Remark on the system of nonlinear variational inclusions

Zoran D. Mitrović *
Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

Received 4 December 2012; revised 8 February 2013; accepted 8 April 2013
Available online 27 April 2013

Abstract

We prove the existence of a solution to the system of nonlinear variational inclusions problem. We provide examples of applications related to a coupled best approximations theorem for multivalued mappings and a multivalued coupled coincidence point.

2000 Mathematics subject classification: $47 \mathrm{H} 10 ; 54 \mathrm{H} 25$
Keywords: Variational inclusions; Coupled fixed point; Coupled coincidence point; KKM mapping

1. Introduction and preliminaries

In the paper [12] Verma introduced the system of nonlinear variational inclusions (SNVI) problem: finding $\left(x_{0}, y_{0}\right) \in H_{1} \times H_{2}$ such that

$$
\begin{equation*}
0 \in S\left(x_{0}, y_{0}\right)+M\left(x_{0}\right), \quad 0 \in T\left(x_{0}, y_{0}\right)+N\left(y_{0}\right) \tag{1}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces, $S: H_{1} \times H_{2} \rightarrow H_{1}, T: H_{1} \times H_{2} \rightarrow H_{2}$ are mappings and $M: H_{1} \rightarrow 2^{H_{1}}$, N: $H_{2} \rightarrow 2^{H_{2}}$ are multivalued mappings.

1. If $M(\cdot)=\partial f(\cdot)$ and $N(\cdot)=\partial g(\cdot)$ where $\partial f(\cdot)$ is the subdifferential of a proper, convex and lower semicontinuous functions $f: H_{1} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $g: H_{1} \rightarrow \mathbb{R} \cup\{+\infty\}$ then problem SNVI reduces to finding $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}$ such that

[^0]

Production and hosting by Elsevier
1319-5166 © 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. http://dx.doi.org/10.1016/j.ajmsc.2013.04.001

$$
\begin{array}{lc}
\left\langle S\left(x_{0}, y_{0}\right), x-x_{0}\right\rangle+f(x)-f\left(x_{0}\right) \geqslant 0 \quad \text { for all } x \in K_{1}, \\
\left\langle T\left(x_{0}, y_{0}\right), y-y_{0}\right\rangle+g(x)-g\left(y_{0}\right) \geqslant 0 & \text { for all } y \in K_{2}, \tag{3}
\end{array}
$$

where K_{1} and K_{2}, respectively, are nonempty closed convex subsets of H_{1} and H_{2}.
2. When $M(x)=\partial_{K_{1}}(x)$ and $\partial_{K_{2}}$ denote indicator functions of K_{1} and K_{2}, respectively, the SNVI problem (1) reduces to system of nonlinear variational inequalities problem: finding $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}$ such that

$$
\begin{array}{ll}
\left\langle S\left(x_{0}, y_{0}\right), x-x_{0}\right\rangle \geqslant 0 & \text { for all } x \in K_{1} \\
\left\langle T\left(x_{0}, y_{0}\right), y-y_{0}\right\rangle \geqslant 0 & \text { for all } y \in K_{2} . \tag{5}
\end{array}
$$

3. If $H_{1}=H_{2}=X, S(x, y)=-F(x, y), T(x, y)=-F(y, x), M(x)=G(x), N(x)=G(x)$ for all $x, y \in X$ then (1) reduces to finding $\left(x_{0}, y_{0}\right) \in X \times X$, such that

$$
\begin{equation*}
F\left(x_{0}, y_{0}\right) \in G\left(x_{0}\right), \quad F\left(y_{0}, x_{0}\right) \in G\left(y_{0}\right) \tag{6}
\end{equation*}
$$

which is a multivalued coupled coincidence point problem.
4. If G is a single-valued mapping and $G(x)=\{g(x)\}$ for all $x \in X$ then (6) reduces to finding $\left(x_{0}, y_{0}\right) \in X \times X$, such that

$$
\begin{equation*}
F\left(x_{0}, y_{0}\right)=g\left(x_{0}\right), \quad F\left(y_{0}, x_{0}\right)=g\left(y_{0}\right), \tag{7}
\end{equation*}
$$

which is known as a coupled coincidence point problem, considered by Lakshmikantham and Ćirić [7].
5. If g is an identity mapping, then (7) is equivalent to finding $\left(x_{0}, y_{0}\right) \in X \times X$, such that

$$
\begin{equation*}
F\left(x_{0}, y_{0}\right)=x_{0}, \quad F\left(y_{0}, x_{0}\right)=y_{0} \tag{8}
\end{equation*}
$$

which is known as a coupled fixed point problem, considered by Bhaskar and Lakshmikantham [3].

The aim of this paper is to obtain the results existence of a solution of SNVI problem (1) using the KKM technique.

