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Abstract. By means of two fixed-point theorems on a cone in Banach spaces, some exis-
tence and multiplicity results of positive solutions of a nonlinear fractional differential equa-
tion boundary value problem are obtained. The proofs are based upon some properties of
Green’s function, which are also the key of the paper.
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1. INTRODUCTION

The purpose of this paper is to consider the existence and multiplicity of positive solutions
of the nonlinear fractional differential equation boundary value problem (BVP for short):

Dα
0+u(t) = a(t)f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
m

i=1

βiu(ξi),
(1)

where Dα
0+ is the Riemann–Liouville differential operator of order 2 < α ≤ 3 and m ≥ 1 is

integer and ξi, βi > 0, f(·, ·), a(·) satisfying
(H1) βi > 0 for 1 ≤ i ≤ m, 0 < ξ1 < ξ2 < · · · < ξm < 1 and

m
i=1 βiξ

α−1
i < 1;

(H2) a(t) ∈ L[0, 1] is non-negative and not identically zero on any compact subset of
(0, 1), f : [0, 1] × [0, +∞) → [0, +∞) is continuous.
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Fractional calculus arises in many mathematical models in engineering and scientific dis-
ciplines. In fact, fractional-order models are more accurate than integer-order models in
physics, mechanics, chemistry, aerodynamics, etc., see [3,6,7,5]. During the last few decades,
many papers and books on fractional calculus are devoted to the solvability of initial frac-
tional differential equations, see [12,1,9]. In recent years, many researchers focused on the
solutions, especially the positive solutions of fractional differential equation boundary value
problems, we refer to [4,2] and their references.

Very recently, the following BVP
Dα

0+u(t) = a(t)f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) −
m

i=1

βiu(ξi) = λ,
(2)

where 2 < α ≤ 3, has been studied in [11]. By employing the Leggett–Williams fixed-point
theorem, the author in [11] obtained the existence of three positive solutions for BVP (2). He
proved the following conclusion (a key lemma, which is about some properties of Green’s
function G(t, s) corresponding to BVP (2) and these properties are critical in employing the
Leggett–Williams fixed-point theorem).

Conclusion (See [11], Lemma 5). G(t, s) satisfies the following conditions:
(i) G(t, s) ≥ 0, G(t, s) ≤ G(s, s) for all s, t ∈ [0, 1];
(ii) there exists a positive function g ∈ C(0, 1) such that minγ≤t≤δ G(t, s) ≥ g(s)

G(s, s), s ∈ (0, 1), where 0 < γ < δ < 1 and

g(s) =


δα−1(1 − s)α−1 − (δ − s)α−1

sα−1(1 − s)α−1
, s ∈ (0, m1],γ

δ

α−1

, s ∈ [m1, 1),

where γ < m1 < δ;
(iii) max0≤t≤1

 1

0
G(t, s)ds = Γ(α)

Γ(2α) .
We show that G(t, s) mentioned above is

G(t, s) =
1

Γ (α)


tα−1(1 − s)α−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1 − s)α−1, 0 ≤ t ≤ s ≤ 1,

(3)

where 2 < α ≤ 3.

In the proof of Lemma 5 in [11], the author concludes that for 2 < α ≤ 3,

Γ (α)G(t, s) = tα−1(1 − s)α−1 − (t − s)α−1

is decreasing with respect to t for t ≥ s. But, we declare that the conclusion is wrong because
if we choose α = 3, s = 1

2 , then for 1
2 ≤ t ≤ 1, it is obvious that

Γ (α)G(t, s) = tα−1(1 − s)α−1 − (t − s)α−1 =
1
4
(−3t2 + 4t − 1)

is increasing in [ 12 , 2
3 ] and decreasing in [ 23 , 1]. Thus (i) cannot be obtained, hence (ii) and (iii)

are all invalid since their proofs are based upon (i). We refer to [11] for more details. In fact,
the conclusions above are definitely wrong.
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Coincidentally, the same mistake has appeared in [13], where the following BVP was
studied,

Dα
0+x(t) = q(t)f(t, x(t)), 0 < t < 1,

x(0) = x′(0) = x′′(0) = · · · = xn−2(0) = 0, x(1) =
m

i=1

βix(ξi),
(4)

where n − 1 < α ≤ n and n ≥ 2. The expression of Green’s function corresponding to BVP
(4) is the same as (3), the only difference is that n − 1 < α ≤ n and n ≥ 2. The author also
concluded that G(t, s) is decreasing with respect to t for t ≥ s and increasing with respect to
t for t ≤ s. Unfortunately, we can also verify that this conclusion is wrong.

