Resolution of a high-order parabolic equation in conical time-dependent domains of \mathbb{R}^{3}

Arezki Kheloufi ${ }^{\text {a,b,*, }}$, Boubaker-Khaled SadallaH ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire de Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, 6000 Béjaia, Algeria
${ }^{\mathrm{b}}$ Lab. E.D.P.N.L. and Hist. of Maths, Ecole Normale Supérieure, 16050 Kouba, Algiers, Algeria
${ }^{c}$ Department of Mathematics, Ecole Normale Supérieure, 16050 Kouba, Algiers, Algeria

Received 11 December 2014; received in revised form 3 May 2015; accepted 10 June 2015
Available online 18 June 2015

Abstract

New results on the existence, uniqueness and maximal regularity of a solution are given for a two-space dimensional high-order parabolic equation set in conical time-dependent domains. The study is performed in the framework of anisotropic weighted Sobolev spaces. Our method is based on the technique of decomposition of domains.

Keywords: High-order parabolic equations; Conical domains; Anisotropic weighted Sobolev spaces

2010 Mathematics Subject Classification: 35K05; 35K55

1. Introduction

Let Q be an open set of \mathbb{R}^{3} defined by

$$
Q=\left\{\left(t, x_{1}, x_{2}\right) \in \mathbb{R}^{3}:\left(x_{1}, x_{2}\right) \in \Omega_{t}, 0<t<T\right\}
$$

where T is a finite positive number and for a fixed t in the interval $] 0, T\left[, \Omega_{t}\right.$ is a bounded domain of \mathbb{R}^{2} defined by

$$
\Omega_{t}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0 \leq \sqrt{x_{1}^{2}+x_{2}^{2}}<\varphi(t)\right\}
$$

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2015.06.002
1319-5166 © 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Here φ is a continuous real-valued function defined on $[0, T]$, Lipschitz continuous on $[0, T]$ and such that

$$
\varphi(t)>0
$$

for every $t \in] 0, T]$. We assume that

$$
\begin{align*}
& \varphi(0)=0 \tag{1.1}\\
& \varphi^{\prime}(t) \varphi^{m}(t) \rightarrow 0 \quad \text { as } t \rightarrow 0, m \in \mathbb{N}^{*} \tag{1.2}
\end{align*}
$$

In Q, consider the boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=f \in L_{\omega}^{2}(Q) \tag{1.3}\\
\left.\partial_{x_{j}}^{k} u\right|_{\partial Q \backslash \Gamma_{T}}=0, \quad k=0, \ldots, m-1 ; j=1,2,
\end{array}\right.
$$

where $m \in \mathbb{N}^{*}, \partial Q$ is the boundary of Q and Γ_{T} is the part of the boundary of Q where $t=T$. Here, $L_{\omega}^{2}(Q)$ is the space of square-integrable functions on Q with the measure $\omega d t d x_{1} d x_{2}$, where the weight ω is a real-valued function defined on $[0, T]$, differentiable on $] 0, T]$, such that

$$
\begin{align*}
& \forall t \in[0, T]: \omega(t)>0, \tag{1.4}\\
& \omega \text { is a decreasing function on }] 0, T] . \tag{1.5}
\end{align*}
$$

The difficulty related to this kind of problems comes from the fact that the domain Q considered here is nonstandard since it shrinks at $t=0(\varphi(0)=0)$, which prevents the domain Q to be transformed into a regular domain without the appearance of some degenerate terms in the parabolic equation, see for example Sadallah [15].

In this work, we will prove that Problem (1.3) has a solution with optimal regularity, that is a solution u belonging to the anisotropic weighted Sobolev space

$$
H_{0, \omega}^{1,2 m}(Q):=\left\{u \in H_{\omega}^{1,2 m}(Q):\left.\partial_{x_{j}}^{k} u\right|_{\partial Q \backslash \Gamma_{T}}=0, k=0, \ldots, m-1 ; j=1,2\right\}
$$

with

$$
H_{\omega}^{1,2 m}(Q)=\left\{u: \partial_{t} u, \partial^{\alpha} u \in L_{\omega}^{2}(Q),|\alpha| \leq 2 m\right\}
$$

where

$$
\alpha=\left(i_{1}, i_{2}\right) \in \mathbb{N}^{2}, \quad|\alpha|=i_{1}+i_{2}, \quad \partial^{\alpha} u=\partial_{x_{1}}^{i_{1}} \partial_{x_{2}}^{i_{2}} u
$$

The space $H_{\omega}^{1,2 m}(Q)$ is equipped with the natural norm, that is

$$
\|u\|_{H_{\omega}^{1,2 m}(Q)}=\left(\left\|\partial_{t} u\right\|_{L_{\omega}^{2}(Q)}^{2}+\sum_{|\alpha| \leq 2 m}\left\|\partial^{\alpha} u\right\|_{L_{\omega}^{2}(Q)}^{2}\right)^{1 / 2}
$$

Remark 1.1. The boundary conditions of Problem (1.3) are equivalent to

$$
\left.\partial_{\nu}^{k} u\right|_{\partial Q \backslash \Gamma_{T}}=0, \quad k=0, \ldots, m-1,
$$

where ∂_{ν} stands for the normal derivative. This equivalence can be proved, for instance, by induction. So Problem (1.3) is also equivalent to

$$
\left\{\begin{array}{l}
\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=f \in L_{\omega}^{2}(Q) \tag{1.6}\\
\left.\partial_{\nu}^{k} u\right|_{\partial Q \backslash \Gamma_{T}}=0, \quad k=0, \ldots, m-1
\end{array}\right.
$$

Observe that the number of the boundary conditions in (1.3) is $2 m$, but they are not independent, while in (1.6), there are m independent boundary conditions.

Our main result is
Theorem 1.1. Let us assume that φ satisfies condition (1.1) and the weight function ω verifies assumptions (1.4) and (1.5). Then, the $2 m$-th order parabolic operator

$$
L=\partial_{t}+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m}
$$

is an isomorphism from $H_{0, \omega}^{1,2 m}(Q)$ into $L_{\omega}^{2}(Q)$ if one of the following conditions is satisfied
(1) φ is an increasing function in a neighborhood of 0 ,
(2) φ verifies the condition (1.2).

The case $m=1$ corresponding to a second-order parabolic equation is studied in [16] and [9] both in bi-dimensional and multidimensional cases. We can find in Sadallah [15] a study of such kind of problems in the case of one space variable. Further references on the analysis of higher-order parabolic problems in non-cylindrical domains are: Baderko [1,2], Cherepova [4,5], Labbas and Sadallah [10], Galaktionov [6], Mikhailov [13,14] and Kheloufi [8].

The organization of this paper is as follows. In Section 2, first we prove a uniqueness result for Problem (1.3), then we derive some technical lemmas which will allow us to prove an energy type estimate (in a sense to be defined later). In Section 3, we divide the proof of Theorem 1.1 into four steps:
(a) Case of a truncated domain,
(b) An energy type estimate in small in time case,
(c) Passage to the limit,
(d) Case of a large in time conical type domain.

