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Redheffer type inequalities for modified Bessel functions
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Abstract. In this short note, we give new proofs of Redheffer’s inequality for modified
Bessel functions of first kind published by Ling Zhu (2011). In addition, using the Grosswald
formula we prove new Redheffer type inequality for the modified Bessel functions of the
second kind.
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1. INTRODUCTION

This following inequality

sin x

x
≥ π2 − x2

π2 + x2
, for all x ∈ R (1)

is known in literature as Redheffer’s inequality [5]. J. P. Williams [7] proved the inequality
(1). Chen et al. [2] obtained the following three Redheffer type inequalities for the functions
cos x, sinh x

x and cosh x

cos x ≥ π2 − 4x2

π2 + 4x2
, x ∈ [0,

π

2
]. (2)

cosh x ≤ π2 + 4x2

π2 − 4x2
, x ∈ [0,

π

2
[. (3)

sinh x

x
≥ π2 + x2

π2 − x2
, x ∈ [0, π]. (4)
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Recently, some extensions of inequalities (3) and (4) involving modified Bessel function have
been shown in Baricz [1]. Define the function Ip : R −→ [1, +∞[ by

Ip(x) = 2pΓ (p + 1)
Ip(x)
xp

=

n≥0


1
4

n

(p + 1)nn!
x2n

where (p+1)n = (p+1)(p+2) · · · (p+n) = Γ(p+n+1)
Γ(p+1) is the well-known Pochhammer (or

Appel) symbol defined in terms of Euler’s gamma function, and Ip(x) is the modified Bessel
function. Recall that in 2007 Baricz [1] proved that for all p > −1, the following inequality

Ip(x) ≤
j2
p,1 + x2

j2
p,1 − x2

, x ∈]0, jp,1[

where jp,n is the nth positive zero of the Bessel function Jp(x).
In 2008, L. Zhu and J. Sun [9] extended and sharpened inequalities (3) and (4) as follows.

Theorem 1. Let 0 < x < r. Then
r2 + x2

r2 − x2

α

≤ sinh x

x
≤


r2 + x2

r2 − x2

β

(5)

holds if and only if α ≤ 0 and β ≥ r2

12 .

Theorem 2. Let 0 ≤ x < r. Then
r2 + x2

r2 − x2

α

≤ cosh x ≤


r2 + x2

r2 − x2

β

(6)

holds if and only if α ≤ 0 and β ≥ r2

4 .

Next, let us recall the following result which will be used in the sequel.

Lemma 1. Let f, g : [a, b] −→ R two continuous functions which are differentiable on (a, b).
Further, let g′ ≠ 0 on (a, b). If f ′

g′ is increasing (or decreasing) on (a, b), then the functions
f(x)−f(a)
g(x)−g(a) and f(x)−f(b)

g(x)−g(b) are also increasing (or decreasing) on (a, b).

Proof. Denoting by φ(x) = f(x)−f(a)
g(x)−g(a) , a simple calculation reveals that the numerator of φ′

equals
f ′(x)
g′(x)

− f(x) − f(a)
g(x) − g(a)


g′(x)(g(x) − g(a))

from which the stated result follows upon applying Cauchy’s mean value theorem and the
monotonicity hypotheses in the lemma. �
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2. THE REDHEFFER TYPE INEQUALITIES INVOLVING MODIFIED BESSEL

FUNCTIONS

In this theorem, we give a new proof of Redheffer type inequality involving modified
Bessel functions published by Ling Zhu in [8].

Theorem 3 ([8]). Let 0 < x < r and p > −1 then the following inequalities


r2 + x2

r2 − x2

α

≤ Ip(x) ≤


r2 + x2

r2 − x2

β

(7)

holds, if and only if α ≤ 0 and β ≥ r2

8(p+1) .

Proof. We consider the function fp :]0, r[−→ R defined by

fp(x) =
r2

8(p + 1)
log


r2 + x2

r2 − x2


− log (Ip(x)) .

Then fp(0) = 0, and

f ′
p(x) =

r4x

2(p + 1)(r4 − x4)
−

I ′
p(x)

Ip(x)
.

