1

un


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and

∂t∂
m−1
x2

un = −ϕ′ (t)

cos θ.∂x1∂

m−1
x2

un + sin θ.∂m
x2
un


.

Differentiating with respect to θ, we obtain

cos θ.∂x2∂
m−1
x1

un = sin θ.∂m
x1
un

sin θ.∂x1∂
m−1
x2

un = cos θ.∂m
x2
un.

Taking into account these relationships we deduce

Im−1

= 2

 2π

0

 T

1
n


cos2 θ.∂m

x1un + sin θ cos θ.∂x1∂m−1
x2 un


∂m

x1unϕ′ (t) ϕ (t) .ω (t) dtdθ

+2

 2π

0

 T

1
n


cos θ sin θ.∂x2∂m−1

x1 un + sin2 θ.∂m
x2un


∂m

x2unϕ′ (t) ϕ (t) .ω (t) dtdθ

= 2

 2π

0

 T

1
n


∂m

x1un
2

+

∂m

x2un
2

ϕ′ (t) ϕ (t) .ω (t) dtdθ.

Finally

2⟨∂tun, Aun⟩ =
 2π

0

 T

1
n


2

j=1


∂m

xj
un

2

ϕ′ (t)ϕ (t) .ω (t) dtdθ

+

ΓT


2

j=1


∂m

xj
un

2


(T, x1, x2) .ω (T ) dx1dx2

−


Qn


2

j=1


∂m

xj
un

2

.ω′ (t) dtdx1dx2. (3.3)

Remark 3.3. Observe that the integrals
ΓT


2

j=1


∂m

xj
un

2


(T, x1, x2) .ω (T ) dx1dx2

and

−


Qn


2

j=1


∂m

xj
un

2

.ω′ (t) dtdx1dx2,

which appear in the last formula are nonnegative thanks to the assumptions (1.4) and (1.5) on
the weight function ω. This is a good sign for our estimate because we can deduce immedi-
ately

∥fn∥2
L2

ω(Qn) ≥ ∥∂tun∥2
L2

ω(Qn) + ∥Aun∥2
L2

ω(Qn)

+
 2π

0

 T

1
n


2

j=1


∂m

xj
un

2

ϕ′ (t)ϕ (t) .ω (t) dtdθ.
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So, if ϕ is an increasing function in the interval ( 1
n , T ), then 2π

0

 T

1
n


2

j=1


∂m

xj
un

2

ϕ′ (t)ϕ (t) .ω (t) dtdθ ≥ 0.

Consequently,

∥fn∥2
L2

ω(Qn) ≥ ∥∂tun∥2
L2

ω(Qn) + ∥Aun∥2
L2

ω(Qn) . (3.4)

But, thanks to Lemma 2.2 and since ϕ is bounded in (0, T ), there exists a constant C ′ > 0
such that∂l

xj
un

2

L2
ω(Qn)

≤ C ′ ∥Aun∥2
L2

ω(Qn) , l = 0, 1, . . . , 2m − 1; j = 1, 2.

Taking into account Lemma 3.3 and estimate (3.4), this proves the desired estimate of Propo-
sition 3.2.

So, it remains to establish the estimate of Proposition 3.2 under the hypothesis (1.2). For
this purpose, we need the following lemma

Lemma 3.4. One has

2⟨∂tun, Aun⟩ = 2


Qn

ϕ′

ϕ


2

j=1

xj∂
m
xj
un


Aun.ω (t) dtdx1dx2

+

ΓT

2
j=1


∂m

xj
un

2

(T, x1, x2) .ω (T ) dx1dx2.

Proof. This result can be obtained by following step by step the proof of [9, Lemma 3.4]. �

Now, we continue the proof of Proposition 3.2. We have


Qn

ϕ′

ϕ


2

j=1

xj∂
m
xj
un


Aun.ω (t) dtdx1dx2


≤ ∥Aun∥L2

ω(Qn)

2
j=1

ϕ′

ϕ
xj∂

m
xj
un


L2

ω(Qn)

,

but Lemma 2.2 yields for j = 1, 2ϕ′

ϕ
xj∂

m
xj
un

2

L2
ω(Qn)

=
 T

1
n

ϕ′2 (t)

Ωt


xj

ϕ (t)