In this paper, we will give some proper properties of Green’s function G(t, s) in
Lemma 2.2 which are also the key of the paper. We believe BVP (2) and BVP (4) can be
restudied based upon the proper properties of G(t, s).

The paper is organized as follows. After this section, some definitions and lemmas will be
established in Section 2. In Section 3, we give our main results in Theorems 3.1 and 3.2.

2. PRELIMINARIES

For convenience, we present some necessary definitions from fractional calculus the-
ory and lemmas. We also state two fixed-point theorems due to Guo–Krasnosel’skii and
Leggett–Williams.

Definition 2.1 ([11]). Let f ∈ L1(R+). The Riemann–Liouville fractional integral of order
α > 0 for f is defined as

Iα
0+f(t) =

1
Γ (α)

 t

0

f(s)(t − s)α−1ds,

where Γ (·) is the Euler gamma function.

Definition 2.2 ([11]). The Riemann–Liouville fractional derivative of order α > 0 for a
function f is defined as

Dα
0+f(t) =

1
Γ (n − α)


d

dt

(n)  t

0

f(s)
(t − s)α+1−n

ds, n = [α] + 1,

where the function f(·) has absolutely continuous derivatives up to order (n − 1) on R+.

Definition 2.3. Let (E, ∥ · ∥) be a Banach space. A non-empty closed convex set K ⊂ E is
said to be a cone if the following conditions are satisfied:

(i) if y ∈ K and λ ≥ 0, then λy ∈ K;
(ii) if y ∈ K and −y ∈ K, then y = 0.

Definition 2.4. (E, ∥ · ∥) is a Banach space and K ⊂ E is a cone. The map θ is said to be a
non-negative continuous concave function on cone K if θ : K → [0, ∞) is continuous and

θ(tx + (1 − t)y) ≥ tθ(x) + (1 − t)θ(y)

for any x, y ∈ K and t ∈ [0, 1].
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Lemma 2.1 ([11]). Let x ∈ C+[0, 1] := {x ∈ C[0, 1], x(t) ≥ 0, t ∈ [0, 1]}. Then the
following BVP

Dα
0+u(t) = a(t)f(t, x(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
m

i=1

βiu(ξi)
(5)

has a solution

u(t) =
 1

0

G(t, s)a(s)f(s, x(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))dstα−1,

where ∆ = 1
1−δ , δ =

m
i=1 βiξ

α−1
i < 1 and G(t, s) is defined as in (3).

Lemma 2.2. G(t, s) has the following properties:
(i) For any (t, s) ∈ [0, 1] × [0, 1], G(t, s) ≥ 0.
(ii) Given s ∈ [0, 1], then for any t ∈ [0, 1],

G(t, s) ≤ G(t0, s) =
sα−1(1 − s)α−1

Γ (α)

1 − (1 − s)

α−1
α−2

α−2 ,

where t0 = s

1−(1−s)
α−1
α−2

∈ [s, 1).

(iii) Given s ∈ [0, 1], then for any t ∈ [0, 1], G(t, s) ≥ ρ(t)G(t0, s), where

ρ(t) =


t(1 − t), 1 ≥ t ≥ 1

2
,

t2, 0 ≤ t ≤ 1
2
.

(iv) Given s ∈ [0, 1], then for any t ∈

1
4 , 3

4


, G(t, s) ≥ 1

16G(t0, s).

