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Abstract. The main focus in this paper consists of extending the main results of Diagana

(2015) to linear relations. Moreover, we apply our obtained results to study some properties

of 3 × 3-block matrices of linear relations in the form,

A :=

A B C
D E F
G H K

 .

Namely, we show that under some suitable conditions on relations B, C, F, D, G and H , the
relation A is closed if and only if A, E and K are closed. In addition, we show that if A, E,
K are Fredholm linear relations, then so is the linear relation A.

Keywords: Closed linear relation; Fredholm linear relation; 3 × 3 matrix linear relation
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1. INTRODUCTION

In this paper, the symbols X , Y , Z stand for infinite dimensional Banach spaces over the
same field K, where K = R or C.

A multivalued linear operator (or a linear relation) is a mapping T ⊂ X × Y which goes
from a subspace D(T ) ⊂ X called the domain of T , into the collection of nonempty subsets
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of Y such that T (α1x1 + α2x2) = α1T (x1) + α2T (x2) for all nonzero scalars α1, α2 and
x1, x2 ∈ D(T ).

For x ∈ X\D(T ), we define Tx = ∅. With this notation, we have

D(T ) =

x ∈ X : Tx ≠ ∅


.

The collection of linear relations as defined above will be denoted by LR(X,Y ). A linear
relation T ∈ LR(X,Y ) is uniquely determined by and identified with its graph,G(T ),which
is defined by

G(T ) =


(x, y) ∈ X × Y : x ∈ D(T ), y ∈ Tx

.

The inverse of T ∈ LR(X,Y ) is the linear relation T−1 defined by

G(T−1) =


(y, x) ∈ Y × X : (x, y) ∈ G(T )

.

Let T ∈ LR(X,Y ). The symbols R(T ), N (T ) and T (0) stand for the range, the null
space, and the multivalued part of T , which are defined respectively by

R(T ) :=

y : (x, y) ∈ T


,

N(T ) :=

x ∈ D(T ) : (x, 0) ∈ T


, and

T (0) :=

y : (0, y) ∈ T


.

Observe that Tx = y + T (0), for any y ∈ Tx. A linear relation T is said to be surjective
if R(T ) = Y . Similarly, T is said to be injective, if N(T ) = {0}. Now if T is both injective
and surjective, then we say that T is bijective.

If T, S ∈ LR(X,Y ), then their algebraic sum T + S is also a linear relation defined by

T + S :=


(x, u+ v) : (x, u) ∈ T, (x, v) ∈ S

.

Similarly, if T ∈ LR(X,Y ) and S ∈ LR(Y,Z), then their composition TS is also a
linear relation, which is defined by

ST :=


(x, z) ∈ X × Z : (x, y) ∈ T and (y, z) ∈ S for some y ∈ Y

.

If M is a subspace of X such that M ∩ D(T ) ≠ ∅, then T|M ∩D(T ) := T|M is defined by

T|M :=


(x, y) ∈ T : x ∈ M

.

The quotient map from Y onto Y/T (0) is denoted byQT . It easy to see thatQTT is single
valued so that we can define

∥Tx∥ := ∥QTTx∥ for all x ∈ D(T ) and ∥T∥ := ∥QTT∥.

We say that T ∈ LR(X,Y ) is continuous if ∥T∥ < ∞; bounded if it is continuous
and D(T ) = X; open if T−1 is continuous equivalently if its minimum modulus γ(T ) is a
positive number, where

γ(T ) = sup

λ ≥ 0 : λd(x, N (T )) ≤ ∥Tx∥, x ∈ D(T )


.
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A linear relation T is said to be closed if its graph is closed. Similarly, T is called closable
if T is an extension of T where the closure of T , T , is defined by G(T ) := G(T ).

We denote the class of all bounded linear relations from X to Y by SR(X,Y ). The
collection of all closed linear relations from X to Y is denoted by CR(X,Y ). The set
KR(X,Y ) will denote the class of compact linear relations from X to Y where T ∈
LR(X,Y ) is called compact if QTTBX is compact where BX is the unit ball of X .

If M and N are subspaces of X and if X ′ is the (topological) dual of X , then we define,

M⊥ :=

x′ ∈ X ′ : x′(x) = 0 for all x ∈ M


and

N⊤ :=

x ∈ X : x′(x) = 0 for all x′ ∈ N


.

