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Remark on the system of nonlinear variational inclusions
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Abstract.  We prove the existence of a solution to the system of nonlinear variational
inclusions problem. We provide examples of applications related to a coupled best
approximations theorem for multivalued mappings and a multivalued coupled coinci-
dence point.
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1. INTRODUCTION AND PRELIMINARIES

In the paper [12] Verma introduced the system of nonlinear variational inclusions
(SNVI) problem: finding (xg,y9) € H; X H, such that

OGS(XOLVO)_"M(XO)? 0e T<x07y0)+N(y0)7 (1)

where H; and H, are real Hilbert spaces, S: Hy X H, — H;, T: Hy X H, — H, are map-
pings and M: H, — 2", N: H, — 2™ are multivalued mappings.

1. If M(-) = 0f(*) and N(-) = 0g() where Of(") is the subdifferential of a proper, convex
and lower semicontinuous functions f: H; — RU {+occ} and g: H; — RU {+o0}
then problem SNVI reduces to finding (xg,y0) € K| X K5 such that
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(S(x0, )5 X — X0) + f(x) — flx0)
(T(x0,¥0),¥ — o) + &(x) — &)

where K; and K,, respectively, are nonempty closed convex subsets of H; and H.».

2. When M (x) = O,(x) and J, denote indicator functions of K; and K, respectively,
the SNVI problem (1) reduces to system of nonlinear variational inequalities prob-
lem: finding (x¢,y9) € K; X K, such that

(S(x0,¥0),x —x0) =0 for all x € K;, 4)
(T(x0,%0);y = ») 20  forally € K. (5)

3.0H, = Hy = X, S(xp) = — Fx,p), Toxy) = — F(r.x), M(x) = G(x), N(x) = G(x)
for all x,y € X then (1) reduces to finding (x(,)9) € X X X, such that

F(xo0,59) € G(x0),  Flyg, X0) € G(yp), (6)

which is a multivalued coupled coincidence point problem.
4. If G is a single-valued mapping and G(x) = {g(x)} for all x € X then (6) reduces to
finding (x0,y9) € X X X, such that

F(xo0,30) = g(x0), F(yy,x0) = &), (7)

which is known as a coupled coincidence point problem, considered by Lakshmi-
kantham and Ciric¢ [7].

5. If g is an identity mapping, then (7) is equivalent to finding (x¢,y) € X X X, such
that

for all x € Kj, (2)

0
0 for all y € K, (3)

v Vv

F(x07y0> = Xo, F(_}/O,Xo) = Yo, (8)

which is known as a coupled fixed point problem, considered by Bhaskar and
Lakshmikantham [3].

The aim of this paper is to obtain the results existence of a solution of SNVI prob-
lem (1) using the KKM technique.

We need the following definitions and results.

Let F:X — Y be a multivalued mapping from a set X into the power set of a set Y.
For A c X, let F(4) = U {F(x):x € A}. For any Bc Y, the lower inverse and upper
inverse of B under F are defined by

F~(B)y={xeX:F(x)NB# 0} and F*(B)={xe€X:F(x)CB},

respectively.

A mapping F:X — Y is upper (lower) semicontinuous on X if and only if for every
open V' C Y, the set F* (V) (F (V)) is open. A mapping F:X — Y is continuous if and
only if it is upper and lower semicontinuous. A mapping F:X — Y with compact values
is continuous if and only if Fis a continuous mapping in the Hausdorff distance, see for
example [4].

Let X be a normed space. If 4 and B are nonempty subsets of X, we define

A+B={a+b:ac A becB}and ||A| = inf{|ja|| : a € A}.

We will use the notion a C-convex map for multivalued maps.
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Definition 1.1 (Borwein [5]). Let X and Y be real vector spaces, K a nonempty convex
subset of X and C is a cone in Y. A multivalued mapping F:K — Y is said to be
C-convex if,

AF(x1) + (1 = )F(x2) CFAxi + (1 = A)x2) + C 9)
for all x;,x, € K and all 1 €[0,1].

