Remark on the system of nonlinear variational inclusions

ZORAN D. MITROVIĆ *

Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

Received 4 December 2012; revised 8 February 2013; accepted 8 April 2013 Available online 27 April 2013

Abstract. We prove the existence of a solution to the system of nonlinear variational inclusions problem. We provide examples of applications related to a coupled best approximations theorem for multivalued mappings and a multivalued coupled coincidence point.

2000 Mathematics subject classification: 47H10; 54H25

Keywords: Variational inclusions; Coupled fixed point; Coupled coincidence point; KKM mapping

1. Introduction and preliminaries

In the paper [12] Verma introduced the system of nonlinear variational inclusions (SNVI) problem: finding $(x_0,y_0) \in H_1 \times H_2$ such that

$$0 \in S(x_0, y_0) + M(x_0), \quad 0 \in T(x_0, y_0) + N(y_0), \tag{1}$$

where H_1 and H_2 are real Hilbert spaces, $S: H_1 \times H_2 \to H_1$, $T: H_1 \times H_2 \to H_2$ are mappings and $M: H_1 \to 2^{H_1}$, $N: H_2 \to 2^{H_2}$ are multivalued mappings.

1. If $M(\cdot) = \partial f(\cdot)$ and $N(\cdot) = \partial g(\cdot)$ where $\partial f(\cdot)$ is the subdifferential of a proper, convex and lower semicontinuous functions $f: H_1 \to \mathbb{R} \cup \{+\infty\}$ and $g: H_1 \to \mathbb{R} \cup \{+\infty\}$ then problem SNVI reduces to finding $(x_0, y_0) \in K_1 \times K_2$ such that

E-mail address: zmitrovic@etfbl.net

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

^{*} Tel.: + 387 51221820.

50 Z.D. Mitrović

$$\langle S(x_0, y_0), x - x_0 \rangle + f(x) - f(x_0) \geqslant 0 \quad \text{for all } x \in K_1,$$
 (2)

$$\langle T(x_0, y_0), y - y_0 \rangle + g(x) - g(y_0) \ge 0$$
 for all $y \in K_2$, (3)

where K_1 and K_2 , respectively, are nonempty closed convex subsets of H_1 and H_2 .

2. When $M(x) = \partial_{K_1}(x)$ and ∂_{K_2} denote indicator functions of K_1 and K_2 , respectively, the SNVI problem (1) reduces to system of nonlinear variational inequalities problem: finding $(x_0, y_0) \in K_1 \times K_2$ such that

$$\langle S(x_0, y_0), x - x_0 \rangle \geqslant 0$$
 for all $x \in K_1$, (4)

$$\langle T(x_0, y_0), y - y_0 \rangle \geqslant 0$$
 for all $y \in K_2$. (5)

3. If $H_1 = H_2 = X$, S(x,y) = -F(x,y), T(x,y) = -F(y,x), M(x) = G(x), N(x) = G(x) for all $x,y \in X$ then (1) reduces to finding $(x_0,y_0) \in X \times X$, such that

$$F(x_0, y_0) \in G(x_0), \qquad F(y_0, x_0) \in G(y_0),$$
 (6)

which is a multivalued coupled coincidence point problem.

4. If G is a single-valued mapping and $G(x) = \{g(x)\}\$ for all $x \in X$ then (6) reduces to finding $(x_0, y_0) \in X \times X$, such that

$$F(x_0, y_0) = g(x_0), \quad F(y_0, x_0) = g(y_0),$$
 (7)

which is known as a coupled coincidence point problem, considered by Lakshmi-kantham and Ćirić [7].

5. If g is an identity mapping, then (7) is equivalent to finding $(x_0, y_0) \in X \times X$, such that

$$F(x_0, y_0) = x_0, \quad F(y_0, x_0) = y_0,$$
 (8)

which is known as a coupled fixed point problem, considered by Bhaskar and Lakshmikantham [3].

The aim of this paper is to obtain the results existence of a solution of SNVI problem (1) using the KKM technique.

We need the following definitions and results.

Let $F: X \multimap Y$ be a multivalued mapping from a set X into the power set of a set Y. For $A \subseteq X$, let $F(A) = \bigcup \{F(x) : x \in A\}$. For any $B \subseteq Y$, the lower inverse and upper inverse of B under F are defined by

$$F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$$
 and $F^+(B) = \{x \in X : F(x) \subseteq B\}$,

respectively.