The conjugate of T ∈ LR(X,Y ) is the linear relation T ′ defined by

G(T ′) := G(−T−1)⊥ ⊂ Y ′ × X ′,

so that (y′, x′) ∈ G(T ′) if and only if y′(y) = x′(x) for all (x, y) ∈ G(T ).
If T ∈ LR(X,Y ), then we write α(T ) := dimN(T ), β(T ) := dimY/R(T ), β(T ) :=

dimY/R(T ), and the index of T is the quantity i(T ) := α(T ) − β(T ) provided that α(T )
and β(T ) are not both infinite.

Definition 1.1. A linear relation T ∈ CR(X,Y ) is said to be upper semi-Fredholm and
denoted A ∈ F+(X,Y ), if there exists a closed finite codimensional subspace M of X such
that the restriction T |M has a single-valued continuous inverse.

A linear relation T is said to be lower semi-Fredholm and denoted T ∈ F−(X,Y ), if its
conjugate T ′ is upper semi-Fredholm.

In the case when both X and Y are Banach spaces, we extend the classes of closed single-
valued Fredholm type operators given earlier to include closed multivalued operators. Note
that the definitions of the classes F+(X,Y ) and F−(X,Y ) are consistent with

Φ+(X,Y ) = {T ∈ CR(X,Y ) : α(T ) < ∞ and R(T ) is closed in Y } ,
Φ−(X,Y ) = {T ∈ CR(X,Y ) : β(T ) < ∞ and R(T ) is closed in Y } .

A linear relation T on X is said to be a semi-Fredholm (respectively, a Fredholm) relation
if T ∈ Φ+(X) ∪ Φ−(X), (respectively, Φ+(X) ∩ Φ−(X)).

The concept of linear relation appeared in the literature some decades ago through not
only the need of considering adjoints (conjugates) of non-densely defined linear differential
operators (see, e.g., J. von Neumann [30]) but also the need of considering the inverses of
certain operators, used, for example, in the study of some Cauchy problems associated with
parabolic type equations in Banach spaces (see, e.g., [18]).

The spectral theory for linear relations, especially the theory for the essential spectra, has
important applications to several problems arising in operator theory, see, e.g., [1,4,6,3,12,
9–11,20–22,26,27]. First, the spectral theory of ordered pair of operators. Many properties of
the spectrum and the essential spectra of the pair (G,F ) of closed operators are obtained as
applications to the corresponding properties of the linear relations F−1G and GF−1.

Second, the study of linear bundles. Let T, S : X −→ Y be bounded operators. The
map P (λ) : T + λS, λ ∈ C is called a linear bundle. It is well-known that many problems
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arising in mathematical physics including quantum theory are reduced to the study of certain
reversibility conditions for operators P (λ) and this last study is reduced to the study of the
spectral properties of the linear relations S−1T and T−1S.

It is worth mentioning that the study of the essential spectra of a linear relation may provide
some useful tools for the study of operators as the class of all bounded Fredholm operators in
a Banach space is the class of inverses of closed Fredholm linear relations that are bijective.
Let us mention that many problems arising in mathematical physics are described through
systems of partial or ordinary differential equations or the linearization of those.

This paper is devoted to the study of some properties of unbounded linear relations.
Among other things, we show that most of the results obtained by Diagana [17] and oth-
ers remain valid for operators in the context of multivalued linear operators. In this work, we
give some sufficient conditions so that if A, B, C are three unbounded linear relations with
A being a Fredholm linear relation, then their algebraic sum A + B + C is also a Fredholm
linear relation.

The paper is organized as follows. Section 2 contains preliminary and auxiliary results that
will be needed in the sequel. In Section 3 we study sufficient conditions for the Fredholmness
of the algebraic sum A + B + C in the case when A, B, C are three unbounded linear
relations with A being a Fredholm linear relation (Theorems 3.2 and 3.3). In Section 4, we
apply the results obtained in Section 3 to study some properties for some 3 × 3-block matrices
of linear relations. Finally, in Section 5, we outline some open questions.

2. AUXILIARY RESULTS

The goal of this section consists of establishing some preliminary results which will be
needed in the sequel. For that, we begin by giving some auxiliary results from the theory of
linear relations in Banach spaces.

