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Abstract. A sign pattern is a matrix whose entries belong to the set {+, −, 0}. An n-by-n
sign pattern A is said to allow an eventually positive matrix or be potentially eventually
positive if there exist at least one real matrix A with the same sign pattern as A and a
positive integer k0 such that Ak > 0 for all k ≥ k0. Identifying the necessary and
sufficient conditions for an n-by-n sign pattern to be potentially eventually positive, and
classifying the n-by-n sign patterns that allow an eventually positive matrix were posed as
two open problems by Berman, Catral, Dealba, et al. In this article, we focus on the potential
eventual positivity of a collection of the n-by-n tree sign patterns An,4 whose underlying
graph G(An,4) consists of a path P with 4 vertices, together with (n − 4) pendent vertices
all adjacent to the same end vertex of P . Some necessary conditions for the n-by-n tree
sign patterns An,4 to be potentially eventually positive are established. All the minimal
subpatterns of An,4 that allow an eventually positive matrix are identified. Consequently,
all the potentially eventually positive subpatterns of An,4 are classified.
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1. INTRODUCTION

A sign pattern is a matrix A = [αij ] with entries in the set {+, −, 0}. An n-by-n real
matrix A with the same sign pattern as A is called a realization of A. The set of all realizations
of sign pattern A is called the qualitative class of A and is denoted by Q(A). A subpattern
of A = [αij ] is an n-by-n sign pattern B = [βij ] such that βij = 0 whenever αij = 0. If
B ̸= A, then B is a proper subpattern of A. If B is a subpattern of A, then A is said to be a
superpattern of B. A pattern A is reducible if there is a permutation matrix P such that

P T AP =


A11 0
A21 A22


,

where A11 and A22 are square matrices of order at least one. A pattern is irreducible if it is
not reducible; see, e.g. [3] and [4] for more details.

A sign pattern matrix A is said to require a certain property P referring to real matrices if
every real matrix A ∈ Q(A) has the property P and allow P or be potentially P if there is
some A ∈ Q(A) that has property P .

Recall that an n-by-n real matrix A is said to be eventually positive if there exists a
nonnegative integer k0 such that Ak > 0 for all k ≥ k0; see, e.g., [7]. Eventually positive
matrices have applications to dynamical systems in situations where it is of interest to
determine whether an initial trajectory reaches positivity at a certain time and remains positive
thereafter; see e.g., [8]. An n-by-n sign pattern A is said to allow an eventually positive
matrix or be potentially eventually positive (PEP), if there exists some A ∈ Q(A) such that
A is eventually positive; see, e.g., [2] and the references therein.

Sign patterns that allow an eventually positive matrix were studied first in [2], where a suf-
ficient condition and some necessary conditions for a sign pattern to be potentially eventually
positive were established. However, the identification of necessary and sufficient conditions
for an n-by-n sign pattern (n ≥ 4) to be potentially eventually positive remains open. Also
open is the classification of sign patterns that are potentially eventually positive.

Recall that an n-by-n real matrix A is said to be power-positive if there exists a
nonnegative integer k such that Ak > 0. An n-by-n sign pattern A is said to allow a power-
positive matrix or be potentially power-positive (PPP), if there exists some A ∈ Q(A) such
that A is power-positive; see, e.g., [5]. A relation between potentially eventually positive sign
patterns and potentially power-positive sign patterns was established in [5]. An n-by-n sign
pattern A is said to be a minimal potentially eventually positive sign pattern (MPEP sign
pattern) if A is PEP and no proper subpattern of A is PEP; see, e.g. [12] for more details. An
n-by-n sign pattern A is said to a minimal potentially power-positive (MPPP) sign pattern, if
A is potentially power-positive and no proper subpattern of A is potentially power-positive;
see, [10] for example. A relation between the minimal potentially eventually positive sign
patterns and the minimal potentially power-positive sign patterns was investigated in [10].
At present, there are a few literatures on the potential eventual positivity of sign pattern
matrices with certain underlying combinatorial structures. A family of potentially eventually
positive sign patterns with reducible positive part were constructed in [1]. The potentially
eventually positive double star sign patterns of order n were identified and classified in [12].
More recently, the n-by-n minimal potentially eventually positive tridiagonal sign patterns
were identified and all n-by-n potentially eventually positive tridiagonal sign patterns were
classified in [11].
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In this article, we focus on the eventual positivity of a collection of the n-by-n (n ≥ 4)
tree sign patterns An,4 whose underlying broom graph G(An,4) consists of a path P with 4
vertices, together with (n − 4) pendent vertices all adjacent to the same end vertex of P . Our
work is organized as follows. In Section 2, some preliminary results for the tree sign patterns
An,4 to allow an eventually positive matrix are established. In Section 3, all the minimal
potentially eventually positive subpatterns of An,4 are identified as five specific tree sign
patterns, and hence all the potentially eventually positive subpatterns of An,4 are classified.