A mapping $F: X \multimap Y$ is upper (lower) semicontinuous on X if and only if for every open $V \subseteq Y$, the set $F^+(V)$ ($F^-(V)$) is open. A mapping $F: X \multimap Y$ is continuous if and only if it is upper and lower semicontinuous. A mapping $F: X \multimap Y$ with compact values is continuous if and only if F is a continuous mapping in the Hausdorff distance, see for example [4].

Let X be a normed space. If A and B are nonempty subsets of X, we define

$$A + B = \{a + b : a \in A, b \in B\} \text{ and } ||A|| = \inf\{||a|| : a \in A\}.$$

We will use the notion a C-convex map for multivalued maps.

Definition 1.1 (Borwein [5]). Let X and Y be real vector spaces, K a nonempty convex subset of X and C is a cone in Y. A multivalued mapping $F:K \multimap Y$ is said to be C-convex if,

$$\lambda F(x_1) + (1 - \lambda)F(x_2) \subset F(\lambda x_1 + (1 - \lambda)x_2) + C$$
 (9)

for all $x_1, x_2 \in K$ and all $\lambda \in [0,1]$.

A mapping F is convex if it satisfies condition (9) with $C = \{0\}$ (see for example, Nikodem [8], Nikodem and Popa [9]). If F is a single-valued mapping, $Y = \mathbb{R}$ and $C = [0, +\infty)$, we obtain the standard definition of convex functions. The convex multivalued mappings play an important role in convex analysis, economic theory and convex optimization problems see for example [1,2,5,11].

Lemma 1.1 (Nikodem [8]). If a multivalued mapping $F:K \rightarrow Y$ is C-convex, then

$$\lambda_1 F(x_1) + \dots + \lambda_n F(x_n) \subset F(\lambda_1 x_1 + \dots + \lambda_n x_n) + C, \tag{10}$$

for all $n \in \mathbb{N}, x_1, \ldots, x_n \in K$ and $\lambda_1, \ldots, \lambda_n \in [0,1]$ such that $\lambda_1 + \ldots + \lambda_n = 1$.

From Lemma 1.1 we easily obtain the following lemma.

Lemma 1.2. Let K be a convex subset of normed space X if the multivalued mapping $F: K \multimap X$ is convex, then

$$\left\| F\left(\sum_{i=1}^{n} \lambda_i x_i\right) + u \right\| \leqslant \sum_{i=1}^{n} \lambda_i \|F(x_i) + u\| \tag{11}$$

for all $n \in \mathbb{N}, x_1, \ldots, x_n \in K, u \in X$ and $\lambda_1, \ldots, \lambda_n \in [0,1]$ such that $\lambda_1 + \ldots + \lambda_n = 1$.

Definition 1.2 (Prolla [10]). Let X be a normed space and C a nonempty convex subset of X. A map $g: C \to X$ is almost affine if for all $x, y \in C$ and $u \in C$

$$||g(\lambda x + (1 - \lambda)y) - u|| \le \lambda ||g(x) - u|| + (1 - \lambda)||g(y) - u||$$

for each λ with $0 < \lambda < 1$.

Remark 1.1. If $F: K \to K$ is single valued and almost-affine mapping then the condition (11) holds.

Definition 1.3. Let K be a nonempty subset of a topological vector space X. A multivalued mapping $H: K \to 2^X$ is called a KKM mapping if, for every finite subset $\{x_1, x_2, \ldots, x_n\}$ of K,

$$co\{x_1, x_2, \ldots, x_n\} \subset \bigcup_{i=1}^n H(x_i),$$

where co denotes the convex hull.

52 Z.D. Mitrović

Lemma 1.3 (Ky Fan [6], Lemma 1). Let X be a topological vector space, K be a non-empty subset of X and $H:K \to 2^X$ a mapping with closed values and KKM mapping. If H(x) is compact for at least one $x \in K$ then $\bigcap_{x \in K} H(x) \neq \emptyset$.