Lemma 2.1 ([15, Proposition II.5.3], [2, Lemma 5.3]). Let T ∈ LR(X,Y ). Then

(i) T is closed if and only if QTT is closed and T (0) is closed. In particular,N(T ) is closed
if T is closed.

(ii) Assume that T ∈ LR(X,Y ) is closed. Then,
(ii1) R(T ) is closed if and only if so is R(QTT ).
(ii2) T ∈ Φ+(X,Y ) if and only if QTT ∈ Φ+(X,Y/T (0)) if and only if

T ′ ∈ Φ−(Y ′, X ′). In such case, i(T ) = −i(T ′).
(ii3) T ∈ Φ−(X,Y ) if and only if QTT ∈ Φ−(X,Y/T (0)) if and only if

T ′ ∈ Φ+(Y ′, X ′). In such case, i(T ) = −i(T ′). �

Lemma 2.2 ([16, Corollary 3.2]). Let X, Y Z be three vector spaces, T ∈ LR(X,Y ), S ∈
LR(X,Y ), D(S) = Y and suppose that T and S have finite indices. Then, ST has a finite
index and:

i(ST ) = i(S) + i(T ) − dim

T (0) ∩ S−1(0)


.

Definition 2.1. Let X be a Banach space and let T ∈ LR(X). The graph operator, GT ∈
LR(XT , X) is defined by

D(GT ) = XT and GTϕ = ϕ for ϕ ∈ XT . �
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Definition 2.2 ([15, Definition VII.2.1]). A relation S ∈ LR(X,Y ) is said to be T - bounded
if D(S) ⊃ D(T ) and there exist real numbers a, b for which the inequality

∥Sϕ∥ ≤ a∥ϕ∥ + b∥Tϕ∥ (2.1)

for all ϕ ∈ D(T ). In that case, the infimum of all the numbers b such that (2.1) holds is called
the T -bound of S. �

Remark 2.1. The inequality (2.1) is equivalent to,

∥Sϕ∥2 ≤ a2
1∥ϕ∥2 + b22∥Tϕ∥2 for all ϕ ∈ D(T )

where a1 =
√
a2 + ab and b1 =

√
b2 + ab.

Lemma 2.3. Let S, T ∈ LR(X,Y ) such that S(0) ⊂ T (0) and D(T ) ⊂ D(S). Then,

(i) T − S + S = T.

(ii) QT (S) is a single valued operator and ∥QT (S)∥ ≤ ∥QS(S)∥. �

Proof. (i) Let (ϕ,ψ) ∈ G(T+S−S) then ϕ ∈ D(T −S+S) = D(T ) and ψ ∈ (T −S+S)ϕ,
so that, ψ ∈ Tϕ + S(0). On the other hand, using the fact S(0) ⊂ T (0) it follows that
Tϕ + S(0) ⊂ Tϕ + T (0) which yields ψ ∈ Tϕ and ϕ ∈ D(T ), that is (ϕ,ψ) ∈ G(T ).
Therefore, G(T + S − S) ⊆ G(T ). Conversely, let (ϕ,ψ) ∈ G(T ), so that ϕ ∈ D(T ) and
Tϕ = ψ+T (0). On the other hand, from (T+S−S)(0) = T (0) and D(T −S+S) = D(T )
we deduce that ϕ ∈ D(T − S + S) and (T + S − S)ϕ = ψ + (T + S − S)(0). That is,
G(T ) ⊆ G(T + S − S).

(ii) Using [15, Proposition II.1.3] it follows that QT (T ) is single valued. Since S(0) ⊂
T (0), then QT (S(0)) ⊂ QT (T (0)) = 0. Consequently, QT (S) is single valued, and

∥QT (S)∥ = d(Sϕ, T (0)) = d(Sϕ, T (0)) ≤ d(Sϕ, S(0)) = ∥Sϕ∥ = ∥QS(S)∥. �

Let T be a closed linear relation on a Banach space X . For x ∈ D(T ) the graph norm of x
is defined by ∥x∥T := ∥x∥ + ∥Tx∥. It follows from the closedness of T that (D(T ), ∥ · ∥T )
is a Banach space.