2. PRELIMINARY RESULTS

We begin this section with introducing some necessary graph theoretical concepts which
can be seen from [3,7] and the references therein.

A square sign pattern A = [αij ] is combinatorially symmetric if αij ≠ 0 whenever
αji ≠ 0. Let G(A) be the graph of order n with vertices 1, 2, . . . , n and an edge {i, j}
joining vertices i and j if and only if i ≠ j and αij ≠ 0. We call G(A) the graph of the
pattern A. A combinatorially symmetric sign pattern matrix A is called a tree sign pattern if
G(A) is a tree. Similarly, path (or tridiagonal) and double star sign patterns can be defined.

A sign pattern A = [αij ] has signed digraph Γ (A) with vertex set {1, 2, . . . , n}
and a positive (respectively, negative) arc from i to j if and only if αij is positive
(respectively, negative). A (directed) simple cycle of length k is a sequence of k arcs
(i1, i2), (i2, i3), . . . , (ik, i1) such that the vertices i1, . . . , ik are distinct. Recall that a digraph
D = (V,E) is primitive if it is strongly connected and the greatest common divisor of the
lengths of its cycles is 1. It is well known that a digraph D is primitive if and only if there
exists a natural number k such that for all Vi ∈ V , Vj ∈ V , there is a walk of length k from
Vi to Vj . A nonnegative sign pattern A is primitive if its signed digraph Γ (A) is primitive;
see, e.g. [2] for more details.

For a sign pattern A = [αij ], the positive part of A is defined to be A+ = [α+
ij ], where

α+
ij = + for αij = +, otherwise α+

ij = 0. The negative part of A can be defined similarly.
In [2], it has been shown that if sign pattern A+ is primitive, then A is PEP. Here, we cite
some necessary conditions for an n-by-n sign pattern to be potentially eventually positive
in [2] as Lemmas 1–4 in order to state our work clearly.

Lemma 1. If the n-by-n sign pattern A is PEP, then every superpattern of A is PEP.

Lemma 2. If the n-by-n sign pattern A is PEP, then the sign pattern Â obtained from sign
pattern A by changing all 0 and − diagonal entries to + is also PEP.

Lemma 3. If the n-by-n sign pattern A is PEP, then there is an eventually positive matrix
A ∈ Q(A) such that

(1) ρ(A) = 1.

(2) A1 = 1, where 1 is the n × 1 all ones vector.

(3) If n ≥ 2, the sum of all the off-diagonal entries of A is positive.
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Fig. 1. The underlying graph.

We denote a sign pattern consisting entirely of positive (respectively, negative) entries by
[+] (respectively, [−]). Let [+]i be a square block sign pattern of order i consisting entirely
of positive entries. For block sign patterns, we have the following Lemma 4.

Lemma 4. If A is the checkerboard block sign pattern
[+] [−] [+] · · ·
[−] [+] [−] · · ·
[+] [−] [+] · · ·

...
...

...
. . .


with square diagonal blocks. Then −A is not PEP, and if A has a negative entry, then A is
not PEP.

Now we turn to all combinatorially symmetric sign patterns with the underlying graph
shown in Fig. 1.

Note that the graph is a broom graph that consists of a path P with 4 vertices, together with
(n − 4) pendant vertices all adjacent to the same end vertex of P ; see [9] for more details.

Let An,4 be a collection of sign patterns all with the same underlying broom graph shown
in Fig. 1 and the diagonal of which is free. Throughout the paper, let An,4 ∈ An,4. Since
sign pattern A is potentially eventually positive if and only if AT or P T AP is potentially
eventually positive, for any permutation pattern P . Thus, without loss of generality, let the
n-by-n tree sign patterns An,4 be of the following form

? ∗ · · · ∗
∗ ?
...