2. Preliminaries

Proposition 2.1. Under the assumptions (1.4) and (1.5) on the weight function ω, Problem (1.3) is uniquely solvable.
Proof. Let us consider $u \in H_{0, \omega}^{1,2 m}(Q)$ a solution of Problem (1.3) with a null right-hand side term. So,

$$
\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=0 \quad \text { in } Q .
$$

In addition u fulfils the boundary conditions

$$
\left.\partial_{x_{j}}^{k} u\right|_{\partial Q \backslash \Gamma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2 .
$$

Using Green's formula, we have

$$
\begin{aligned}
\int_{Q} & \left(\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u\right) u \omega(t) d t d x_{1} d x_{2} \\
= & \int_{\partial Q}\left[\frac{1}{2}|u|^{2} \nu_{t}+\sum_{j=1}^{2} \sum_{k=0}^{m-1}\left(\partial_{x_{j}}^{2 m-k-1} u \cdot \partial_{x_{j}}^{k} u\right)(-1)^{k+m} \nu_{x_{j}}\right] \omega(t) d \sigma \\
& +\int_{Q}\left(\left|\partial_{x_{1}}^{m} u\right|^{2}+\left|\partial_{x_{2}}^{m} u\right|^{2}\right) d t d x_{1} d x_{2}-\int_{Q} \frac{1}{2}|u|^{2} \omega^{\prime}(t) d t d x_{1} d x_{2}
\end{aligned}
$$

where $\nu_{t}, \nu_{x_{1}}, \nu_{x_{2}}$ are the components of the unit outward normal vector at ∂Q. Taking into account the boundary conditions, all the boundary integrals vanish except $\int_{\partial Q}|u|^{2} \omega(t) \nu_{t} d \sigma$. We have

$$
\int_{\partial Q}|u|^{2} \omega(t) \nu_{t} d \sigma=\int_{\Gamma_{T}}|u|^{2} \omega(T) d x_{1} d x_{2}
$$

Then

$$
\begin{aligned}
\int_{Q} & \left(\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u\right) u \omega(t) d t d x_{1} d x_{2} \\
\quad= & \int_{\Gamma_{T}} \frac{1}{2}|u|^{2} \omega(T) d x_{1} d x_{2}-\int_{Q} \frac{1}{2}|u|^{2} \omega^{\prime}(t) d t d x_{1} d x_{2} \\
& \quad+\int_{Q}\left(\left|\partial_{x_{1}}^{m} u\right|^{2}+\left|\partial_{x_{2}}^{m} u\right|^{2}\right) d t d x_{1} d x_{2}
\end{aligned}
$$

Consequently

$$
\int_{Q}\left(\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u\right) u \omega(t) d t d x_{1} d x_{2}=0
$$

yields

$$
\int_{Q}\left(\left|\partial_{x_{1}}^{m} u\right|^{2}+\left|\partial_{x_{2}}^{m} u\right|^{2}\right) d t d x_{1} d x_{2}=0
$$

because

$$
\int_{\Gamma_{T}} \frac{1}{2}|u|^{2} \omega(t) d x_{1} d x_{2}-\int_{Q} \frac{1}{2}|u|^{2} \omega^{\prime}(t) d t d x_{1} d x_{2} \geq 0
$$

thanks to the conditions (1.4) and (1.5). This implies that $\left|\partial_{x_{1}}^{m} u\right|^{2}+\left|\partial_{x_{2}}^{m} u\right|^{2}=0$ and consequently $\partial_{x_{1}}^{2 m} u=\partial_{x_{2}}^{2 m} u=0$. Then, the hypothesis $\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=0$ gives $\partial_{t} u=0$. Thus, u is constant. The boundary conditions imply that $u=0$ in Q. This proves the uniqueness of the solution of Problem (1.3).

Remark 2.1. In the sequel, we will be interested only in the question of the existence of the solution of Problem (1.3).

The following result is well known (see, for example, [12])
Lemma 2.1. Let $B(0,1)$ be the unit disk of \mathbb{R}^{2}. Then, the operator

$$
\begin{aligned}
& \mathcal{A}: H^{2 m}(B(0,1)) \cap H_{0}^{m}(B(0,1)) \longrightarrow L^{2}(B(0,1)), \\
& v \mapsto \mathcal{A} v=(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} v
\end{aligned}
$$

is an isomorphism. Moreover, there exists a constant $C>0$ such that

$$
\|v\|_{H^{2 m}(B(0,1))} \leq C\|\mathcal{A} v\|_{L^{2}(B(0,1))}, \quad \forall v \in H^{2 m}(B(0,1)) \cap H_{0}^{m}(B(0,1))
$$

In the above lemma, $H^{2 m}$ and H_{0}^{m} are the usual Sobolev spaces defined, for instance, in Lions-Magenes [12]. In Section 3, we will need the following result.

Lemma 2.2. For a fixed $t \in] 0, T$ [, there exists a constant $C>0$ such that for each $u \in$ $H^{2 m}\left(\Omega_{t}\right)$, we have

$$
\left\|\partial_{x_{j}}^{l} u\right\|_{L^{2}\left(\Omega_{t}\right)}^{2} \leq C \varphi^{2(2 m-l)}(t)\|\mathcal{A} u\|_{L^{2}\left(\Omega_{t}\right)}^{2}, \quad l=0,1, \ldots, 2 m-1 ; j=1,2 .
$$

Proof. It is a direct consequence of Lemma 2.1. Indeed, let $t \in] 0, T[$ and define the following change of variables

$$
B(0,1) \rightarrow \Omega_{t}, \quad\left(x_{1}, x_{2}\right) \longmapsto\left(\varphi(t) x_{1}, \varphi(t) x_{2}\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) .
$$

Set $v\left(x_{1}, x_{2}\right)=u\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then if $v \in H^{2 m}(B(0,1)), u$ belongs to $H^{2 m}\left(\Omega_{t}\right)$. For $j=1,2$, we have

$$
\begin{aligned}
\left\|\partial_{x_{j}}^{l} v\right\|_{L^{2}(B(0,1))}^{2} & =\int_{B(0,1)}\left(\partial_{x_{j}}^{l} v\right)^{2}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{\Omega_{t}}\left(\partial_{x_{j}^{\prime}}^{l} u\right)^{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \varphi^{2 l}(t) \frac{1}{\varphi^{2}(t)} d x_{1}^{\prime} d x_{2}^{\prime} \\
& =\varphi^{2 l-2}(t) \int_{\Omega_{t}}\left(\partial_{x_{j}^{\prime}}^{l} u\right)^{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) d x_{1}^{\prime} d x_{2}^{\prime} \\
& =\varphi^{2 l-2}(t)\left\|\partial_{x_{j}^{\prime}}^{l} u\right\|_{L^{2}\left(\Omega_{t}\right)}^{2}
\end{aligned}
$$

where $l \in\{0,1, \ldots, 2 m-1\}$. On the other hand, we have

$$
\begin{aligned}
\|\mathcal{A} v\|_{L^{2}(B(0,1))}^{2} & =\int_{B(0,1)}\left[(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} v\left(x_{1}, x_{2}\right)\right]^{2} d x_{1} d x_{2} \\
& =\int_{\Omega_{t}}\left(\sum_{j=1}^{2} \varphi^{2 m}(t) \partial_{x_{j}^{\prime}}^{2 m} u\right)^{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \frac{1}{\varphi^{2}(t)} d x_{1}^{\prime} d x_{2}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\varphi^{4 m-2}(t) \int_{\Omega_{t}}\left(\sum_{j=1}^{2} \partial_{x_{j}^{\prime}}^{2 m} u\right)^{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) d x_{1}^{\prime} d x_{2}^{\prime} \\
& =\varphi^{4 m-2}(t)\|\mathcal{A} u\|_{L^{2}\left(\Omega_{t}\right)}^{2} .
\end{aligned}
$$