Proof. (i) For any (t, s) ∈ [0, 1] × [0, 1], when s ≤ t,

G(t, s) =
1

Γ (α)

tα−1(1 − s)α−1 − (t − s)α−1


=

1
Γ (α)

tα−1


(1 − s)α−1 −


1 − s

t

α−1


≥ 0;

when t ≤ s, G(t, s) = 1
Γ(α) t

α−1(1 − s)α−1 ≥ 0.
Now, we prove (ii). For a given s ∈ [0, 1], when t ∈ [s, 1],

Γ (α)G(t, s) = tα−1(1 − s)α−1 − (t − s)α−1,

and thus,

Γ (α)G′
t(t, s) = (α − 1)


tα−2(1 − s)α−1 − (t − s)α−2

≤ 0, t ≥ t0,
≥ 0, t ≤ t0,
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where t0 = s

1−(1−s)
α−1
α−2

∈ [s, 1) (if s = 0, let t0 = lims→0
s

1−(1−s)
α−1
α−2

= α−2
α−1 ). So

max
t∈[s,1]

G(t, s) = G(t0, s).

When t ∈ [0, s], since

1 − (1 − s)

α−1
α−2

α−2

≤ 1, we get by (3) that

Γ (α)G(t, s) = tα−1(1 − s)α−1 ≤ sα−1(1 − s)α−1

≤ sα−1(1 − s)α−1
1 − (1 − s)

α−1
α−2

α−2 = Γ (α)G(t0, s).

Above all, for a given s ∈ [0, 1], we have G(t, s) ≤ G(t0, s) for any t ∈ [0, 1].
Next, we prove (iii). For a given s ∈ [0, 1], when t ∈ (s, 1),

Γ (α)G′′
tt(t, s) = (α − 1)(α − 2)


tα−3(1 − s)α−1 − (t − s)α−3


= (α − 1)(α − 2)


(1 − s)2

(t − ts)3−α
− 1

(t − s)3−α


≤ 0,

which means that G(t, s) is concave about t on [s, 1].
For any t ∈ [s, t0], by the concavity of G(t, s), we have

G(t, s) ≥ G(t0, s) − G(s, s)
t0 − s

(t − s) + G(s, s)

= G(s, s) − G(t0, s) − G(s, s)
t0 − s

s +
G(t0, s) − G(s, s)

t0 − s
t. (6)

Since 2 < α ≤ 3, we know 1 ≥

1 − (1 − s)

α−1
α−2

3−α

and thus

(1 − s)
α−1
α−2 ≥


1 − (1 − s)

α−1
α−2

2−α

− 1


1 − (1 − s)
α−1
α−2


;

then we get

sα−1(1 − s)α−1 −
sα−1(1 − s)α−1


1 − (1 − s)

α−1
α−2

2−α

− 1

 
1 − (1 − s)

α−1
α−2


(1 − s)

α−1
α−2

≥ 0,

which means that

G(s, s) − G(t0, s) − G(s, s)
t0 − s

s ≥ 0.

Then, for any t ∈ [s, t0], by (6) we get

G(t, s) ≥

G(s, s) − G(t0, s) − G(s, s)

t0 − s
s +

G(t0, s) − G(s, s)
t0 − s


t.
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=

(G(t0, s) − G(s, s))

1 − t0
t0 − s

+ G(t0, s)


t

≥ G(t0, s)t
≥ G(t0, s)t(1 − t). (7)

For any t ∈ [t0, 1], by the concavity of G(t, s), we have

G(t, s) ≥ G(t0, s) − G(1, s)
t0 − 1

(t − 1) + G(1, s)

≥ G(t0, s)
1 − t0

(1 − t)

≥ G(t0, s)t(1 − t). (8)

From (7) and (8) we have

G(t, s) ≥ G(t0, s)t(1 − t) for any t ∈ [s, 1]. (9)

On the other hand, let h(s) = 1 − (1 − s)
α−1
α−2 − s

α−1
α−2 , s ∈ [0, 1]. It is not difficult to find

that h′′(s) ≤ 0 and h(0) = h(1) = 0. Thus h(s) ≥ 0 for any s ∈ [0, 1], which means that

sα−1
1 − (1 − s)

α−1
α−2

α−2 ≤ 1.