. . .
∗ ? ∗

∗ ? ∗
∗ ?

 ,

where ? denotes an entry from {+, −, 0}, ∗ denotes a nonzero entry and the unspecified
entries are all zeros.

The following propositions are necessary for an n-by-n tree sign pattern An,4 to be
potentially eventually positive.

Proposition 1. If an n-by-n tree sign patterns An,4 is potentially eventually positive, then
An,4 is symmetric.
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Proof. Since tree sign pattern An,4 is potentially eventually positive, let real matrix A =
[aij ] ∈ Q(An,4) be eventually positive. By Lemma 3, let a22 = 1 − a21, a33 =
1 − a31, . . . , an−3,n−3 = 1 − an−3,1, an−2,n−2 = 1 − an−2,1 − an−2,n−1 an−1,n−1 =
1 − an−1,n−2 − an−1,n and an,n = 1 − an,n−1. To complete the proof, it suffices
to show that a21a12 > 0, a31a13 > 0, . . . , a1,n−3an−3,1 > 0, a1,n−2an−2,1 > 0,
an−2,n−1an−1,n−2 > 0 and an−1,nan,n−1 > 0. Suppose the positive left eigenvector of
A is w = (w1, w2, . . . , wn)T . Then by wT A = wT , we have the following equalities:

wn−1an−1,n + wn(1 − an,n−1) = wn, (1)

wn−2,an−2,n−1 + wn−1(1 − an−1,n−2 − an−1,n) + wnan,n−1 = wn−1, (2)

w1a1,n−2 + wn−2(1 − an−2,1 − an−2,n−1) + wn−1an−1,n−2 = wn−2, (3)

and

w1a1k + wk(1 − ak1) = wk, k = 2, 3, . . . , n − 3. (4)

By Equality (4), we have w1a1k = wkak1. Then a1ka1k > 0 for k = 2, 3, . . . , n − 3. By
Equality (1), we have

wn−1an−1,n = wnan,n−1. (5)

It follows that an−1,nan,n−1 > 0. By Equalities (2) and (5), we have

wn−2,an−2,n−1 = wn−1an−1,n−2. (6)

So an−2,n−1an−1,n−2 > 0. By Equalities (3) and (6), we have

w1a1,n−2 = wn−2an−2,1. (7)

Thus, a1,n−2an−2,1 > 0. It follows that tree sign pattern An,4 is symmetric. �

Theorem 1. If an n-by-n tree sign pattern An,4 is potentially eventually positive, then all
nonzero off-diagonal entries of An,4 is +.

Proof. By Proposition 1, the potentially eventually positive tree sign pattern An,4 is
symmetric. To complete the proof, it suffices to show that αn−2,n−1 = +, αn−1,n = +
and α1k = +, for k = 2, 3, . . . , n − 3, n − 2. To state clearly, let s be the number of k
such that α1k = −, 2 ≤ k ≤ n − 3. And let t be the number of negative entries in the set
{α1,n−2, αn−2,n−1, αn−1,n}. Next, we show that s = 0 and t = 0 to complete the proof.

Claim 1. If An,4 is potentially eventually positive, then s = 0.

Proof of Claim 1. By a way of contradiction, assume that s > 0. Then without loss of
generality, let α1k = − for k = 2, 3, . . . , s and α1k = + for k = s + 1, s + 2, . . . , n − 3. For
t, there are four possibilities to be considered.
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Case 1. t = 0.

Then the sign pattern An,4 obtained from An,4 by changing all 0 and − diagonal entries
to + is potentially eventually positive. But An,4 is a proper subpattern of the checkerboard
block sign pattern[+]1 [−] [+]

[−] [+]s [−]
[+] [−] [+]n−s−1

 ,

and thus An,4 cannot be potentially eventually positive by Lemmas 4 and 1; a contradiction.

Case 2. t = 1.

If α1,n−2 = −. Then sign pattern

An,4 =



? − · · · − + · · · + −
− ?
...

. . .
− ?
+ ?
...

. . .
+ ?
− ? +

+ ? +
+ ?


.