A mapping F is convex if it satisfies condition (9) with C = {0} (see for example,
Nikodem [8], Nikodem and Popa [9]). If F is a single-valued mapping, ¥ = R and
C = [0, +00), we obtain the standard definition of convex functions. The convex mul-
tivalued mappings play an important role in convex analysis, economic theory and con-
vex optimization problems see for example [1,2,5,11].

Lemma 1.1 (Nikodem [8]). If a multivalued mapping F:K — Y is C-convex, then

MF(x) + -+ L F(x,) CF(lix)+ -+ Auxn) + C, (10)
foralln e N x,....,x, € Kand 4;, ... A, € [0,1] such that 2; + ... + 4, = 1.

From Lemma 1.1 we easily obtain the following lemma.

Lemma 1.2. Let K be a convex subset of normed space X if the multivalued mapping
F:K — X is convex, then

F<il;x,~) +u
i=1

foralln e N x,...,x, e Kue Xand1,, ..., An € [0,1] such that A; + ... + 4, = L.

< AlIF() + ull (11)
i=1

Definition 1.2 (Prolla [10]). Let X be a normed space and C a nonempty convex subset
of X. A map g:C — X is almost affine if for all x,y € C and u € C

lg(Ax + (1 = A)y) — ull < Allg(x) —ull + (1 = 2)[lg(y) — |
for each A with 0 < 1 < 1.

Remark 1.1. If F: K — K is single valued and almost-affine mapping then the condi-
tion (11) holds.

Definition 1.3. Let K be a nonempty subset of a topological vector space X. A multi-
valued mapping H: K — 2* is called a KKM mapping if, for every finite subset
{x13x27 Tt 9xl7} Of K7

n
co{xy,%2,...,x,} C LJH(X,—)7
=1

where co denotes the convex hull.
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Lemma 1.3 (Ky Fan [6], Lemma 1). Let X be a topological vector space, K be a non-
empty subset of X and H:K — 2% a mapping with closed values and KKM mapping. If
H(x) is compact for at least one x € K then NcxH(x) # 0.

2. MAIN RESULT

Lemma 2.1. Let X be a normed space, K a nonempty convex compact subset of X,
S, T: KxK— X continuous mappings and M,N : K — 2% continuous convex mappings
with compact values. Then there exists (xg,y9) € Kx K such that

[1M(x0) + S(x0, y0) | + [[N () + T(x0, 30l

= nf (M) + SCxo, )| + IVG) + T3y

Proof. Define a multivalued mapping H : K x K — 25X by

H(z,1) = {(x,y) € Kx K: [[M(x) + S(x,p)[[ + [IN(y) + T(x, )|
<IM(z) + SCe )|+ [IN@) + T(x, )|} for each (z,1) € K x K.
We have that (z,7) € H(z,t), hence H(z,t) is nonempty for all (z,f) € K x K.

The mappings S,7.M and N are continuous and we have that H(z,?) is closed for
each (z,f) € KX K.

Since K x K is a compact set we have that H(z,r) is compact for each (z,f) € Kx K.

Mapping H is a KKM map. Namely, suppose for any (z,,t;) € Kx K,i € {1, ... ,n},
there exists

(2o, 10) € co{(z1,t1)y -y (Zus tn) }s (12)
such that
(. 10) ¢ | JH (20 1), (13)

i=1

From (12) we obtain that there exist 4; > 0,i € {1, ... ,n}, such that

Zo,l() Z/l Ziy L and Z/L, =1.

Since M is convex mapping, from Lemma 1.2, we have

|M(z0) + S(zo, 10)| ZA,HM + S(z0, 10)]|.
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In a similar way, since NN is convex mapping, we have
IN(%0) + T(zo, t0)] E ZilIN(t:) + T(zo, t0)]|-

In other hand, from (13) we obtain
1M (20) + S(z0, t0) | + [[N(20) + T(z0, t0) | > [|M(2:) + S(z0, 1) |
+ [IN(1:) + T(zo, 10) |

forallie {1, ... ,n}. This is a contradiction and H is KKM mapping. From Lemma 1.3
it follows that there exists (xg,y9) € K x K such that

(x0,¥) € H(x,y) for all (x,y) € Kx K.
So,
(1M (x0) + S(x0, ¥0) | + [[N(vo) + T(x0, 30|
< [IM(x) + S(x0, o) + [INW) + T(x0, y0) [l
for all (x,y) e KxK. O

Applying Lemma 2.1, we have the following theorem on existence solutions the
SNVI problem (1).