2. Main result

Lemma 2.1. Let X be a normed space, K a nonempty convex compact subset of X, $S,T: K \times K \to X$ continuous mappings and $M,N: K \to 2^X$ continuous convex mappings with compact values. Then there exists $(x_0,y_0) \in K \times K$ such that

$$||M(x_0) + S(x_0, y_0)|| + ||N(y_0) + T(x_0, y_0)||$$

= $\inf_{(x,y) \in K \times K} \{||M(x) + S(x_0, y_0)|| + ||N(y) + T(x_0, y_0)||\}.$

Proof. Define a multivalued mapping $H: K \times K \to 2^{K \times K}$ by

$$H(z,t) = \{(x,y) \in K \times K : ||M(x) + S(x,y)|| + ||N(y) + T(x,y)|| \\ \leq ||M(z) + S(x,y)|| + ||N(t) + T(x,y)|| \} \quad \text{for each } (z,t) \in K \times K.$$

We have that $(z,t) \in H(z,t)$, hence H(z,t) is nonempty for all $(z,t) \in K \times K$.

The mappings S,T,M and N are continuous and we have that H(z,t) is closed for each $(z,t) \in K \times K$.

Since $K \times K$ is a compact set we have that H(z,t) is compact for each $(z,t) \in K \times K$.

Mapping *H* is a KKM map. Namely, suppose for any $(z_i,t_i) \in K \times K$, $i \in \{1, ..., n\}$, there exists

$$(z_0, t_0) \in co\{(z_1, t_1), \dots, (z_n, t_n)\},$$
 (12)

such that

$$(z_0, t_0) \notin \bigcup_{i=1}^n H(z_i, t_i).$$
 (13)

From (12) we obtain that there exist $\lambda_i \ge 0, i \in \{1, ..., n\}$, such that

$$(z_0, t_0) = \sum_{i=1}^n \lambda_i(z_i, t_i)$$
 and $\sum_{i=1}^n \lambda_i = 1$.

Since M is convex mapping, from Lemma 1.2, we have

$$||M(z_0) + S(z_0, t_0)|| \le \sum_{i=1}^n \lambda_i ||M(z_i) + S(z_0, t_0)||.$$

In a similar way, since N is convex mapping, we have

$$||N(t_0) + T(z_0, t_0)|| \le \sum_{i=1}^n \lambda_i ||N(t_i) + T(z_0, t_0)||.$$

In other hand, from (13) we obtain

$$||M(z_0) + S(z_0, t_0)|| + ||N(t_0) + T(z_0, t_0)|| > ||M(z_i) + S(z_0, t_0)|| + ||N(t_i) + T(z_0, t_0)||$$

for all $i \in \{1, ..., n\}$. This is a contradiction and H is KKM mapping. From Lemma 1.3 it follows that there exists $(x_0, y_0) \in K \times K$ such that

$$(x_0, y_0) \in H(x, y)$$
 for all $(x, y) \in K \times K$.

So,

$$||M(x_0) + S(x_0, y_0)|| + ||N(y_0) + T(x_0, y_0)||$$

$$\leq ||M(x) + S(x_0, y_0)|| + ||N(y) + T(x_0, y_0)||,$$

for all $(x,y) \in K \times K$. \square

Applying Lemma 2.1, we have the following theorem on existence solutions the SNVI problem (1).

Theorem 2.1. In addition to the hypotheses of Lemma 2.1 suppose that for every $(x,y) \in K \times K$

$$0 \in M(K) + S(x, y) \text{ and } 0 \in N(K) + T(x, y).$$
 (14)

Then there exists $(x_0, y_0) \in K \times K$ such that

$$0 \in S(x_0, y_0) + M(x_0)$$
 and $0 \in T(x_0, y_0) + N(y_0)$.

Proof. From Lemma 2.1, we have that there exists $(x_0, y_0) \in K \times K$ such that

$$||M(x_0) + S(x_0, y_0)|| + ||N(y_0) + T(x_0, y_0)||$$

= $\inf_{(x,y) \in K \times K} \{||M(x) + S(x_0, y_0)|| + ||N(y) + T(x_0, y_0)||\}.$

From condition (14) we obtain that

$$\inf_{(x,y)\in K\times K} \{\|M(x) + S(x_0,y_0)\| + \|N(y) + T(x_0,y_0)\|\} = 0,$$

so, we have

$$||M(x_0) + S(x_0, y_0)|| + ||N(y_0) + T(x_0, y_0)|| = 0,$$

hence,

$$0 \in M(x_0) + S(x_0, y_0) \text{ and } 0 \in N(y_0) + T(x_0, y_0).$$

54 Z.D. Mitrović

3. A COUPLED COINCIDENCE POINT

Applying Theorem 2.1, we have the following multivalued coupled coincidence point theorem.

Theorem 3.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \to X$ continuous mapping and $G: K \to 2^X$ continuous convex mapping with compact values such that $F(K \times K) \subseteq G(K)$. Then F and G have a multivalued coupled coincidence point.