The sign pattern An,4 obtained from An,4 by changing all 0 and − diagonal entries to
+ is potentially eventually positive by Lemma 2. But An,4 is a proper subpattern of the
checkerboard block sign pattern

[+]1 [−] [+] [−]
[−] [+]s [−] [+]
[+] [−] [+]n−s−4 [−]
[−] [+] [−] [+]3

 ,

and thus An,4 cannot be potentially eventually positive by Lemmas 4 and 1; a contradiction.
The other two Subcases αn−2,n−1 = − and αn−1,n = − can be shown similarly. For

completeness, we list the corresponding checkerboard block sign patterns
[+]1 [−] [+] [−]
[−] [+]s [−] [+]
[+] [−] [+]n−s−3 [−]
[−] [+] [−] [+]2

 , and


[+]1 [−] [+] [−]
[−] [+]s [−] [+]
[+] [−] [+]n−s−2 [−]
[−] [+] [−] [+]1

 .
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Case 3. t = 2.

If α1,n−2 = αn−2,n−1 = −. Then sign pattern

An,4 =



? − · · · − + · · · + −
− ?
...

. . .
− ?
+ ?
...

. . .
+ ?
− ? −

− ? +
+ ?


.

The sign pattern An,4 obtained from An,4 by changing all 0 and − diagonal entries to
+ is potentially eventually positive by Lemma 2. But An,4 is a proper subpattern of the
checkerboard block sign pattern

[+]1 [−] [+] [−] [+]
[−] [+]s [−] [+] [−]
[+] [−] [+]n−s−4 [−] [+]
[−] [+] [−] [+]1 [−]
[+] [−] [+] [−] [+]2

 ,

and thus An,4 cannot be potentially eventually positive by Lemmas 4 and 1; a contradiction.

The other two Subcases α1,n−2 = αn−1,n = −, and αn−2,n−1 = αn−1,n = − can
be shown similarly. For completeness, we list the corresponding checkerboard block sign
patterns

[+]1 [−] [+] [−] [+]
[−] [+]s [−] [+] [−]
[+] [−] [+]n−s−4 [−] [+]
[−] [+] [−] [+]2 [−]
[+] [−] [+] [−] [+]1

 ,

and 
[+]1 [−] [+] [−] [+]
[−] [+]s [−] [+] [−]
[+] [−] [+]n−s−3 [−] [+]
[−] [+] [−] [+]1 [−]
[+] [−] [+] [−] [+]1

 .
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Case 4. t = 3.

Then a contradiction that sign pattern An,4 is not potentially eventually positive can be
obtained similarly by considering the checkerboard block sign pattern

[+]1 [−] [+] [−] [+] [−]
[−] [+]s [−] [+] [−] [+]
[+] [−] [+]n−s−4 [−] [+] [−]
[−] [+] [−] [+]1 [−] [+]
[+] [−] [+] [−] [+]1 [−]
[−] [+] [−] [+] [−] [+]1

 .

Claim 2. If An,4 is potentially eventually positive, then t = 0.

Proof of Claim 2. By Claim 1, if An,4 is potentially eventually positive, then s = 0. That is,
α1k = + for all k = 2, 3, . . . , n − 3. To complete the proof of Claim 2, it suffices to show
that t ≠ 1, t ≠ 2 and t ≠ 3. By a similar discussion as the proof of Claim 1, a contradiction
can be obtained when t = 1, t = 2 and t = 3, respectively. Below, we list the corresponding
checkerboard block sign patterns for completeness.

For t = 1, the checkerboard block sign patterns to be considered are
[+]n−3 [−]

[−] [+]3


,


[+]n−2 [−]

[−] [+]2


, and


[+]n−1 [−]

[−] [+]1


.

For t = 2, the checkerboard block sign patterns to be considered are[+]n−3 [−] [+]
[−] [+]1 [−]
[+] [−] [+]2

 ,

[+]n−3 [−] [+]
[−] [+]2 [−]
[+] [−] [+]1

 , and

[+]n−2 [−] [+]
[−] [+]1 [−]
[+] [−] [+]1

 .

For t = 3, the checkerboard block sign pattern to be considered is
[+]n−3 [−] [+] [−]

[−] [+]1 [−] [+]
[+] [−] [+]1 [−]
[−] [+] [−] [+]1

 . �

3. THE POTENTIAL EVENTUAL POSITIVITY OF TREE SIGN PATTERNS An,4

Recall that an n-by-n sign pattern A is said to be a minimal potentially eventually positive
sign pattern if A is potentially eventually positive and no proper subpattern of A is potentially
eventually positive. To identify all the minimal potentially eventually positive subpatterns of
A, it is necessary to discuss the numbers of diagonal entries of potentially eventually positive
sign patterns.