Using the inequality

$$
\left\|\partial_{x_{j}}^{l} v\right\|_{L^{2}(B(0,1))}^{2} \leq C\|\mathcal{A} v\|_{L^{2}(B(0,1))}^{2}
$$

of Lemma 2.1, we obtain the desired inequality

$$
\left\|\partial_{x_{j}^{\prime}}^{l} u\right\|_{L^{2}\left(\Omega_{t}\right)}^{2} \leq C \varphi^{2(2 m-l)}(t)\|\mathcal{A} u\|_{L^{2}\left(\Omega_{t}\right)}^{2}
$$

Remark 2.2. In Lemma 2.2 we can replace $\|\cdot\|_{L^{2}}$ by $\|\cdot\|_{L_{\omega}^{2}}$.

3. Proof of Theorem 1.1

3.1. Case of a truncated domain Q_{n}

In this subsection, we replace Q by $Q_{n}, n \in \mathbb{N}^{*}$ and $\frac{1}{n}<T$:

$$
Q_{n}=\left\{\left(t, x_{1}, x_{2}\right) \in Q: \frac{1}{n}<t<T\right\} .
$$

Theorem 3.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u_{n}=f_{n} \in L_{\omega}^{2}\left(Q_{n}\right), \tag{3.1}\\
\left.\partial_{x_{j}}^{k} u_{n}\right|_{\partial Q_{n} \backslash \Gamma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2,
\end{array}\right.
$$

where $f_{n}=\left.f\right|_{Q_{n}}$ admits a unique solution $u_{n} \in H_{\omega}^{1,2 m}\left(Q_{n}\right)$.
Proof of Theorem 3.1. The change of variables

$$
\left(t, x_{1}, x_{2}\right) \quad \mapsto \quad\left(t, y_{1}, y_{2}\right)=\left(t, \frac{x_{1}}{\varphi(t)}, \frac{x_{2}}{\varphi(t)}\right)
$$

transforms Q_{n} into the cylinder $\left.P_{n}=\right] \frac{1}{n}, T\left[\times B(0,1)\right.$, where $B(0,1)$ is the unit disk of \mathbb{R}^{2}. Putting $u_{n}\left(t, x_{1}, x_{2}\right)=v_{n}\left(t, y_{1}, y_{2}\right)$ and $f_{n}\left(t, x_{1}, x_{2}\right)=g_{n}\left(t, y_{1}, y_{2}\right)$, then Problem (3.1) is transformed, in P_{n} into the following variable-coefficient parabolic problem

$$
\left\{\begin{array}{l}
\partial_{t} v_{n}+\frac{(-1)^{m}}{\varphi^{2 m}(t)} \sum_{j=1}^{2} \partial_{y_{j}}^{2 m} v_{n}+\frac{\varphi^{\prime}(t)}{\varphi(t)} \sum_{j=1}^{2} y_{j} \partial_{y_{j}} v_{n}=g_{n} \\
\left.\partial_{y_{j}}^{k} v_{n}\right|_{\partial P_{n} \backslash \Sigma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2
\end{array}\right.
$$

where Σ_{T} is the part of the boundary of P_{n} where $t=T$. The above change of variables conserves the spaces L_{ω}^{2} and $H_{\omega}^{1,2 m}$ because $\frac{(-1)^{m}}{\varphi^{2 m}(t)}$ and $\frac{\varphi^{\prime}(t)}{\varphi(t)}$ are bounded functions when $t \in] \frac{1}{n}, T[$. In other words

$$
f_{n} \in L_{\omega}^{2}\left(Q_{n}\right) \Longleftrightarrow g_{n} \in L_{\omega}^{2}\left(P_{n}\right), \quad u_{n} \in H_{\omega}^{1,2 m}\left(Q_{n}\right) \Longleftrightarrow v_{n} \in H_{\omega}^{1,2 m}\left(P_{n}\right)
$$

Proposition 3.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the following operator is compact

$$
\frac{\varphi^{\prime}(t)}{\varphi(t)} \sum_{j=1}^{2} y_{j} \partial_{y_{j}}: H_{0, \omega}^{1,2 m}\left(P_{n}\right) \longrightarrow L_{\omega}^{2}\left(P_{n}\right)
$$

Proof. P_{n} has the "horn property" of Besov (see [3]). So, for $j=1,2$

$$
\partial_{y_{j}}: H_{0, \omega}^{1,2 m}\left(P_{n}\right) \longrightarrow H_{\omega}^{1-\frac{1}{2 m}, 2 m-1}\left(P_{n}\right), \quad v \longmapsto \partial_{y_{j}} v,
$$

is continuous. Since P_{n} is bounded, the canonical injection is compact from $H_{\omega}^{1-\frac{1}{2 m}, 2 m-1}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$ (see for instance [3]), where

$$
\begin{aligned}
H_{\omega}^{1-\frac{1}{2 m}, 2 m-1}\left(P_{n}\right) & =L^{2}\left(\frac{1}{n}, T ; H^{2 m-1}(B(0,1))\right) \\
& \cap H^{1-\frac{1}{2 m}}\left(\frac{1}{n}, T ; L^{2}(B(0,1))\right) .
\end{aligned}
$$

For the complete definitions of the $H^{r, s}$ Hilbertian Sobolev spaces, see for instance [12]. Consider the composition

$$
\partial_{y_{j}}: H_{0, \omega}^{1,2 m}\left(P_{n}\right) \rightarrow H_{\omega}^{1-\frac{1}{2 m}, 2 m-1}\left(P_{n}\right) \rightarrow L_{\omega}^{2}\left(P_{n}\right), \quad v \mapsto \partial_{y_{j}} v \mapsto \partial_{y_{j}} v
$$

then $\partial_{y_{j}}$ is a compact operator from $H_{0, \omega}^{1,2 m}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$. Since $\frac{\varphi^{\prime}(t)}{\varphi(t)}$ is a bounded function for $\frac{1}{n}<t<T$, the operators $\frac{\varphi^{\prime}(t) y_{j}}{\varphi(t)} \partial_{y_{j}}, j=1,2$ are also compact from $H_{0, \omega}^{1,2 m}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$. Consequently,

$$
\frac{\varphi^{\prime}(t)}{\varphi(t)} \sum_{j=1}^{N} y_{j} \partial_{y_{j}}
$$

is compact from $H_{0, \omega}^{1,2 m}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$.
So, thanks to Proposition 3.1, to complete the proof of Theorem 3.1, it is sufficient to show that the operator

$$
\partial_{t}+\frac{(-1)^{m}}{\varphi^{2 m}(t)} \sum_{j=1}^{N} \partial_{y_{j}}^{2 m}
$$

is an isomorphism from $H_{0, \omega}^{1,2 m}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$.