Now, using the relation [6, p. 79]

d

dx


Ip(x)
xp


=

Ip+1(x)
xp

(8)

and the Mittag-Leffler expansion for the modified Bessel functions of first kind, which
becomes [3, Eq. 7.9.3]

Ip+1(x)
Ip(x)

=
∞

n=1

2x

j2
p,n + x2

,

we have

f ′
p(x) =

r4x

2(p + 1)(x4 − r4)
−

∞
n=1

2x

j2
p,n + x2

.

Using now the Rayleigh formula [6, p. 502]

∞
n=1

1
j2
p,n

=
1

4(p + 1)
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we get

f ′
p(x) =

2r4x

(r4 − x4)

∞
n=1

1
j2
p,n

−
∞

n=1

2x

j2
p,n + x2

= 2xr4

 ∞
n=1

1
j2
p,n(r4 − x4)

−
∞

n=1

1
r4(j2

p,n + x2)



= 2x3
∞

n=1

r4 + j2
p,nx2

j2
p,n(r4 − x4)(j2

p,n + x2)
. (9)

Therefore the function fp is increasing on ]0, r[ for all p > −1, and hence fp(x) ≥ fp(0) = 0,
which implies the right-hand side of (7). To prove the left-hand side of (7), from the
recurrence formula (8) we conclude that the function x −→ Ip(x) is increasing on ]0, r[
for all p > −1 and hence Ip(x) ≥ 1. We shall establish the result for the boundary cases
α = 0 and β = r2

8(p+1) and show that these are sharp bounds. We consider the function
gp :]0, r[−→ R, defined by

gp(x) =
log (Ip(x))

log


x2+r2

x2−r2

 .

We note that limx−→r gp(x) = 0 = α and using the l’Hospital rule we have

lim
x−→0

gp(x) = lim
x−→0

I ′
p(x)

Ip(x)
· r4 − x4

4xr4

=
∞

n=1

2x

j2
p,n + x2

· r4 − x4

4xr4
= β. (10)

Therefore α = 0 and β = r2

8(p+1) are indeed the best possible constants. Alternatively,
inequality (7) can be proved by using the monotone form of l’Hospital’s rule. Namely, it is
enough to observe that

x −→
d
dx log (Ip(x))
d
dx log


x2+r2

x2−r2

 =
1

2r2

∞
n=1

r4 − x4

j2
p,n + x2

is decreasing on ]0, r[ as each terms in the above series is decreasing. Therefore gp is
decreasing too on ]0, r[ by Lemma 1 and hence

α = lim
x−→r

gp(x) ≤ gp(x) ≤ lim
x−→0

gp(x) = β,

which gives the inequality (7). So the proof of Theorem 3 is complete. �

Now, for p > 0 let us consider the function Kp : (0, ∞) −→ (0, 1) defined by

Kp(x) =
xpKp(x)
2p−1Γ (p)

,

where Kp(x) is the modified Bessel functions of the second kind.
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Theorem 4. Let n ∈ N0 and 0 < x < r, then the following inequality

exKn+ 1
2
(x) ≤


r + x

r − x

γn

, (11)

holds, if and only if γn ≥ −r
2 βn, where βn =

n
j=1

1
αj

and α1, . . . , αn are the zeros of
Kn+ 1

2
.

Proof. Let n ∈ N0, r > 0 and α1, . . . , αn are the zeros of Kn+ 1
2
(x) (see [6], p. 511–513).

We consider the function hn defined by

hn(x) = exKn+ 1
2
(x),

where 0 < αj < x < r for all j = 1, . . . , n. Then hn(0) = 0. From the Grosswald formula
in [4] we deduce that the function

x −→
d
dx log hn(x)
d
dx log


r+x
r−x

 =
1
2r

n
j=1

r2 − x2

x − αj

is decreasing on (0, r) as each terms in the above series are decreasing. Thus, the function
hn(x) is also decreasing by Lemma 1. Furthermore,

lim
x−→0

hn(x) = − r

2

n
j=1

1
αj

,

which completes the proof. �
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