Proposition 2. If an n-by-n tree sign pattern An,4 is potentially eventually positive, then
An,4 has at least one positive diagonal entry. That is, there exists some i ∈ {1, 2, . . . , n}
such that αii = +.
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Proof. By a way of contradiction, assume that αii = − or 0, for all k = 1, 2, . . . , n. Since
tree sign pattern An,4 is potentially eventually positive, all nonzero off-diagonal entries are
+ by Theorem 1. Thus, by Lemma 1, without loss of generality, let

An,4 =



− + . . . +
+ −
...

. . .
+ − +

+ − +
+ −

 .

It is clear that An,4 is a proper subpattern of the checkerboard block sign pattern
[−]1 [+] [−] [+]
[+] [−]n−3 [+] [−]
[−] [+] [−]1 [+]
[+] [−] [+] [−]1

 ,

and hence is not potentially eventually positive; a contradiction. Thus, tree sign pattern An,4

has at least one positive diagonal entry. �

For the sake of convenience, let Ai
n,4 be the tree sign pattern An,4 with all nonzero off-

diagonal entries +, αii = + and αjj = 0 for all j ≠ i, i ∈ {1, 2, . . . , n}. For example,

An−1
n,4 =



0 + · · · +
+ 0
...

. . .
+ 0 +

+ + +
+ 0

 .

Theorem 2. A1
n,4, A2

n,4, An−2
n,4 , An−1

n,4 and An
n,4 are minimal potentially eventually positive

sign patterns.

Proof. Tree sign patterns A1
n,4, A2

n,4, An−2
n,4 , An−1

n,4 and An
n,4 are potentially eventually

positive for their positive parts are primitive, respectively. If the diagonal entries of
A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and An

n,4 are changed to be 0, then the corresponding
subpatterns are not potentially eventually positive by Proposition 2. If some nonzero
off-diagonal entries of A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and An

n,4 are changed to be 0, then the
corresponding subpatterns are not irreducible, and thus are not potentially eventually positive.
It follows that no proper subpatterns of A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and An

n,4 are potentially
eventually positive. So A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and An

n,4 are minimal potentially eventually
positive sign patterns. �

The following proposition follows readily from Theorem 2 and Proposition 2.
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Proposition 3. If an n-by-n tree sign pattern An,4 is a minimal potentially eventually
positive sign pattern, then An,4 has exactly one positive diagonal entry and all other diagonal
entries are 0.

In the following theorems, we identify all minimal potentially eventually positive subpat-
terns of An,4 and classify all potentially eventually positive subpatterns of An,4.

Theorem 3. An n-by-n tree sign pattern An,4 is a minimal potentially eventually positive
sign pattern if and only if An,4 is equivalent to one of sign patterns A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4

and An
n,4.

Proof. The sufficiency follows from Theorem 2. For the necessity, if tree sign pattern An,4

is a minimal potentially eventually positive sign pattern, then all nonzero off-diagonal entries
are positive by Theorem 1 and An,4 has exactly one positive diagonal entry by Proposition 3.
Thus, up to equivalence, An,4 is one of sign patterns A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and An

n,4. �

Theorem 4. An n-by-n tree sign pattern An,4 is potentially eventually positive if and only
if An,4 is equivalent to a superpattern of one of sign patterns A1

n,4, A2
n,4, An−2

n,4 , An−1
n,4 and

An
n,4.

Proof. Theorem 4 follows readily from Theorem 3. �

Recall that an arbitrary n-by-n sign pattern A is said to require an eventually positive
matrix (REP, for short), if every matrix A ∈ Q(A) is eventually positive; see e.g., [6]. It
is obvious that an arbitrary sign pattern A is REP, then A is potentially eventually positive.
But the converse is not true. We end this paper by drawing an interesting conclusion about
minimal potentially eventually positive tree sign patterns and REP tree sign patterns with
exactly one positive diagonal entry.

Proposition 4. If an n-by-n tree sign pattern An,4 has exactly one positive diagonal entries,
then the following statements are equivalent:

(1) An,4 is a minimal potentially eventually positive sign pattern;
(2) An,4 is REP;
(3) An,4 is nonnegative and primitive.

Proof. Proposition 4 follows readily from Theorem 3 and Theorem 2.3 in [6]. �
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