We need the following definitions and results.
Let $F: X \multimap Y$ be a multivalued mapping from a set X into the power set of a set Y. For $A \subseteq X$, let $F(A)=\cup\{F(x): x \in A\}$. For any $B \subseteq Y$, the lower inverse and upper inverse of B under F are defined by

$$
F^{-}(B)=\{x \in X: F(x) \cap B \neq \emptyset\} \quad \text { and } \quad F^{+}(B)=\{x \in X: F(x) \subseteq B\}
$$

respectively.
A mapping $F: X \multimap Y$ is upper (lower) semicontinuous on X if and only if for every open $V \subseteq Y$, the set $F^{+}(V)\left(F^{-}(V)\right)$ is open. A mapping $F: X \multimap Y$ is continuous if and only if it is upper and lower semicontinuous. A mapping $F: X \multimap Y$ with compact values is continuous if and only if F is a continuous mapping in the Hausdorff distance, see for example [4].

Let X be a normed space. If A and B are nonempty subsets of X, we define

$$
A+B=\{a+b: a \in A, b \in B\} \text { and }\|A\|=\inf \{\|a\|: a \in A\}
$$

We will use the notion a C-convex map for multivalued maps.

Definition 1.1 (Borwein [5]). Let X and Y be real vector spaces, K a nonempty convex subset of X and C is a cone in Y. A multivalued mapping $F: K \multimap Y$ is said to be C-convex if,

$$
\begin{equation*}
\lambda F\left(x_{1}\right)+(1-\lambda) F\left(x_{2}\right) \subset F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)+C \tag{9}
\end{equation*}
$$

for all $x_{1}, x_{2} \in K$ and all $\lambda \in[0,1]$.
A mapping F is convex if it satisfies condition (9) with $C=\{0\}$ (see for example, Nikodem [8], Nikodem and Popa [9]). If F is a single-valued mapping, $Y=\mathbb{R}$ and $C=[0,+\infty)$, we obtain the standard definition of convex functions. The convex multivalued mappings play an important role in convex analysis, economic theory and convex optimization problems see for example [1,2,5,11].

Lemma 1.1 (Nikodem [8]). If a multivalued mapping $F: K \multimap Y$ is C-convex, then

$$
\begin{equation*}
\lambda_{1} F\left(x_{1}\right)+\cdots+\lambda_{n} F\left(x_{n}\right) \subset F\left(\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right)+C \tag{10}
\end{equation*}
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in K$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ such that $\lambda_{1}+\ldots+\lambda_{n}=1$.
From Lemma 1.1 we easily obtain the following lemma.
Lemma 1.2. Let K be a convex subset of normed space X if the multivalued mapping $F: K \multimap X$ is convex, then

$$
\begin{equation*}
\left\|F\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)+u\right\| \leqslant \sum_{i=1}^{n} \lambda_{i}\left\|F\left(x_{i}\right)+u\right\| \tag{11}
\end{equation*}
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in K, u \in X$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ such that $\lambda_{1}+\ldots+\lambda_{n}=1$.
Definition 1.2 (Prolla [10]). Let X be a normed space and C a nonempty convex subset of X. A map $g: C \rightarrow X$ is almost affine if for all $x, y \in C$ and $u \in C$

$$
\|g(\lambda x+(1-\lambda) y)-u\| \leqslant \lambda\|g(x)-u\|+(1-\lambda)\|g(y)-u\|
$$

for each λ with $0<\lambda<1$.
Remark 1.1. If $F: K \rightarrow K$ is single valued and almost-affine mapping then the condition (11) holds.

Definition 1.3. Let K be a nonempty subset of a topological vector space X. A multivalued mapping $H: K \rightarrow 2^{X}$ is called a KKM mapping if, for every finite subset $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of K,

$$
\operatorname{co}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \bigcup_{i=1}^{n} H\left(x_{i}\right),
$$

where co denotes the convex hull.

Lemma 1.3 (Ky Fan [6], Lemma 1). Let X be a topological vector space, K be a nonempty subset of X and $H: K \rightarrow 2^{X}$ a mapping with closed values and KKM mapping. If $H(x)$ is compact for at least one $x \in K$ then $\cap_{x \in K} H(x) \neq \emptyset$.

2. Main result

Lemma 2.1. Let X be a normed space, K a nonempty convex compact subset of X, $S, T: K \times K \rightarrow X$ continuous mappings and $M, N: K \rightarrow 2^{X}$ continuous convex mappings with compact values. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{aligned}
& \left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\| \\
& \quad=\inf _{(x, y) \in K \times K}\left\{\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|\right\} .
\end{aligned}
$$

Proof. Define a multivalued mapping $H: K \times K \rightarrow 2^{K \times K}$ by

$$
\begin{aligned}
H(z, t)= & \{(x, y) \in K \times K:\|M(x)+S(x, y)\|+\| N(y)+T(x, y)) \| \\
& \leqslant\|M(z)+S(x, y)\|+\|N(t)+T(x, y)\|\} \quad \text { for each }(z, t) \in K \times K .
\end{aligned}
$$

We have that $(z, t) \in H(z, t)$, hence $H(z, t)$ is nonempty for all $(z, t) \in K \times K$.
The mappings S, T, M and N are continuous and we have that $H(z, t)$ is closed for each $(z, t) \in K \times K$.