Lemma 3.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the operator

$$
\partial_{t}+\frac{(-1)^{m}}{\varphi^{2 m}(t)} \sum_{j=1}^{2} \partial_{y_{j}}^{2 m}
$$

is an isomorphism from $H_{0, \omega}^{1,2 m}\left(P_{n}\right)$ into $L_{\omega}^{2}\left(P_{n}\right)$.
Proof. Thanks to Remark 1.1, the problem

$$
\left\{\begin{array}{l}
\partial_{t} v_{n}+\frac{(-1)^{m}}{\varphi^{2 m}(t)} \sum_{j=1}^{2} \partial_{y_{j}}^{2 m} v_{n}=g_{n} \\
\left.\partial_{y_{j}}^{k} v_{n}\right|_{\partial P_{n} \backslash \Sigma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2
\end{array}\right.
$$

is equivalent to the following problem

$$
\left\{\begin{array}{l}
\partial_{t} v_{n}+\frac{(-1)^{m}}{\varphi^{2 m}(t)} \sum_{j=1}^{2} \partial_{y_{j}}^{2 m} v_{n}=g_{n} \\
\left.\partial_{\nu}^{k} v_{n}\right|_{\partial P_{n} \backslash \Sigma_{T}}=0, \quad k=0, \ldots, m-1 .
\end{array}\right.
$$

Since the coefficient $\frac{1}{\varphi^{2 m}(t)}$ is bounded in $\overline{P_{n}}$, the optimal regularity is given by Ladyzhenskaya, Solonnikov and Ural'tseva [11].

We shall need the following result in order to justify the calculus of this section.
Lemma 3.2. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the space

$$
\left\{v \in H^{2 m}\left(P_{n}\right):\left.\partial_{x_{j}}^{k} v\right|_{\partial_{p} P_{n}}=0, k=0,1, \ldots, m-1 ; j=1,2\right\}
$$

is dense in the space

$$
\left\{v \in H^{1,2 m}\left(P_{n}\right):\left.\partial_{x_{j}}^{k} v\right|_{\partial_{p} P_{n}}=0, k=0,1, \ldots, m-1 ; j=1,2\right\}
$$

Here, $\partial_{p} P_{n}$ is the parabolic boundary of P_{n} and $H^{2 m}$ stands for the usual Sobolev space defined, for instance, in Lions-Magenes [12].

The proof of the above lemma may be found in [12].
Remark 3.1. In Lemma 3.2, we can replace P_{n} by Q_{n} with the help of the change of variables defined above.

3.2. Case of a "small" conical domain

Now, we return to the conical domain Q and we suppose that the function φ satisfies conditions (1.1) and (1.2).

For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, we denote $f_{n}=\left.f\right|_{Q_{n}}$ and $u_{n} \in H_{\omega}^{1,2 m}\left(Q_{n}\right)$ the solution of Problem (1.3) in Q_{n}. Such a solution exists by Theorem 3.1.

Proposition 3.2. For T small enough, there exists a constant K_{1} independent of n such that

$$
\left\|u_{n}\right\|_{H_{\omega}^{1,2 m}\left(Q_{n}\right)} \leq K_{1}\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)} \leq K_{1}\|f\|_{L_{\omega}^{2}(Q)}
$$

Remark 3.2. Let $\epsilon>0$ be a real number which we will choose small enough. The hypothesis (1.2) implies the existence of a real number $T>0$ small enough such that

$$
\begin{equation*}
\forall t \in(0, T), \quad\left|\varphi^{\prime}(t) \varphi^{m}(t)\right| \leq \epsilon \tag{3.2}
\end{equation*}
$$

In order to prove Proposition 3.2, we need the following result which is a consequence of Lemma 2.2 and Grisvard-Looss [7, Theorem 2.2].

Lemma 3.3. There exists a constant $C>0$ independent of n such that

$$
\sum_{|\alpha|=2 m}\left\|\partial^{\alpha} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \leq C\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}
$$

Proof of Proposition 3.2. Let us denote the inner product in $L_{\omega}^{2}\left(Q_{n}\right)$ by $\langle.,$.$\rangle , then we have$

$$
\begin{aligned}
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} & =\left\langle\partial_{t} u_{n}+\mathcal{A} u_{n}, \partial_{t} u_{n}+\mathcal{A} u_{n}\right\rangle \\
& =\left\|\partial_{t} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle
\end{aligned}
$$

Estimation of $2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle$: We have

$$
\partial_{t} u_{n} \cdot \mathcal{A} u_{n}=\sum_{j=1}^{2}\left[\sum_{k=0}^{m-1} \partial_{x_{j}}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m}+\frac{1}{2} \partial_{t}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right] .
$$

Then

$$
\begin{aligned}
& 2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle=2 \int_{Q_{n}} \partial_{t} u_{n} \cdot \mathcal{A} u_{n} \cdot \omega(t) d t d x_{1} d x_{2} \\
&= 2 \int_{Q_{n}} \sum_{j=1}^{2} \sum_{k=0}^{m-1} \partial_{x_{j}}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m} \cdot \omega(t) d t d x_{1} d x_{2} \\
&+\int_{Q_{n}} \partial_{t} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2} \cdot \omega(t) d t d x_{1} d x_{2} \\
&= 2 \int_{\partial Q_{n}} \sum_{j=1}^{2} \sum_{k=0}^{m-1}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m} \nu_{x_{j}} \cdot \omega(t) d \sigma \\
&+\int_{\partial Q_{n}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2} \nu_{t} \cdot \omega(t) d \sigma-\int_{Q_{n}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2} \cdot \omega^{\prime}(t) d t d x_{1} d x_{2}
\end{aligned}
$$

with $\nu_{t}, \nu_{x_{1}}, \nu_{x_{2}}$ are the components of the unit outward normal vector at ∂Q_{n}. We shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of Q_{n} where $t=\frac{1}{n}$, we have $\partial_{x_{j}}^{k} u_{n}=0, k=0, \ldots, m-1 ; j=1,2$ and consequently the corresponding boundary integral vanishes. On the part of the boundary where $t=$ T, we have $\nu_{x_{j}}=0, j=1,2$ and $\nu_{t}=1$. Accordingly, the corresponding boundary integral