3. MAIN RESULTS

Lemma 3.1. If S is T -bounded with T -bound δ < 1 and S(0) ⊂ T (0), then S is (T + S)-
bounded with T -bound ≤ δ

1−δ . �

Proof. First of all, it should be mentioned that the linear relation T + S is well-defined as
D(T + S) = D(S) ∩ D(T ) = D(T ) with D(T + S) ⊂ D(S). Using the fact that S is
T - bounded, it follows that there exist a > 0, δ ≤ b < 1, such that for all ϕ ∈ D(T ),

∥Sϕ∥ ≤ a∥ϕ∥ + b∥Tϕ∥
= a∥ϕ∥ + b∥Tϕ+ Sϕ − Sϕ∥ (Lemma 2.3(ii))
≤ a∥ϕ∥ + b∥Tϕ+ Sϕ∥ + b∥Sϕ∥.
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Since b < 1, it follows that

∥Sϕ∥ ≤ a

1 − b
∥ϕ∥ +

b

1 − b
∥(T + S)ϕ∥, ϕ ∈ D(T ). �

Theorem 3.1. Let S, T ∈ LR(X,Y ) such that D(S) ⊃ D(T ), S(0) ⊂ T (0) and

∥Sϕ∥ ≤ a∥ϕ∥ + b∥Tϕ∥, ϕ ∈ D(T ), (3.1)

for some constants a, b with b < 1. Then,

T ∈ CR(X,Y ) if and only if T + S ∈ CR(X,Y ). �

Proof. Suppose T ∈ CR(X,Y ). Let us consider two cases for S and T .

Case 1: S and T are single valued. Then, using (3.1), we obtain that

∥Tϕ∥ = ∥(T + S − S)ϕ∥ ≤ ∥(T + S)ϕ∥ + ∥Sϕ∥, ϕ ∈ D(T ),

which in turn yields

(1 − b)∥Tϕ∥ ≤ ∥(T + S)ϕ∥ + a∥ϕ∥, ϕ ∈ D(T ).

Thus if {ϕn}n∈N is sequence in D(T +S) = D(T ) such that ϕn → ϕ and (T +S)ϕn →
ψ. Then, there exists N0 ∈ N such that for all n, m ≥ N0 we have

(1 − b)∥Tϕn − Tϕm∥ ≤ a∥ϕn − ϕm∥ + ∥(T + S)∥∥ϕn − ϕn∥,

and therefore {Tϕn}n∈N is a Cauchy sequence in the Banach space Y . Thus, {Tϕn} → ϕ0.
Since T is closed, ϕ ∈ D(T ) and Tϕ = ϕ0. Moreover Sϕn = (T +S)ϕn −Tϕn → ψ −ϕ0

as n → ∞. But

∥S(ϕn − ϕ)∥ ≤

a∥ϕn − ϕ∥ + b∥Tϕn − ϕ0∥


→ 0 as n → ∞,

which shows that Sϕ = ψ − ϕ0 and hence (T + S)ϕ = ψ and ϕ ∈ D(T + S).
Case 2: S and T are linear relations. Since S(0) ⊂ T (0) = T (0), it is clear that

QT = QT+S . ThenQT+S(T +S) = QT (T )+QT (S) and using Lemma 2.3 we deduce that
QT (S) is single valued and that

∥QT (S)ϕ∥ ≤ ∥QS(S)ϕ∥ = ∥Sϕ∥ ≤ a∥ϕ∥ + b∥Tϕ∥, ϕ ∈ D(T ).

Now

∥QT (S)ϕ∥ ≤ a∥ϕ∥ + b∥QT (T )ϕ∥, ϕ ∈ D(T ).

On the other hand QT (T ) is closed, then QT (T ) + QT (S) is closed single valued. This
means, since (T + S)(0) = T (0) is closed, that T + S is closed. Conversely, assume that
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T + S is closed. It follows from Lemma 3.1 that,

∥−Sϕ∥ = ∥Sϕ∥ ≤ a

1 − b
∥ϕ∥ +

b

1 − b
∥(T + S)ϕ∥, ϕ ∈ D(T ).