Now, for t ∈ [0, s], by (3),

Γ (α)G(t, s) = tα−1(1 − s)α−1

≥ t2(1 − s)α−1

≥ t2(1 − s)α−1 sα−1
1 − (1 − s)

α−1
α−2

α−2

= Γ (α)G(t0, s)t2. (10)

From (9) and (10), for a given s ∈ [0, 1], we have

G(t, s) ≥ ρ(t)G(t0, s), t ∈ [0, 1], (11)

where

ρ(t) =


t2, 0 ≤ t ≤ 1

2
,

t(1 − t),
1
2

≤ t ≤ 1,

which proves (iii).
The result in (iv) is obvious since mint∈[ 14 , 3

4 ] ρ(t) = 1
16 .



Positive solutions of multi-point boundary value problem of fractional differential equation 231

Lemma 2.3. If x ∈ C+[0, 1], then the solution u(t) of BVP (5) is non-negative and satisfies

min
t∈[ 14 , 3

4 ]
u(t) ≥ 1

16
∥u∥.

Proof. Let x ∈ C+[0, 1], by Lemma 2.1, we have

u(t) =

 1

0

G(t, s)a(s)f(s, x(s))ds + ∆

m
i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))dstα−1. (12)

From (i) of Lemma 2.2, we know G(t, s) ≥ 0. Combining
m

i=1 βiξ
α−1
i < 1 with the fact

that a(t) and f(t, x(t)) are non-negative, we can easily get that u(t) is non-negative by (12).
By (ii) of Lemma 2.2, we obtain that

∥u∥ ≤
 1

0

G(t0, s)a(s)f(s, x(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))ds. (13)

On the other hand, for any t ∈ [ 14 , 3
4 ], by (iv) of Lemma 2.2, we get

u(t) =
 1

0

G(t, s)a(s)f(s, x(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))dstα−1

≥
 1

0

1
16

G(t0, s)a(s)f(s, x(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))ds


1
4

α−1

≥ 1
16

 1

0

G(t0, s)a(s)f(s, x(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, x(s))ds



≥ 1
16

∥u∥, (14)

which means that

min
t∈[ 14 , 3

4 ]
u(t) ≥ 1

16
∥u∥.

In the paper, let E = C[0, 1] be endowed with the maximum norm ∥u∥ = max0≤t≤1

|u(t)|. If u ∈ E satisfies BVP (1) and u(t) ≥ 0 for any t ∈ [0, 1], then u is called a non-
negative solution of BVP (1). If u is a non-negative solution of BVP (1) with ∥u∥ > 0, then
u is called a positive solution of BVP (1). Let P ⊆ E be defined as

P =


u ∈ E|u(t) ≥ 0, min

t∈[ 14 , 3
4 ]

u(t) ≥ 1
16

∥u∥


,

then P is a cone in E.
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Define operator T : P → C[0, 1] as

(Tu)(t) =
 1

0

G(t, s)a(s)f(s, u(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1, (15)

with G(t, s) defined in (3).
It is clear, from Lemma 2.1, that the fixed points of operator T in P coincide with the

non-negative solutions of BVP (1).

Lemma 2.4. T : P → P is completely continuous.

Proof. For each u ∈ P , since G(t, s) ≥ 0, by (15), one gets (Tu)(t) ≥ 0 for any t ∈ [0, 1].
Using Lemma 2.3, we get T (P ) ⊆ P . The continuity of T is obvious since f : [0, 1] ×
[0, +∞) → [0, +∞) is continuous.

Next, we show that T is uniformly bounded and equi-continuous.
Let D ⊂ P be bounded, which is to say there exists a positive constant q > 0 such that

∥u∥ ≤ q for all u ∈ D. Let k = maxt∈[0,1],u∈[0,q] f(t, u).
Firstly, for any u ∈ D,

0 ≤ (Tu)(t) =
 1

0

G(t, s)a(s)f(s, u(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1

≤ k

 1

0

G(t0, s)a(s)ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)ds


.