$$
\int_{\Gamma_{T}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\left(T, x_{1}, x_{2}\right) \cdot \omega(T) d x_{1} d x_{2}
$$

is nonnegative. On the part Γ_{1} of ∂Q_{n} defined by

$$
\Gamma_{1}=\left\{\left(t, x_{1}, x_{2}\right): \sqrt{x_{1}^{2}+x_{2}^{2}}=\varphi(t)\right\}
$$

we have

$$
\begin{aligned}
& \nu_{t}=\frac{-\varphi^{\prime}(t)}{\sqrt{1+\left(\varphi^{\prime}\right)^{2}(t)}}, \\
& \nu_{x_{1}}=\frac{\cos \theta}{\sqrt{1+\left(\varphi^{\prime}\right)^{2}(t)}}, \\
& \nu_{x_{2}}=\frac{\sin \theta}{\sqrt{1+\left(\varphi^{\prime}\right)^{2}(t)}},
\end{aligned}
$$

and

$$
\partial_{x_{j}}^{k} u_{n}(t, \varphi(t) \cos \theta, \varphi(t) \sin \theta)=0, \quad k=0, \ldots, m-1 ; j=1,2 .
$$

Let us denote

$$
I=2 \int_{\Gamma_{1}} \sum_{j=1}^{2} \sum_{k=0}^{m-1}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m} \nu_{x_{j}} \cdot \omega(t) d \sigma
$$

We have

$$
\begin{aligned}
I= & 2 \int_{\Gamma_{1}} \sum_{j=1}^{2}\left(\partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-1} u_{n}\right)(-1)^{m} \nu_{x_{j}} \cdot \omega(t) d \sigma \\
& +2 \int_{\Gamma_{1}} \sum_{j=1}^{2} \sum_{k=1}^{m-2}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m} \nu_{x_{j}} \cdot \omega(t) d \sigma \\
& -2 \int_{\Gamma_{1}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m-1} \partial_{t} u_{n} \cdot \partial_{x_{j}}^{m} u_{n}\right) \nu_{x_{j}} \cdot \omega(t) d \sigma \\
= & I_{0}+I_{1}+I_{m-1} .
\end{aligned}
$$

(a) Estimation of $I_{0}=2 \int_{\Gamma_{1}} \sum_{j=1}^{2}\left(\partial_{t} u_{n} \cdot \partial_{x_{j}}^{2 m-1} u_{n}\right)(-1)^{m} \nu_{x_{j}} \cdot \omega(t) d \sigma$:

We have

$$
u_{n}(t, \varphi(t) \cos \theta, \varphi(t) \sin \theta)=0
$$

Differentiating with respect to t, we obtain

$$
\partial_{t} u_{n}=-\varphi^{\prime}(t)\left(\cos \theta \cdot \partial_{x_{1}} u_{n}+\sin \theta \cdot \partial_{x_{2}} u_{n}\right)=0
$$

So, the boundary integral I_{0} vanishes.
(b) Estimation of $I_{1}=2 \int_{\Gamma_{1}} \sum_{j=1}^{2} \sum_{k=1}^{m-2}\left(\partial_{x_{j}}^{k} \partial_{t} u_{n} . \partial_{x_{j}}^{2 m-k-1} u_{n}\right)(-1)^{k+m} \nu_{x_{j}} \cdot \omega(t) d \sigma$:

We have

$$
\partial_{x_{j}}^{k} u_{n}(t, \varphi(t) \cos \theta, \varphi(t) \sin \theta)=0, \quad k=1, \ldots, m-2 ; j=1,2 .
$$

Differentiating with respect to t, we obtain

$$
\partial_{t} \partial_{x_{1}}^{k} u_{n}=-\varphi^{\prime}(t)\left[\cos \theta . \partial_{x_{1}}^{k+1} u_{n}+\sin \theta . \partial_{x_{2}} \partial_{x_{1}}^{k} u_{n}\right], \quad k=1, \ldots, m-2
$$

and

$$
\partial_{t} \partial_{x_{2}}^{k} u_{n}=-\varphi^{\prime}(t)\left[\cos \theta \cdot \partial_{x_{1}} \partial_{x_{2}}^{k} u_{n}+\sin \theta \cdot \partial_{x_{2}}^{k+1} u_{n}\right], \quad k=1, \ldots, m-2
$$

The Dirichlet boundary conditions on Γ_{1} lead to

$$
\partial_{t} \partial_{x_{1}}^{k} u_{n}=-\varphi^{\prime}(t) \sin \theta \cdot \partial_{x_{2}} \partial_{x_{1}}^{k} u_{n}, \quad k=1, \ldots, m-2
$$

and

$$
\partial_{t} \partial_{x_{2}}^{k} u_{n}=-\varphi^{\prime}(t) \cos \theta . \partial_{x_{1}} \partial_{x_{2}}^{k} u_{n}, \quad k=1, \ldots, m-2 .
$$

Now, differentiating the formula

$$
\partial_{x_{j}}^{k} u_{n}(t, \varphi(t) \cos \theta, \varphi(t) \sin \theta)=0, \quad k=1, \ldots, m-2 ; j=1,2
$$

with respect to θ, we obtain

$$
\sin \theta \cdot \partial_{x_{1}}^{k+1} u_{n}=\cos \theta \cdot \partial_{x_{2}} \partial_{x_{1}}^{k} u_{n}, \quad k=1, \ldots, m-2
$$

and

$$
\cos \theta \cdot \partial_{x_{2}}^{k+1} u_{n}=\sin \theta \cdot \partial_{x_{1}} \partial_{x_{2}}^{k} u_{n}, \quad k=1, \ldots, m-2 .
$$

The Dirichlet boundary conditions on Γ_{1} lead to

$$
\partial_{x_{1}} \partial_{x_{2}}^{k} u_{n}=\partial_{x_{2}} \partial_{x_{1}}^{k} u_{n}=0, \quad k=1, \ldots, m-2
$$

and consequently

$$
\partial_{t} \partial_{x_{1}}^{k} u_{n}=\partial_{t} \partial_{x_{2}}^{k} u_{n}=0, \quad k=1, \ldots, m-2 .
$$

So, the boundary integral I_{1} vanishes.
(c) Estimation of $I_{m-1}=-2 \int_{\Gamma_{1}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m-1} \partial_{t} u_{n} . \partial_{x_{j}}^{m} u_{n}\right) \nu_{x_{j}} \cdot \omega(t) d \sigma$

We have

$$
\partial_{x_{j}}^{m-1} u_{n}(t, \varphi(t) \cos \theta, \varphi(t) \sin \theta)=0, \quad j=1,2 .
$$

Differentiating with respect to t, we obtain

$$
\partial_{t} \partial_{x_{1}}^{m-1} u_{n}=-\varphi^{\prime}(t)\left[\left(\cos \theta \cdot \partial_{x_{1}}^{m} u_{n}+\sin \theta \cdot \partial_{x_{2}} \partial_{x_{1}}^{m-1} u_{n}\right)\right]
$$

and

$$
\partial_{t} \partial_{x_{2}}^{m-1} u_{n}=-\varphi^{\prime}(t)\left[\cos \theta \cdot \partial_{x_{1}} \partial_{x_{2}}^{m-1} u_{n}+\sin \theta \cdot \partial_{x_{2}}^{m} u_{n}\right] .
$$