In view of the above, T + S − S is closed. Now by Lemma 2.3, T is closed. �

Theorem 3.2. Let S, T,K ∈ LR(X,Y ) such that D(T ) ⊂ D(S) ⊂ D(K),K(0) ⊂ S(0) ⊂
T (0) and such that:

(i) there exist two constants a1, b1 > 0

∥Sϕ∥ ≤ a1∥ϕ∥ + b1∥Tϕ∥, ϕ ∈ D(T ),

(ii) there exist two constants a2, b2 > 0 such that b1(1 + b2) < 1 and

∥Kϕ∥ ≤ a2∥ϕ∥ + b2∥Sϕ∥, ϕ ∈ D(S).

Then, T ∈ CR(X,Y ) if and only if T + S +K ∈ CR(X,Y ). �

Proof. Let us consider two cases for S, T and K.

Case 1: S, T and K are operators, then for all ϕ ∈ D(T ) we have

∥(T + S +K)ϕ∥ ≤ ∥Tϕ∥ + ∥Sϕ∥ + ∥Kϕ∥
≤ ∥Tϕ∥ + a1∥ϕ∥ + b1∥Tϕ∥ + a2∥ϕ∥ + b2∥Sϕ∥
= (1 + b1)∥Tϕ∥ + (a1 + a2)∥ϕ∥ + b2(a1∥ϕ∥ + b1∥Tϕ∥),

and hence,

∥(T + S +K)ϕ∥ ≤ (a1 + a2 + a1b2)∥ϕ∥ + (1 + b1 + b1b2)∥Tϕ∥. (3.2)

Similarly, for all ϕ ∈ D(T ), we have

∥(S +K)ϕ∥ ≤ ∥Sϕ∥ + ∥Kϕ∥
≤ a1∥ϕ∥ + b1∥Tϕ∥ + a2∥ϕ∥ + b2∥Sϕ∥
= b1∥Tϕ∥ + (a1 + a2)∥ϕ∥ + b2(a1∥ϕ∥ + b1∥Tϕ∥),

and hence

∥(S +K)ϕ∥ ≤ (a1 + a2 + a1b2)∥ϕ∥ + b1(1 + b2)∥Tϕ∥. (3.3)

Combining Eqs. (3.2) and (3.3), it follows that for all ϕ ∈ D(T ),

∥(T + S +K)ϕ∥ ≥ ∥Tϕ∥ − ∥Sϕ∥ + ∥Kϕ∥
≥ ∥Tϕ∥ − (a1 + a2 + a1b2)∥ϕ∥ − b1(1 + b2)∥Tϕ∥
= −(a1 + b2 + a1b2)∥ϕ∥ + [1 − b1(1 + a2)]∥Tϕ∥

which yields,

[1 − b1(1 + a2)]∥Tϕ∥ ≤ ∥(T + S +K)ϕ∥ + (a1 + b2 + a1b2)∥ϕ∥.
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Setting Θ = 1 − b1(1 + a2) (0 < Θ < 1) and Ψ = a1 + b2 + a1b2 (Ψ > 0), gives

∥Tϕ∥ ≤ Θ −1


∥(T + S +K)ϕ∥ + Ψ ∥ϕ∥

. (3.4)

Let {ϕn}n∈N is sequence in D(T+S+K) = D(T ) such that ϕn → ϕ and (T+S+K)ϕn →
ψ. Then, By Eq. (3.4) there exists N1 ∈ N such that for all n, m ≥ N1 we have

∥Tϕn − Tϕm∥ ≤ Θ −1


∥(T + S +K)(ϕn − ϕm)∥ + Ψ ∥ϕn − ϕm∥

. (3.5)

So, {Tϕn}n∈N is a Cauchy sequence in the Banach space Y and therefore there exist ψ1 ∈ Y
such that Tϕn → ψ1. Since T is closed it follows that ϕ ∈ D(T ) and Tϕ = ψ1. From Eq.
(3.2) it follows that

∥(T + S +K)(ϕn − ϕ)∥

≤

(a1 + a2 + a1b2)∥ϕn − ϕ∥ + (1 + b1 + b1b2)∥Tϕn − ϕ∥


→ 0 (3.6)

then, by letting n → +∞, then (T+S+K)ϕn → ψ = (T+S+K)ϕ. Therefore,A+B+C
is a closed linear operator.