Since $K \times K$ is a compact set we have that $H(z, t)$ is compact for each $(z, t) \in K \times K$.
Mapping H is a KKM map. Namely, suppose for any $\left(z_{i}, t_{i}\right) \in K \times K, i \in\{1, \ldots, n\}$, there exists

$$
\begin{equation*}
\left(z_{0}, t_{0}\right) \in \operatorname{co}\left\{\left(z_{1}, t_{1}\right), \ldots,\left(z_{n}, t_{n}\right)\right\}, \tag{12}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(z_{0}, t_{0}\right) \notin \bigcup_{i=1}^{n} H\left(z_{i}, t_{i}\right) . \tag{13}
\end{equation*}
$$

From (12) we obtain that there exist $\lambda_{i} \geqslant 0, i \in\{1, \ldots, n\}$, such that

$$
\left(z_{0}, t_{0}\right)=\sum_{i=1}^{n} \lambda_{i}\left(z_{i}, t_{i}\right) \text { and } \sum_{i=1}^{n} \lambda_{i}=1 .
$$

Since M is convex mapping, from Lemma 1.2, we have

$$
\left\|M\left(z_{0}\right)+S\left(z_{0}, t_{0}\right)\right\| \leqslant \sum_{i=1}^{n} \lambda_{i}\left\|M\left(z_{i}\right)+S\left(z_{0}, t_{0}\right)\right\| .
$$

In a similar way, since N is convex mapping, we have

$$
\left\|N\left(t_{0}\right)+T\left(z_{0}, t_{0}\right)\right\| \leqslant \sum_{i=1}^{n} \lambda_{i}\left\|N\left(t_{i}\right)+T\left(z_{0}, t_{0}\right)\right\| .
$$

In other hand, from (13) we obtain

$$
\begin{aligned}
\left\|M\left(z_{0}\right)+S\left(z_{0}, t_{0}\right)\right\|+\left\|N\left(t_{0}\right)+T\left(z_{0}, t_{0}\right)\right\|> & \left\|M\left(z_{i}\right)+S\left(z_{0}, t_{0}\right)\right\| \\
& +\left\|N\left(t_{i}\right)+T\left(z_{0}, t_{0}\right)\right\|
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}$. This is a contradiction and H is KKM mapping. From Lemma 1.3 it follows that there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\left(x_{0}, y_{0}\right) \in H(x, y) \text { for all }(x, y) \in K \times K
$$

So,

$$
\begin{aligned}
& \left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\| \\
& \quad \leqslant\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|
\end{aligned}
$$

for all $(x, y) \in K \times K$.
Applying Lemma 2.1, we have the following theorem on existence solutions the SNVI problem (1).

Theorem 2.1. In addition to the hypotheses of Lemma 2.1 suppose that for every $(x, y) \in K \times K$

$$
\begin{equation*}
0 \in M(K)+S(x, y) \text { and } 0 \in N(K)+T(x, y) \tag{14}
\end{equation*}
$$

Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
0 \in S\left(x_{0}, y_{0}\right)+M\left(x_{0}\right) \text { and } 0 \in T\left(x_{0}, y_{0}\right)+N\left(y_{0}\right)
$$

Proof. From Lemma 2.1, we have that there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{aligned}
& \left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\| \\
& \quad=\inf _{(x, y) \in K \times K}\left\{\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|\right\} .
\end{aligned}
$$

From condition (14) we obtain that

$$
\inf _{(x, y) \in K \times K}\left\{\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|\right\}=0
$$

so, we have

$$
\left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\|=0
$$

hence,

$$
0 \in M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right) \text { and } 0 \in N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)
$$

3. A coupled coincidence point

Applying Theorem 2.1, we have the following multivalued coupled coincidence point theorem.

Theorem 3.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \rightarrow X$ continuous mapping and $G: K \rightarrow 2^{X}$ continuous convex mapping with compact values such that $F(K \times K) \subseteq G(K)$. Then F and G have a multivalued coupled coincidence point.