Differentiating with respect to θ, we obtain

$$
\begin{aligned}
& \cos \theta \cdot \partial_{x_{2}} \partial_{x_{1}}^{m-1} u_{n}=\sin \theta \cdot \partial_{x_{1}}^{m} u_{n} \\
& \sin \theta \cdot \partial_{x_{1}} \partial_{x_{2}}^{m-1} u_{n}=\cos \theta \cdot \partial_{x_{2}}^{m} u_{n}
\end{aligned}
$$

Taking into account these relationships we deduce

$$
\begin{aligned}
& I_{m-1} \\
&= 2 \int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left[\cos ^{2} \theta \cdot \partial_{x_{1}}^{m} u_{n}+\sin \theta \cos \theta \cdot \partial_{x_{1}} \partial_{x_{2}}^{m-1} u_{n}\right] \partial_{x_{1}}^{m} u_{n} \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta \\
&+2 \int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left[\cos \theta \sin \theta \cdot \partial_{x_{2}} \partial_{x_{1}}^{m-1} u_{n}+\sin ^{2} \theta \cdot \partial_{x_{2}}^{m} u_{n}\right] \partial_{x_{2}}^{m} u_{n} \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta \\
&= 2 \int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left[\left(\partial_{x_{1}}^{m} u_{n}\right)^{2}+\left(\partial_{x_{2}}^{m} u_{n}\right)^{2}\right] \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta .
\end{aligned}
$$

Finally

$$
\begin{align*}
2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle= & \int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right) \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta \\
& +\int_{\Gamma_{T}}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right)\left(T, x_{1}, x_{2}\right) \cdot \omega(T) d x_{1} d x_{2} \\
& -\int_{Q_{n}}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right) \cdot \omega^{\prime}(t) d t d x_{1} d x_{2} \tag{3.3}
\end{align*}
$$

Remark 3.3. Observe that the integrals

$$
\int_{\Gamma_{T}}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right)\left(T, x_{1}, x_{2}\right) \cdot \omega(T) d x_{1} d x_{2}
$$

and

$$
-\int_{Q_{n}}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right) \cdot \omega^{\prime}(t) d t d x_{1} d x_{2}
$$

which appear in the last formula are nonnegative thanks to the assumptions (1.4) and (1.5) on the weight function ω. This is a good sign for our estimate because we can deduce immediately

$$
\begin{aligned}
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \geq & \left\|\partial_{t} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \\
& +\int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right) \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta
\end{aligned}
$$

So, if φ is an increasing function in the interval $\left(\frac{1}{n}, T\right)$, then

$$
\int_{0}^{2 \pi} \int_{\frac{1}{n}}^{T}\left(\sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\right) \varphi^{\prime}(t) \varphi(t) \cdot \omega(t) d t d \theta \geq 0
$$

Consequently,

$$
\begin{equation*}
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \geq\left\|\partial_{t} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \tag{3.4}
\end{equation*}
$$

But, thanks to Lemma 2.2 and since φ is bounded in $(0, T)$, there exists a constant $C^{\prime}>0$ such that

$$
\left\|\partial_{x_{j}}^{l} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} \leq C^{\prime}\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}, \quad l=0,1, \ldots, 2 m-1 ; j=1,2
$$

Taking into account Lemma 3.3 and estimate (3.4), this proves the desired estimate of Proposition 3.2.

So, it remains to establish the estimate of Proposition 3.2 under the hypothesis (1.2). For this purpose, we need the following lemma

Lemma 3.4. One has

$$
\begin{aligned}
2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle= & 2 \int_{Q_{n}} \frac{\varphi^{\prime}}{\varphi}\left(\sum_{j=1}^{2} x_{j} \partial_{x_{j}}^{m} u_{n}\right) \mathcal{A} u_{n} \cdot \omega(t) d t d x_{1} d x_{2} \\
& +\int_{\Gamma_{T}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\left(T, x_{1}, x_{2}\right) \cdot \omega(T) d x_{1} d x_{2} .
\end{aligned}
$$

Proof. This result can be obtained by following step by step the proof of [9, Lemma 3.4].
Now, we continue the proof of Proposition 3.2. We have

$$
\begin{aligned}
& \left|\int_{Q_{n}} \frac{\varphi^{\prime}}{\varphi}\left(\sum_{j=1}^{2} x_{j} \partial_{x_{j}}^{m} u_{n}\right) \mathcal{A} u_{n} \cdot \omega(t) d t d x_{1} d x_{2}\right| \\
& \quad \leq\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)} \sum_{j=1}^{2}\left\|\frac{\varphi^{\prime}}{\varphi} x_{j} \partial_{x_{j}}^{m} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}
\end{aligned}
$$

but Lemma 2.2 yields for $j=1,2$

$$
\begin{aligned}
\left\|\frac{\varphi^{\prime}}{\varphi} x_{j} \partial_{x_{j}}^{m} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} & =\int_{\frac{1}{n}}^{T} \varphi^{\prime 2}(t) \int_{\Omega_{t}}\left(\frac{x_{j}}{\varphi(t)}\right)^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2} \cdot \omega(t) d t d x_{1} d x_{2} \\
& \leq \int_{\frac{1}{n}}^{T} \varphi^{\prime 2}(t) \int_{\Omega_{t}}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2} \cdot \omega(t) d t d x_{1} d x_{2} \\
& \leq C^{2} \int_{\frac{1}{n}}^{T}\left(\varphi^{m}(t) \varphi^{\prime}(t)\right)^{2} \int_{\Omega_{t}}\left(\mathcal{A} u_{n}\right)^{2} \cdot \omega(t) d t d x_{1} d x_{2} \\
& \leq C^{2} \epsilon^{2}\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}
\end{aligned}
$$

since $\left(\varphi^{m}(t) \varphi^{\prime}(t)\right) \leq \epsilon$ thanks to the condition (3.2). Then

$$
\left|\int_{Q_{n}} \frac{\varphi^{\prime}}{\varphi}\left(\sum_{j=1}^{2} x_{j} \partial_{x_{j}}^{m} u_{n}\right) \mathcal{A} u_{n} \cdot \omega(t) d t d x_{1} d x_{2}\right| \leq 2 C \epsilon\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}
$$