2 
∂m

xj
un

2

.ω (t) dtdx1dx2

≤
 T

1
n

ϕ′2 (t)

Ωt


∂m

xj
un

2

.ω (t) dtdx1dx2

≤ C2

 T

1
n

(ϕm (t)ϕ′ (t))2

Ωt

(Aun)2 .ω (t) dtdx1dx2

≤ C2ϵ2 ∥Aun∥2
L2

ω(Qn) ,
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since (ϕm (t)ϕ′ (t)) ≤ ϵ thanks to the condition (3.2). Then


Qn

ϕ′

ϕ


2

j=1

xj∂
m
xj
un


Aun.ω (t) dtdx1dx2

 ≤ 2Cϵ ∥Aun∥2
L2

ω(Qn) .

Therefore, Lemma 3.4 shows that

|2⟨∂tun, Aun⟩| ≥ −2




Qn

ϕ′

ϕ


2

j=1

xj∂
m
xj
un


Aun.ω (t) dtdx1dx2


+

ΓT

2
j=1


∂m

xj
un

2

(T, x1, x2) .ω (T ) dx1dx2.

≥ −4Cϵ ∥Aun∥2
L2

ω(Qn) .

Hence

∥fn∥2
L2

ω(Qn) = ∥∂tun∥2
L2

ω(Qn) + ∥Aun∥2
L2

ω(Qn) + 2⟨∂tun, Aun⟩

≥ ∥∂tun∥2
L2

ω(Qn) + (1 − 4Cϵ) ∥Aun∥2
L2

ω(Qn) .

Then, it is sufficient to choose ϵ such that 1 − 4Cϵ > 0 to get a constant K0 > 0 independent
of n such that

∥fn∥L2
ω(Qn) ≥ K0 ∥un∥H1,2m

ω (Qn) ,

and since

∥fn∥L2
ω(Qn) ≤ ∥f∥L2

ω(Qn) ,

there exists a constant K1 > 0, independent of n satisfying

∥un∥H1,2m
ω (Qn) ≤ K1 ∥fn∥L2

ω(Qn) ≤ K1 ∥f∥L2
ω(Q) .

This completes the proof of Proposition 3.2.

3.3. Passage to the limit

Choose a sequence (Qn)n∈N∗ of the domains defined above (see Section 3.1), such that
Qn ⊆ Q. Then, we have Qn → Q, as n → ∞. Consider the solution un ∈ H1,2m

ω (Qn) of
the Cauchy–Dirichlet problem

∂tun + (−1)m
2

j=1

∂2m
xj
un = fn ∈ L2

ω (Qn) ,

∂k
xj
un


∂QnrΓT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2,

where fn = f |Qn
. Such a solution un exists by Theorem 3.1. Let un be the 0-extension of

un toQ. In virtue of Proposition 3.2 for T small enough, we know that there exists a constant
C such that

∥un∥L2
ω(Q) +

∂tun


L2

ω(Q)
+


1≤|α|≤2m

∂αun


L2

ω(Q)
≤ C ∥f∥L2

ω(Q) .
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This means that un, ∂tun, ∂αun for 1 ≤ |α| ≤ 2m are bounded functions in L2
ω (Q). So, for

a suitable increasing sequence of integers nk, k = 1, 2, . . . , there exist functions

u, v and vα 1 ≤ |α| ≤ 2m

in L2
ω (Q) such that

unk
⇀ u weakly in L2

ω (Q) , k → ∞
∂tunk

⇀ v weakly in L2
ω (Q) , k → ∞

∂αunk
⇀ vα weakly in L2

ω (Q) , k → ∞,

1 ≤ |α| ≤ 2m. Clearly,

v = ∂tu, vα = ∂αu, 1 ≤ |α| ≤ 2m

in the sense of distributions in Q and so in L2
ω (Q). So, u ∈ H1,2m

ω (Q) and

∂tu+ (−1)m
2

j=1

∂2m
xj
u = f in Q.

On the other hand, the solution u satisfies the boundary conditions

∂k
xj
un


∂QnrΓT

= 0, k = 0, 1, . . . ,m − 1; j = 1, 2,

since

∀n ∈ N∗, u|Qn
= un.