Case 2: T , S and K are linear relations. Since K(0) ⊂ S(0) ⊂ T (0), it is clear that
QT+S+K = QT . Then

QT+S+K(T + S +K) = QT (T + S +K) = QT (T ) +QT (S) +QT (K).

Since QT (T ) is a closed operator (by Lemma 2.1), using Lemma 2.3 we deduce that QT (S),
QT (K) are single valued and that ∥QT (S)∥ ≤ ∥QS(S)∥ and ∥QT (K)∥ ≤ ∥QK(K)∥.

Hence,

∥QT (S)∥ ≤ ∥QS(S)∥ = ∥Sϕ∥ ≤ a1∥ϕ∥ + b1∥Tϕ∥, ϕ ∈ D(T ),

and hence,

∥QT (S)∥ ≤ ∥QS(S)ϕ∥ ≤ a1∥ϕ∥ + b1∥QT (T )ϕ∥, ϕ ∈ D(T ). (3.7)

Similarly, we have

∥QT (K)∥ ≤ a2∥ϕ∥ + b2∥QS(S)ϕ∥, ϕ ∈ D(S),

where b1(1 + a2) < 1. Consequently, QT (T ) +QT (S) +QT (K) is a closed operator. Since
T (0)+S(0)+K(0) = T (0) is closed then, T +S+K is a closed linear relation. Conversely,
assume that T +K + S is closed.

∥−Sϕ∥ ≤

a1 + b1Ψ


∥ϕ∥ + b1Θ −1∥(T +K + S)ϕ∥, ϕ ∈ D(T ),

and

∥−Kϕ∥ ≤ a2∥ϕ∥ + b2∥ − Sϕ∥, ϕ ∈ D(S) and b1Θ −1(1 + a2) < 1.
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Now, applying what precedes to the relations T + S + K, −K and −S we deduce that
T + S +K − K − S is closed operator. Since (K + S)(0) ⊂ T (0) then

T = T + (K + S) − (K + S) = (T +K + S) − K − S.

Therefore, T is closed. �

Theorem 3.3. Let S, T,K ∈ LR(X,Y ) such that D(T ) ⊂ D(S) ⊂ D(K),K(0) ⊂ S(0) ⊂
T (0) and let T be the bijection associated with T . Suppose

(a) there exists a constant α1 such that

∥Sϕ∥ ≤ α1


∥ϕ∥ + ∥Tϕ∥


, ϕ ∈ D(T ),

(b) there exists a constant β1 such that α1(1 + β1) < 1, (1 + β1) < γ( T ) and

∥Kϕ∥ ≤ β1


∥ϕ∥ + ∥Sϕ∥


, ϕ ∈ D(T ).

If T ∈ Φ(X,Y ) then the sum T + S + K ∈ Φ(X,Y ) and satisfies the following
properties:
(i) α(T + S +K) ≤ α(T ); and

(ii) β(T + S +K) ≤ β(T ).

Proof. From Theorem 3.2 it follows that T +S+K is a closed linear relation. Let T1, S1 K1

be the restrictions of the relation T, S, K to XT . Obviously, T is a Fredholm linear relation
and S1, K1 is a bounded linear relation. Moreover, it is easy to prove that (see, [15, Theorem
III.5.3]),

∥S1 +K1∥ ≤

β1 + α1(1 + β1)


≤ γ( T ) = γ(T ′),

which combined with [15, Theorem V.5.12] and [15, Theorem V.3.2] yields S1 +K1 + T1 is
a Fredholm linear relation.

Properties (i) and (ii) are straightforward consequences of [15, Theorem III.7.4]. �

Corollary 3.1. Let S, T, K be three operators such that D(T ) ⊂ D(S) ⊂ D(K) and let T
be the bijection associated with T . Suppose,

(a) there exists a constant α1 such that

∥Sϕ∥ ≤ α1


∥ϕ∥ + ∥Tϕ∥


, ϕ ∈ D(T ),

(b) there exists a constant β1 such that α1(1 + β1) < 1, (1 + β1) < γ( T ) and

∥Kϕ∥ ≤ β1


∥ϕ∥ + ∥Sϕ∥


, ϕ ∈ D(T ).