Hence, T (D) is uniformly bounded.
Secondly, for any ε > 0, since G(t, s) is uniformly continuous on [0, 1] × [0, 1] and tα−1

is uniformly continuous on [0, 1], then there exists η > 0 such that for any t1, t2 ∈ [0, 1],
when |t1 − t2| < η, we have |G(t1, s) − G(t2, s)| < ε

2k
 1
0 a(s)ds

and |tα−1
1 − tα−1

2 | <
ε

2k∆
m

i=1 βi

 1
0 G(ξi,s)a(s)ds

. Then, for each u ∈ D, one has

|Tu(t1) − Tu(t2)| =


 1

0

(G(t1, s) − G(t2, s))a(s)f(s, u(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))ds(tα−1
1 − tα−1

2 )


≤
 1

0

|(G(t1, s) − G(t2, s))|a(s)kds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)kds|tα−1
1 − tα−1

2 |

< ε,

which means that T (D) is equi-continuous.
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By means of the Arzela–Ascoli theorem, we know that T : P → P is compact, and thus
is completely continuous.

Theorem 2.1 ([8]). Let E be a Banach space and K ⊆ E be a cone in E. Assume
Ω1 and Ω2 are two bounded open balls of E at the origin with Ω1 ⊂ Ω2. Suppose
T : K ∩ (Ω2\Ω1) → K is a completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥ for any u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥ for any u ∈ K ∩ ∂Ω2 or
(ii) ∥Tu∥ ≥ ∥u∥ for any u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥ for any u ∈ K ∩ ∂Ω2 hold.

Then T has a fixed point in K ∩ (Ω2\Ω1).

Theorem 2.2 ([10]). Let K be a cone in a Banach space X . Let Kc = {x ∈ K | ∥x∥ < c}.
θ is a non-negative continuous concave function on K with θ(x) ≤ ∥x∥ for any x ∈ Kc.
Let K(θ, b, d) = {x ∈ K|b ≤ θ(x), ∥x∥ ≤ d}. Suppose A : Kc −→ Kc is a completely
continuous operator and there exist constants 0 < a < b < d ≤ c such that

(c1) {x ∈ K(θ, b, d) | θ(x) > b} ≠ ∅ and θ(Ax) > b for any x ∈ K(θ, b, d);
(c2) ∥Ax∥ < a for any x ∈ Ka;
(c3) θ(Ax) > b for any x ∈ K(θ, b, c) with ∥Ax∥ > d.
Then A has at least three fixed points x1, x2 and x3 in K with ∥x1∥ < a, b < θ(x2), a <

∥x3∥ and θ(x3) < b.

3. MAIN RESULT

In this section, in order to establish some results of existence and multiplicity of positive
solutions for BVP (1), we will impose growth conditions on f which allow us to apply
Theorems 2.1 and 2.2.

Throughout this section, we shall use the following notations:

M =

 1

0

G(t0, s)a(s)ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)ds

−1

;

N =

 3
4

1
4

G(t0, s)a(s)ds + ∆
m

i=1

βi

 3
4

1
4

G(ξi, s)a(s)ds

−1

.

Theorem 3.1. Assume that there exist two positive constants r2 > r1 > 0 such that
(H1) f(t, u) ≤ Mr2 for any (t, u) ∈ [0, 1] × [0, r2];
(H2) f(t, u) ≥ 16Mr1 for any (t, u) ∈ [0, 1] × [0, r1].
Then BVP (1) has at least one positive solution u ∈ P with r1 ≤ ∥u∥ ≤ r2.

Proof. We divide the proof into two steps.
Step 1. Let Ω1 = {u ∈ E : ∥u∥ < r1}. For any u ∈ P


∂Ω1, we have 0 ≤ u(s) ≤ r1 for

any s ∈ [0, 1]. It follows from (H2) and (iv) of Lemma 2.2 that for t ∈ [ 14 , 3
4 ],

(Tu)(t) =
 1

0

G(t, s)a(s)f(s, u(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1

≥ 16Mr1

 1

0

1
16

G(t0, s)a(s)ds +
1

4

α−1

∆
m

i=1

βi

 1

0

G(ξi, s)a(s)ds


= r1 = ∥u∥,
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which means that

∥Tu∥ ≥ ∥u∥ for any u ∈ P ∩ ∂Ω1.