Proof. Put

$$S(x, y) = -F(x, y), T(x, y) = -F(y, x) \text{ for } x, y \in K,$$

 $M(x) = G(x), N(y) = G(y) \text{ for } x, y \in K.$

Then S,T,M and N satisfy all of the requirements of Theorem 2.1. Therefore, there exists $(x_0,y_0) \in K$ such that

$$0 \in -F(x_0, y_0) + G(x_0)$$
 and $0 \in -F(y_0, x_0) + G(y_0)$

i.e.

$$F(x_0, y_0) \in G(x_0) \text{ and } F(y_0, x_0) \in G(y_0).$$

Corollary 3.1. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \to X$ continuous mapping and $g: K \to X$ continuous almost-affine mapping such that $F(K \times K) \subseteq g(K)$. Then F and g have a coupled coincidence point.

Proof. Let $G(x) = \{g(x)\}$ and apply Theorem 3.1. \square

Corollary 3.2. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \to K$ continuous mapping. Then F has a coupled fixed point.

Proof. Let $G(x) = \{x\}$ and apply Theorem 3.1. \square

4. A COUPLED BEST APPROXIMATIONS

Theorem 4.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \to X$ continuous mapping and $G: K \to 2^X$ continuous convex mapping with compact values. Then there exists $(x_0, y_0) \in K \times K$ such that

$$||G(x_0) - F(x_0, y_0)|| + ||G(y_0) - F(y_0, x_0)||$$

$$= \inf_{(x,y) \in K \times K} \{||G(x) - F(x_0, y_0)|| + ||G(y) - F(y_0, x_0)||\}.$$
(15)

Proof. Put

$$S(x,y) = -F(x,y), \quad T(x,y) = -F(y,x) \text{ for } x,y \in K,$$

$$M(x) = G(x), \quad N(y) = G(y) \text{ for } x,y \in K.$$

Then S,T,M and N satisfy all of the requirements of Lemma 2.1. Therefore, there exists $(x_0,y_0) \in K \times K$ such that (15) holds. \square

Corollary 4.1. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \to X$ continuous map and $g: K \to X$ continuous almost-affine map. Then there exists $(x_0, y_0) \in K \times K$ such that

$$||g(x_0) - F(x_0, y_0)|| + ||g(y_0) - F(y_0, x_0)|| = \inf_{(x, y) \in K \times K} \{||g(x) - F(x_0, y_0)|| + ||g(y) - F(y_0, x_0)||\}.$$

Corollary 4.2. Let X be a normed space, K a nonempty convex compact subset of X, $F: K \times K \to X$ continuous mapping. Then there exists $(x_0, y_0) \in K \times K$ such that

$$||x_0 - F(x_0, y_0)|| + ||y_0 - F(y_0, x_0)|| = \inf_{(x, y) \in K \times K} \{||x - F(x_0, y_0)|| + ||y - F(y_0, x_0)||\}.$$
(16)

REFERENCES

- [1] J.P. Aubin, H. Frankowska, Set-valued Analysis, Birkhauser, Boston, Basel, Berlin, 1990.
- [2] C. Berge, Espaces Topologiques. Fonctions Multivoques, Dunod, Paris, 1966.
- [3] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA 65 (2006) 1379–1393.
- [4] Ju. G. Borisovic, B.D. Gelman, A.D. Myskis, V.V. Obuhovskii, Topological methods in the fixed-point theory of multi-valued maps (Russian), Uspekhi Mat. Nauk 211 (35) (1980) 59–126, No. 1.
- [5] J.M. Borwein, Multivalued convexity and optimization: a unified approach to inequality and equality constraints, Math. Program. 13 (1977) 183–199.
- [6] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961) 305-310.
- [7] V. Lakshmikantham, LJ. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA 70 (2009) 4341–4349.
- [8] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz. Mat. 559, Rozprawy Nauk. 114 Lódz (1989).
- [9] K. Nikodem, D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math. Anal. 3 (2009) 44–51.
- [10] J.B. Prolla, Fixed point theorems for set-valued mappings and existence of best approximants, Numer. Funct. Anal. Optimiz. 5 (1982-83) 449–455.
- [11] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
- [12] Ram U. Verma, A-monotonicity and applications to nonlinear variational inclusions problems, J. Appl. Math. Stoch. Anal. (2004) 193–195.