If T ∈ Φ(X,Y ) then the sum T + S +K ∈ Φ(X,Y ) and also satisfies the following
properties

(i) α(T + S +K) ≤ α(T );
(ii) β(T + S +K) ≤ β(T ); and

(iii) i(T + S +K) = i(T ).



68 A. Ammar et al.

4. APPLICATION

Noteworthy progress has been made during the past years (see, e.g., [8,14,23,24,28]) in
studying the spectra of 2 × 2 block operator matrices A0 which act on the product X × Y of
Banach spaces and of the form

A0 =

A B
C D


.

A comprehensive account of the investigations undertaken in that regard as well as a wide
panorama of the tools used to study the spectrum of block operator matrices are presented in
Tretter [29]. In general, the operators involved in A0 are unbounded and A0 need not to be a
closed nor a closable operator, even if its entries are closed. However, under some conditions
A0 becomes closable and its closure A can be determined.

In [25], Moalla, Damak and Jeribi extended and obtained results for a large class of
operators and described various essential spectra of A and applied their findings to describe
the essential spectra of two-group transport operators with general boundary conditions in
Lp-spaces.

In [13], Bátkai, Binding, Dijksma, Hryniv and Langer studied a 2 × 2 block operator
matrix and described its essential spectrum under the assumption that D(A) ⊂ D(C), that
D(B) ∩ D(D) is sufficiently large, and that the domain of the operator matrix is defined by
an additional relation of the form ΓXx = ΓY y between the two components of its elements.

In [7], Ammar, Jeribi, and Moalla, considered the case of 3 × 3 block operator matrix
and proposed an abstract approach to study the essential spectra of the operator. Recently,
Álvarez, Ammar and Jeribi [5] investigated a detailed treatment of some of the subsets of the
essential spectra of a 2 × 2 block of matrix of linear relations.

In this section, we consider in the product of Banach spaces X ×Y ×Z the linear relation
defined by a 3 × 3 block matrix

A :=

A B C
D E F
G H K

 , (4.1)

where the entries of the matrix are in general unbounded linear relations.
The relationA acts onX with domain D(A), the relationE acts on Y with domain D(E),

and the relation K acts on Z with domain D(K). The intertwining relation B is defined on
the domain D(B) ⊂ Y to X, the relation H is defined on the domain D(H) ⊂ Y to Z, the
relation C is defined on the domain D(C) ⊂ Z to X, the relation F is defined on the domain
D(F ) ⊂ Z to Y, the relation D is defined on the domain D(D) ⊂ X to Y, and the relation G
is defined on the domain D(G) ⊂ X to Z. The relation A is defined on

G(A) =


u1

u2

u3

 ,

v1v2
v3

 ∈ (X × Y × Z)2 :
v1 ∈ Au1 +Bu2 + Cu3

v2 ∈ Du1 + Eu2 + Fu3

v3 ∈ Gu1 +Hu2 +Ku3


D(A) =


D(A) ∩ D(D) ∩ D(G)


×


D(B) ∩ D(E) ∩ D(H)


×


D(C) ∩ D(F ) ∩ D(K)

.
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We denote by

T :=

A 0 0
0 E 0
0 0 K

 , S :=

0 B 0
0 0 F
G 0 0

 and K :=

 0 0 C
D 0 0
0 H 0

 .

Then, it is clear that A = T + S + K.

Proposition 4.1. We have,

(i) QT T :=


QA(A) 0 0
0 QE(E) 0
0 0 QK(K)


,

(ii) QS S :=


0 QB(B) 0
0 0 QF (F )

QG(G) 0 0


, and

(iii) QK K :=


0 0 QC(C)
QD(D) 0 0

0 QH(H) 0


.

Proof. The proof of (ii) and (iii) can be done in a similar fashion as that of (i).

Let


x
y
z


∈ D(A) × D(E) × D(K) and


u
v
w


∈ T


x
y
z


, then u ∈ Ax, v ∈ Ey and w ∈

Kz. This yields,

QT T

xy
z

 = QT

uv
w

 .

Now, let us find the expression of QT


u
v
w


.

Notice thatũṽ
w̃

 ∈ QT

uv
w


if and only ifũṽ

w̃

 −

uv
w

 ∈

A(0)
E(0)
K(0)

 .