Theorem 2.1. In addition to the hypotheses of Lemma 2.1 suppose that for every
(x,y) e KxK

0 € M(K)+ S(x,y) and 0 € N(K) + T(x, ). (14)
Then there exists (xy,y9) € KX K such that

0 € (0, ) + M(x) and 0 € T(xo, 30) + N(vy).

Proof. From Lemma 2.1, we have that there exists (xg,y9) € KX K such that

(1M (x0) + S(x0, o) | + IN(vo) + T(x0, 39|

= nf {IM0x) + SCxo, )|+ ING) + T, sy -

From condition (14) we obtain that

i (M) 4 S, o) |+ [ING) + Txo, o) [} = 0.

so, we have
[[M(x0) + S(x0, yo)[l + [N (vo) + T(x0, 1)l = 0,

hence,

0 € M(xo) + S(x0,¥,) and 0 € N(y,) + T(x0,¥y)-
O
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3. A COUPLED COINCIDENCE POINT

Applying Theorem 2.1, we have the following multivalued coupled coincidence point
theorem.

Theorem 3.1. Let X be a normed space, K a nonempty convex compact subset of X,
F:KxK— X continuous mapping and G : K — 2% continuous convex mapping with
compact values such that F(Kx K) c G(K). Then F and G have a multivalued coupled
coincidence point.

Proof. Put

S(X,y) = _F(xvy)v T(xvy) = —F(y,x) for X,y € Ka
M(x) = G(x), N(y) = G(y) for x,y € K.

Then S,7.M and N satisfy all of the requirements of Theorem 2.1. Therefore, there
exists (xg,)0) € K such that

0 € —F(x0,y,) + G(x0) and 0 € —F(y,, x0) + G(¥,)
ie.
F(x0,¥9) € G(xo) and F(yy, x0) € G(yy)-
O
Corollary 3.1. Let X be a normed space, K a nonempty convex compact subset of

X,F: Kx K— X continuous mapping and g : K — X continuous almost-affine mapping
such that F(KxX K) c g(K). Then F and g have a coupled coincidence point.

Proof. Let G(x) = {g(x)} and apply Theorem 3.1. [

Corollary 3.2. Let X be a normed space, K a nonempty convex compact subset of
X,F: Kx K— K continuous mapping. Then F has a coupled fixed point.

Proof. Let G(x) = {x} and apply Theorem 3.1. [

4. A COUPLED BEST APPROXIMATIONS

Theorem 4.1. Let X be a normed space, K a nonempty convex compact subset of X,
F:Kx K— X continuous mapping and G : K — 2% continuous convex mapping with
compact values. Then there exists (xy,y9) € KX K such that

1G(x0) = F(x0, ¥0) | + |G (yo) — F (o, X0
= inf  {[[G(x) = Flxo, y)ll + 1G(y) = F(yg, x0) 1 }- (15)

(x,y)eKxK
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Proof. Put

S(x,y) = —F(x,y), T(x,y)=—F(,x) for x,y € K,
M(x) =G(x), N(»)=G() for x,y € K.

Then S,7,M and N satisfy all of the requirements of Lemma 2.1. Therefore, there exists
(x0,y0) € K x K such that (15) holds. O

Corollary 4.1. Let X be a normed space, K a nonempty convex compact subset of X,
F: Kx K— X continuous map and g : K — X continuous almost-affine map. Then there
exists (xg, yo) € KX K such that

||g(x0)_F(x0aJ’o)”+||g(y0)_F(J/0ax0)”:( inf  {llg(x) — F(x0, 70l

x,y)eEKxK

+ llg(y) = Fwo, xo)[I}-

Corollary 4.2. Let X be a normed space, K a nonempty convex compact subset of X,
F: Kx K— X continuous mapping. Then there exists (x9,y9) € KX K such that

%0 = o, 5l + 13y = F )l = i€ {llx = Flxa,3y)| + 1y = F )
(16)
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