Therefore, Lemma 3.4 shows that

$$
\begin{aligned}
\left|2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle\right| \geq & -2\left|\int_{Q_{n}} \frac{\varphi^{\prime}}{\varphi}\left(\sum_{j=1}^{2} x_{j} \partial_{x_{j}}^{m} u_{n}\right) \mathcal{A} u_{n} \cdot \omega(t) d t d x_{1} d x_{2}\right| \\
& +\int_{\Gamma_{T}} \sum_{j=1}^{2}\left(\partial_{x_{j}}^{m} u_{n}\right)^{2}\left(T, x_{1}, x_{2}\right) \cdot \omega(T) d x_{1} d x_{2} . \\
\geq & -4 C \epsilon\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} & =\left\|\partial_{t} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+2\left\langle\partial_{t} u_{n}, \mathcal{A} u_{n}\right\rangle \\
& \geq\left\|\partial_{t} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2}+(1-4 C \epsilon)\left\|\mathcal{A} u_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)}^{2} .
\end{aligned}
$$

Then, it is sufficient to choose ϵ such that $1-4 C \epsilon>0$ to get a constant $K_{0}>0$ independent of n such that

$$
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)} \geq K_{0}\left\|u_{n}\right\|_{H_{\omega}^{1,2 m}\left(Q_{n}\right)}
$$

and since

$$
\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)} \leq\|f\|_{L_{\omega}^{2}\left(Q_{n}\right)}
$$

there exists a constant $K_{1}>0$, independent of n satisfying

$$
\left\|u_{n}\right\|_{H_{\omega}^{1,2 m}\left(Q_{n}\right)} \leq K_{1}\left\|f_{n}\right\|_{L_{\omega}^{2}\left(Q_{n}\right)} \leq K_{1}\|f\|_{L_{\omega}^{2}(Q)}
$$

This completes the proof of Proposition 3.2.

3.3. Passage to the limit

Choose a sequence $\left(Q_{n}\right)_{n \in \mathbb{N}^{*}}$ of the domains defined above (see Section 3.1), such that $Q_{n} \subseteq Q$. Then, we have $Q_{n} \rightarrow Q$, as $n \rightarrow \infty$. Consider the solution $u_{n} \in H_{\omega}^{1,2 m}\left(Q_{n}\right)$ of the Cauchy-Dirichlet problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u_{n}=f_{n} \in L_{\omega}^{2}\left(Q_{n}\right), \\
\left.\partial_{x_{j}}^{k} u_{n}\right|_{\partial Q_{n} \backslash \Gamma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2,
\end{array}\right.
$$

where $f_{n}=\left.f\right|_{Q_{n}}$. Such a solution u_{n} exists by Theorem 3.1. Let $\widetilde{u_{n}}$ be the 0 -extension of u_{n} to Q. In virtue of Proposition 3.2 for T small enough, we know that there exists a constant C such that

$$
\left\|\widetilde{u_{n}}\right\|_{L_{\omega}^{2}(Q)}+\left\|\widetilde{\partial_{t} u_{n}}\right\|_{L_{\omega}^{2}(Q)}+\sum_{1 \leq|\alpha| \leq 2 m}\left\|\widetilde{\partial^{\alpha} u_{n}}\right\|_{L_{\omega}^{2}(Q)} \leq C\|f\|_{L_{\omega}^{2}(Q)} .
$$

This means that $\widetilde{u_{n}}, \widetilde{\partial_{t} u_{n}}, \widetilde{\partial^{\alpha} u_{n}}$ for $1 \leq|\alpha| \leq 2 m$ are bounded functions in $L_{\omega}^{2}(Q)$. So, for a suitable increasing sequence of integers $n_{k}, k=1,2, \ldots$, there exist functions

$$
u, v \text { and } v_{\alpha} 1 \leq|\alpha| \leq 2 m
$$

in $L_{\omega}^{2}(Q)$ such that

$$
\begin{array}{lll}
\frac{\widetilde{u_{n_{k}}}}{\frac{\partial_{t} u_{n_{k}}}{}}-u \quad \text { weakly in } L_{\omega}^{2}(Q), & k \rightarrow \infty \\
\frac{\partial^{\alpha} u_{n_{k}}}{} & \rightharpoonup v_{\alpha} \quad \text { weakly in } L_{\omega}^{2}(Q), & k \rightarrow \infty \\
\text { weakly in } L_{\omega}^{2}(Q), & k \rightarrow \infty
\end{array}
$$

$1 \leq|\alpha| \leq 2 m$. Clearly,

$$
v=\partial_{t} u, \quad v_{\alpha}=\partial^{\alpha} u, \quad 1 \leq|\alpha| \leq 2 m
$$

in the sense of distributions in Q and so in $L_{\omega}^{2}(Q)$. So, $u \in H_{\omega}^{1,2 m}(Q)$ and

$$
\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=f \quad \text { in } Q
$$

On the other hand, the solution u satisfies the boundary conditions

$$
\left.\partial_{x_{j}}^{k} u_{n}\right|_{\partial Q_{n} \backslash \Gamma_{T}}=0, \quad k=0,1, \ldots, m-1 ; j=1,2,
$$

since

$$
\forall n \in \mathbb{N}^{*},\left.\quad u\right|_{Q_{n}}=u_{n}
$$

This proves the existence of a solution to Problem (1.3). This ends the proof of Theorem 1.1 in the case of T small enough.

3.4. The general case

Assume that Q satisfies (1.1). In the case where T is not small enough, we set $Q=$ $D_{1} \cup D_{2} \cup \Gamma_{T_{1}}$ where

$$
\begin{aligned}
& D_{1}=\left\{\left(t, x_{1}, x_{2}\right) \in Q: 0<t<T_{1}\right\} \\
& D_{2}=\left\{\left(t, x_{1}, x_{2}\right) \in Q: T_{1}<t<T\right\} \\
& \Gamma_{T_{1}}=\left\{\left(T_{1}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}: 0 \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \leq \varphi\left(T_{1}\right)\right\}
\end{aligned}
$$

with T_{1} small enough. In the sequel, f stands for an arbitrary fixed element of $L_{\omega}^{2}(Q)$ and $f_{i}=\left.f\right|_{D_{i}}, i=1,2$. We know that (see Section 3.3) there exists a unique solution $w_{1} \in$ $H_{\omega}^{1,2 m}\left(D_{1}\right)$ of the problem

$$
\left\{\begin{array}{l}
\partial_{t} w_{1}+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} w_{1}=f_{1} \in L_{\omega}^{2}\left(D_{1}\right) \tag{3.5}\\
\left.\partial_{x_{j}}^{k} w_{1}\right|_{\partial D_{1} \backslash \Gamma_{T_{1}}}=0, \quad k=0, \ldots, m-1 ; j=1,2
\end{array}\right.
$$

Hereafter, we denote the trace $\left.w_{1}\right|_{\Gamma_{T_{1}}}$ by ψ which is in the Sobolev space $H_{\omega}^{m}\left(\Gamma_{T_{1}}\right)$ because $w_{1} \in H_{\omega}^{1,2 m}\left(D_{1}\right)$ (see [12]). Now, consider the following problem in D_{2}

$$
\left\{\begin{array}{l}
\partial_{t} w_{2}+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} w_{2}=f_{2} \in L_{\omega}^{2}\left(D_{2}\right), \tag{3.6}\\
\left.w_{2}\right|_{\Gamma_{T_{1}}}=\psi, \\
\left.\partial_{x_{j}}^{k} w_{2}\right|_{\partial D_{2} \backslash\left(\Gamma_{T_{1}} \cup \Gamma_{T}\right)}=0, \quad k=0, \ldots, m-1 ; j=1,2
\end{array}\right.
$$

We use the following result, which is a consequence of [12, Theorem 4.3, Vol. 2], to solve Problem (3.6).