Proof. Put

$$
\begin{aligned}
& S(x, y)=-F(x, y), T(x, y)=-F(y, x) \text { for } x, y \in K, \\
& M(x)=G(x), N(y)=G(y) \text { for } x, y \in K
\end{aligned}
$$

Then S, T, M and N satisfy all of the requirements of Theorem 2.1. Therefore, there exists $\left(x_{0}, y_{0}\right) \in K$ such that

$$
0 \in-F\left(x_{0}, y_{0}\right)+G\left(x_{0}\right) \text { and } 0 \in-F\left(y_{0}, x_{0}\right)+G\left(y_{0}\right)
$$

i.e.

$$
F\left(x_{0}, y_{0}\right) \in G\left(x_{0}\right) \text { and } F\left(y_{0}, x_{0}\right) \in G\left(y_{0}\right) .
$$

Corollary 3.1. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping and $g: K \rightarrow X$ continuous almost-affine mapping such that $F(K \times K) \subseteq g(K)$. Then F and g have a coupled coincidence point.

Proof. Let $G(x)=\{g(x)\}$ and apply Theorem 3.1.
Corollary 3.2. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow K$ continuous mapping. Then F has a coupled fixed point.

Proof. Let $G(x)=\{x\}$ and apply Theorem 3.1.

4. A coupled best approximations

Theorem 4.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \rightarrow X$ continuous mapping and $G: K \rightarrow 2^{X}$ continuous convex mapping with compact values. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{align*}
& \left\|G\left(x_{0}\right)-F\left(x_{0}, y_{0}\right)\right\|+\left\|G\left(y_{0}\right)-F\left(y_{0}, x_{0}\right)\right\| \\
& \quad=\inf _{(x, y) \in K \times K}\left\{\left\|G(x)-F\left(x_{0}, y_{0}\right)\right\|+\left\|G(y)-F\left(y_{0}, x_{0}\right)\right\|\right\} . \tag{15}
\end{align*}
$$

Proof. Put

$$
\begin{aligned}
& S(x, y)=-F(x, y), \quad T(x, y)=-F(y, x) \text { for } x, y \in K, \\
& M(x)=G(x), \quad N(y)=G(y) \text { for } x, y \in K .
\end{aligned}
$$

Then S, T, M and N satisfy all of the requirements of Lemma 2.1. Therefore, there exists (x_{0}, y_{0}) $\in K \times K$ such that (15) holds.

Corollary 4.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \rightarrow X$ continuous map and $g: K \rightarrow X$ continuous almost-affine map. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{aligned}
\left\|g\left(x_{0}\right)-F\left(x_{0}, y_{0}\right)\right\|+\left\|g\left(y_{0}\right)-F\left(y_{0}, x_{0}\right)\right\|= & \inf _{(x, y) \in K \times K}\left\{\left\|g(x)-F\left(x_{0}, y_{0}\right)\right\|\right. \\
& \left.+\left\|g(y)-F\left(y_{0}, x_{0}\right)\right\|\right\} .
\end{aligned}
$$

Corollary 4.2. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \rightarrow X$ continuous mapping. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{equation*}
\left\|x_{0}-F\left(x_{0}, y_{0}\right)\right\|+\left\|y_{0}-F\left(y_{0}, x_{0}\right)\right\|=\inf _{(x, y) \in K \times K}\left\{\left\|x-F\left(x_{0}, y_{0}\right)\right\|+\left\|y-F\left(y_{0}, x_{0}\right)\right\|\right\} . \tag{16}
\end{equation*}
$$

References

[1] J.P. Aubin, H. Frankowska, Set-valued Analysis, Birkhauser, Boston, Basel, Berlin, 1990.
[2] C. Berge, Espaces Topologiques. Fonctions Multivoques, Dunod, Paris, 1966.
[3] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA 65 (2006) 1379-1393.
[4] Ju. G. Borisovic, B.D. Gelman, A.D. Myskis, V.V. Obuhovskii, Topological methods in the fixed-point theory of multi-valued maps (Russian), Uspekhi Mat. Nauk 211 (35) (1980) 59-126, No. 1.
[5] J.M. Borwein, Multivalued convexity and optimization: a unified approach to inequality and equality constraints, Math. Program. 13 (1977) 183-199.
[6] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961) 305-310.
[7] V. Lakshmikantham, LJ. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA 70 (2009) 4341-4349.
[8] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz. Mat. 559, Rozprawy Nauk. 114 Lódz (1989).
[9] K. Nikodem, D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math. Anal. 3 (2009) 44-51.
[10] J.B. Prolla, Fixed point theorems for set-valued mappings and existence of best approximants, Numer. Funct. Anal. Optimiz. 5 (1982-83) 449-455.
[11] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
[12] Ram U. Verma, A-monotonicity and applications to nonlinear variational inclusions problems, J. Appl. Math. Stoch. Anal. (2004) 193-195.

[^0]: * Tel.: + 38751221820 .

 E-mail address: zmitrovic@etfbl.net
 Peer review under responsibility of King Saud University.