Step 2. Let Ω2 = {u ∈ E : ∥u∥ < r2}. For any u ∈ P


∂Ω2, we have 0 ≤ u(s) ≤ r2 for
any s ∈ [0, 1]. It follows from (H1) and (ii) of Lemma 2.2 that for t ∈ [0, 1],

(Tu)(t) =
 1

0

G(t, s)a(s)f(s, u(s))ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1

≤ Mr2

 1

0

G(t0, s)a(s)ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)ds


= r2 = ∥u∥,

which means that

∥Tu∥ ≤ ∥u∥ for any u ∈ P ∩ ∂Ω2.

By (ii) of Theorem 2.1, we get that T has a fixed point u in P with r1 ≤ ∥u∥ ≤ r2, which
is also a positive solution of BVP (1).

Theorem 3.2. Assume that there exist three positive constants a, b, c with 0 < a < b < c
such that

(A1) f(t, u) < Ma for any (t, u) ∈ [0, 1] × [0, a];
(A2) f(t, u) > 16Nb for any (t, u) ∈ [ 14 , 3

4 ] × [b, c];
(A3) f(t, u) ≤ Mc for any (t, u) ∈ [0, 1] × [0, c].
Then BVP (1) has at least one non-negative solution u1 and two positive solutions u2, u3

in P with

max
t∈[0,1]

|u1(t)| < a, b < min
t∈[ 14 , 3

4 ]
|u2(t)|,

a < max
t∈[0,1]

|u3(t)|, min
t∈[ 14 , 3

4 ]
|u3(t)| < b.

Proof. We will show that all conditions of Theorem 2.2 are satisfied.
Define a function θ on cone P by

θ(u) = min
t∈[ 14 , 3

4 ]
u(t),

then θ is a non-negative continuous concave function on cone P . For any u ∈ Pc, it is obvious
that θ(u) ≤ ∥u∥ and 0 ≤ u(t) ≤ ∥u∥ ≤ c. Thus by (A3) we have

∥Tu∥ = max
t∈[0,1]

 1

0

G(t, s)a(s)f(s, u(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1
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≤ Mc

 1

0

G(t0, s)a(s)ds + ∆
m

i=1

βi

 1

0

G(ξi, s)a(s)ds


= c.

Hence T : Pc → Pc is completely continuous.
Firstly, we check condition (c1) of Theorem 2.2. We choose u(t) = b+c

2 , t ∈ [0, 1]. It is
easy to see that u(t) ∈ P (θ, b, c) and θ(u) = b+c

2 > b, which means that {P (θ, b, c)|θ(u) >
b} ≠ ∅. For any u ∈ P (θ, b, c), we have b ≤ u(t) ≤ c for any t ∈ [ 14 , 3

4 ], so from assumption
(A2), we get that f(s, u(s)) > 16Nb, s ∈ [ 14 , 3

4 ]. Thus by (iv) of Lemma 2.2 we have

θ(Tu) = min
t∈[ 14 , 3

4 ]

 1

0

G(t, s)a(s)f(s, u(s))ds

+∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))dstα−1



≥ 1
16

 1

0

G(t0, s)a(s)f(s, u(s))ds

+


1
4

α−1

∆
m

i=1

βi

 1

0

G(ξi, s)a(s)f(s, u(s))ds

≥ 1
16

 3
4

1
4

G(t0, s)a(s)f(s, u(s))ds

+


1
4

α−1

∆
m

i=1

βi

 3
4

1
4

G(ξi, s)a(s)f(s, u(s))ds

>
1
16

 3
4

1
4

G(t0, s)a(s)16Nbds +
1
16

∆
m

i=1

βi

 3
4

1
4

G(ξi, s)a(s)16Nbds

= b.

(c2) of Theorem 2.2 is not difficult to proved by (A1).
(c3) is also obvious since d = c and thus (c1) implies (c3) here.
By Theorem 2.2, T has at least three fixed points u1, u2, u3 in P with

max
t∈[0,1]

|u1(t)| < a, b < min
t∈[ 14 , 3

4 ]
|u2(t)|,

a < max
t∈[0,1]

|u3(t)|, min
t∈[ 14 , 3

4 ]
|u3(t)| < b,

which means BVP (1) has at least one non-negative solution u1 and two positive solutions
u2, u3.
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