Proposition 3.3. Let R be the cylinder $] 0, T\left[\times B(0,1)\right.$ where $B(0,1)$ is the unit disk of \mathbb{R}^{2}, $f \in L_{\omega}^{2}(R)$ and $u_{0} \in H_{\omega}^{m}\left(\gamma_{0}\right)$. Then, the problem

$$
\left\{\begin{array}{l}
\partial_{t} u+(-1)^{m} \sum_{j=1}^{2} \partial_{x_{j}}^{2 m} u=f \quad \text { in } R \\
\left.u\right|_{\gamma_{0}}=u_{0}, \\
\left.\partial_{x_{j}}^{k} u\right|_{\gamma_{1}}=0, \quad k=0, \ldots, m-1 ; j=1,2
\end{array}\right.
$$

where $\left.\gamma_{0}=\{0\} \times B(0,1), \gamma_{1}=\right] 0, T[\times \partial B(0,1)$, admits a (unique) solution $u \in H_{\omega}^{1,2 m}(R)$ if and only if the following compatibility conditions are fulfilled

$$
\left.\partial_{x_{j}}^{k} u_{0}\right|_{\partial \gamma_{0}}=0, \quad k=0, \ldots, m-1 ; j=1,2 .
$$

Thanks to the transformation

$$
\left(t, x_{1}, x_{2}\right) \longmapsto\left(t, y_{1}, y_{2}\right)=\left(t, \varphi(t) x_{1}, \varphi(t) x_{2}\right),
$$

we deduce the following result:
Proposition 3.4. Problem (3.6) admits a (unique) solution $w_{2} \in H_{\omega}^{1,2 m}\left(D_{2}\right)$ if and only if the following compatibility conditions are fulfilled

$$
\left.\partial_{x_{j}}^{k} \psi\right|_{\partial \Gamma_{T_{1}}}=0, \quad k=0, \ldots, m-1 ; j=1,2
$$

Remark 3.4. We can observe that the boundary conditions of Problems (3.5) and (3.6) yield

$$
\left.w_{1}\right|_{\Gamma_{T_{1}}}=\left.w_{2}\right|_{\Gamma_{T_{1}}}
$$

and $\left.\partial_{x_{j}}^{k} w_{i}\right|_{\Gamma_{T_{1}}} \in H_{\omega}^{1-\frac{1}{2 m}}\left(\Gamma_{T_{1}}\right) ; i, j=1,2$. Then the compatibility conditions

$$
\left.\partial_{x_{j}}^{k} \psi\right|_{\partial \Gamma_{T_{1}}}=0, \quad k=0, \ldots, m-1 ; j=1,2
$$

are satisfied since $\left.w_{1}\right|_{\Gamma_{T_{1}}}=\psi$.

Now, define the function u in Q by

$$
u:= \begin{cases}w_{1} & \text { in } D_{1} \\ w_{2} & \text { in } D_{2}\end{cases}
$$

where w_{1} and w_{2} are the solutions of Problem (3.5) and Problem (3.6) respectively. Observe that $\left.w_{1}\right|_{\Gamma_{T_{1}}}=\left.w_{2}\right|_{\Gamma_{T_{1}}}$, see Remark 3.4, so

$$
\left.\partial_{x_{j}}^{k} w_{1}\right|_{\Gamma_{T_{1}}}=\left.\partial_{x_{j}}^{k} w_{2}\right|_{\Gamma_{T_{1}}}, \quad k=0, \ldots, m-1 ; j=1,2
$$

This implies that $u \in H_{\omega}^{1,2 m}(Q)$ and u is the (unique) solution of Problem (1.3) for an arbitrary T. This ends the proof of Theorem 1.1.

Acknowledgment

We are thankful to the referee for the valuable remarks which led to an improvement of the original manuscript.

References

[1] E.A. Baderko, The solvability of boundary value problems for higher order parabolic equations in domains with curvilinear lateral boundaries, Differ. Uravn. 10 (12) (1976) 1781-1792.
[2] E.A. Baderko, On the solution of boundary value problems for linear parabolic equations of arbitrary order in noncylindrical domains by the method of boundary integral equations (Ph.D. thesis), Moscow, 1992.
[3] V. Besov, Continuation of functions from $L_{p}{ }^{l}$ and $W_{p}{ }^{l}$, Proc. Steklov Inst. Math. 89 (1967) 5-17.
[4] M.F. Cherepova, On the solvability of boundary value problems for a higher order parabolic equation with growing coefficients, Dokl. Math. 74 (3) (2006) 819-820.
[5] M.F. Cherepova, Regularity of solutions of boundary value problems for a second order parabolic equation in weighted Hölder spaces, Differ. Equ. 1 (49) (2013) 79-87.
[6] V.A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskiitype criterion by blow-up approach, Nonlinear Differential Equations Appl. 5 (16) (2009) 597-655.
[7] P. Grisvard, G. Looss, Problèmes aux limites unilatéraux dans des domaines non réguliers, J. Equ. Dériv. Part. (1976) 1-26.
[8] A. Kheloufi, On a fourth order parabolic equation in a nonregular domain of \mathbb{R}^{3}, Mediterr. J. Math. (2015), http://dx.doi.org/10.1007/s00009-014-0429-7.
[9] A. Kheloufi, B.K. Sadallah, Study of the heat equation in a symmetric conical type domain of \mathbb{R}^{N+1}, Math. Methods Appl. Sci. 37 (2014) 1807-1818.
[10] R. Labbas, B.K. Sadallah, Smoothness of the solution of a fourth order parabolic equation in a polygonal domain, Int. J. Appl. Math. 1 (1999) 75-90.
[11] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, A.M.S, Providence, Rhode Island, 1968.
[12] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, 1, 2, Dunod, Paris, 1968.
[13] V.P. Mikhailov, The Dirichlet problem for a parabolic equation, I, Mat. Sb. 61 (103) (1963) 40-64.
[14] V.P. Mikhailov, The Dirichlet problem for a parabolic equation, II, Mat. Sb. 62 (104) (1963) 140-159.
[15] B.K. Sadallah, Etude d'un problème $2 m$-parabolique dans des domaines plan non rectangulaires, Boll. Unione Mat. Ital. 2B (5) (1983) 51-112.
[16] B.K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. Okayama Univ. 56 (2014) 157-169.

[^0]: * Corresponding author at: Laboratoire de Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, 6000 Béjaia, Algeria.
 E-mail addresses: arezkinet2000@yahoo.fr (A. Kheloufi), sadallah@ens-kouba.dz (B.-K. Sadallah). Peer review under responsibility of King Saud University.