This proves the existence of a solution to Problem (1.3). This ends the proof of Theorem 1.1
in the case of T small enough.

3.4. The general case

Assume that Q satisfies (1.1). In the case where T is not small enough, we set Q =
D1 ∪ D2 ∪ ΓT1 where

D1 = {(t, x1, x2) ∈ Q : 0 < t < T1}
D2 = {(t, x1, x2) ∈ Q : T1 < t < T}

ΓT1 =


(T1, x1, x2) ∈ R3 : 0 ≤

x2

1 + x2
2 ≤ ϕ (T1)


with T1 small enough. In the sequel, f stands for an arbitrary fixed element of L2

ω (Q) and
fi = f |Di

, i = 1, 2. We know that (see Section 3.3) there exists a unique solution w1 ∈
H1,2m

ω (D1) of the problem
∂tw1 + (−1)m

2
j=1

∂2m
xj
w1 = f1 ∈ L2

ω (D1) ,

∂k
xj
w1


∂D1rΓT1

= 0, k = 0, . . . ,m − 1; j = 1, 2.
(3.5)
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Hereafter, we denote the trace w1|ΓT1
by ψ which is in the Sobolev space Hm

ω (ΓT1) because

w1 ∈ H1,2m
ω (D1) (see [12]). Now, consider the following problem in D2
∂tw2 + (−1)m

2
j=1

∂2m
xj
w2 = f2 ∈ L2

ω (D2) ,

w2|ΓT1
= ψ,

∂k
xj
w2


∂D2r(ΓT1 ∪ΓT )

= 0, k = 0, . . . ,m − 1; j = 1, 2.

(3.6)

We use the following result, which is a consequence of [12, Theorem 4.3, Vol. 2], to solve
Problem (3.6).

Proposition 3.3. Let R be the cylinder ]0, T [ × B (0, 1) whereB (0, 1) is the unit disk of R2,
f ∈ L2

ω (R) and u0 ∈ Hm
ω (γ0). Then, the problem

∂tu+ (−1)m
2

j=1

∂2m
xj
u = f in R,

u|γ0
= u0,

∂k
xj
u

γ1

= 0, k = 0, . . . ,m − 1; j = 1, 2,

where γ0 = {0} × B (0, 1), γ1 = ]0, T [ × ∂B (0, 1), admits a (unique) solution
u ∈ H1,2m

ω (R) if and only if the following compatibility conditions are fulfilled

∂k
xj
u0


∂γ0

= 0, k = 0, . . . ,m − 1; j = 1, 2.

Thanks to the transformation

(t, x1, x2) −→ (t, y1, y2) = (t, ϕ (t)x1, ϕ (t)x2) ,

we deduce the following result:

Proposition 3.4. Problem (3.6) admits a (unique) solution w2 ∈ H1,2m
ω (D2) if and only if

the following compatibility conditions are fulfilled

∂k
xj
ψ

∂ΓT1

= 0, k = 0, . . . ,m − 1; j = 1, 2.

Remark 3.4. We can observe that the boundary conditions of Problems (3.5) and (3.6) yield

w1|ΓT1
= w2|ΓT1

and ∂k
xj
wi


ΓT1

∈ H
1− 1

2m
ω (ΓT1); i, j = 1, 2. Then the compatibility conditions

∂k
xj
ψ

∂ΓT1

= 0, k = 0, . . . ,m − 1; j = 1, 2

are satisfied since w1|ΓT1
= ψ.
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Now, define the function u in Q by

u :=

w1 in D1

w2 in D2

where w1 and w2 are the solutions of Problem (3.5) and Problem (3.6) respectively. Observe
that w1|ΓT1

= w2|ΓT1
, see Remark 3.4, so

∂k
xj
w1


ΓT1

= ∂k
xj
w2


ΓT1

, k = 0, . . . ,m − 1; j = 1, 2.

This implies that u ∈ H1,2m
ω (Q) and u is the (unique) solution of Problem (1.3) for an

arbitrary T . This ends the proof of Theorem 1.1.
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weighted Hölder spaces, Differ. Equ. 1 (49) (2013) 79–87.
[6] V.A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-

type criterion by blow-up approach, Nonlinear Differential Equations Appl. 5 (16) (2009) 597–655.
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