Then,
ũ − u ∈ A(0)
ṽ − v ∈ E(0)
w̃ − w ∈ K(0).

This is equivalent toũ ∈ QA(u),
ṽ ∈ QE(v),
w̃ ∈ QK(w).
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This shows that

QT

uv
w

 =

QA(u)
QE(v)
QK(w)

 =

QA(Ax)
QE(Ey)
QK(Kz)

 .

QT T

xy
z

 =

QAA 0 0
0 QEE 0
0 0 QKK

xy
z

 ,

for all

xy
z

 ∈ D(A) × D(E) × D(K). �

Lemma 4.1. We have

(i) T =


A 0 0
0 E 0
0 0 K


is closed if and only if A, E, and K are closed.

(ii) If A, E and K are Fredholm linear relation, then


A 0 0
0 E 0
0 0 K


is a Fredholm linear

relation and if A, E are everywhere defined, then i(T ) = i(A) + i(E) + i(K).

Proof. Suppose that


A 0 0
0 E 0
0 0 K


is closed.

By Lemma 2.1(i) and Proposition 4.1, it follows that


QA(A) 0 0
0 QE(E) 0
0 0 QK(K)


is a

closed linear operator and that


A(0)

E(0)

K(0)


=


A(0)
E(0)
K(0)


and thus, QA(A), QE(E) and QK(K)

are closed. A(0) = A(0), E(0) = E(0) and K(0) = K(0). Consequently, A, E, and K are
closed linear relations. Conversely, if we suppose thatA,E, andK are closed linear relations,
then using Lemma 2.1(i) it follows thatQA(A),QE(E) andQK(K) are closed operators and
that A(0) = A(0), E(0) = E(0) and K(0) = K(0). Thus QT T is a closed linear operator
and T (0) is closed. Hence applying Lemma 2.1(i) we infer that T is closed.

(ii) Suppose thatA, E andK are Fredholm linear relations. Using Lemma 2.1(i) it follows
that QA(A), QE(E) and QK(K) are Fredholm operators. ThenQA(A) 0 0

0 QE(E) 0
0 0 QK(K)


is a Fredholm operator.

Now using (i) and Lemma 2.1(i), we deduce thatA 0 0
0 E 0
0 0 K


is a Fredholm linear relation.
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On the other hand,A 0 0
0 E 0
0 0 K

 =

A 0 0
0 I 0
0 0 I

I 0 0
0 E 0
0 0 I

I 0 0
0 I 0
0 0 K


=

I 0 0
0 E 0
0 0 I

M

where

M =

I 0 0
0 E 0
0 0 I

I 0 0
0 I 0
0 0 K

 .

Then by Lemma 2.2, we get

i(T ) = i(A) + i(M) − dim

M

0
0
0

A−1 0 0
0 I 0
0 0 I

0
0
0


= i(A) + i(M) − dim

 0
E(0)
K(0)

A−1(0)
0
0


= i(A) + i(M).

A similar proof shows that i(M) = i(E) + i(K). Consequently, i(T ) = i(A) + i(E)
+ i(K). �

Lemma 4.2. (a) If the following conditions are satisfied
(i) B is E-bounded with E-bound δ1,

(ii) F is K-bounded with K-bound δ2,
(ii) G is A-bounded with A-bound δ3.
Then, S is T -bounded with T -bound δ = max{δ1, δ2, δ3}.

(b) If the following conditions are satisfied
(i) C is F -bounded with F -bound δ1,

(ii) D is G-bounded with G-bound δ2,
(ii) H is A-bounded with A-bound δ3.
Then, K is S -bounded with S-bound δ = max{δ1, δ2, δ3}.

Proof. Let ε > 0. By the above assumptions and Remark 2.1 there exist constants,
a1, a2, a3, b1, b2, b3 ≥ 0 such that δ1 ≤ b1 < δ1+ε, δ2 ≤ b2 < δ2+ε, δ3 ≤ b3 < δ3+ε

and

∥Bg∥2 ≤ a2
1∥g∥2 + b21∥Eg∥2 for all g ∈ D(E) ⊂ D(B).

∥Fh∥2 ≤ a2
2∥h∥2 + b22∥Kh∥2 for all h ∈ D(K) ⊂ D(F ).

∥Gf∥2 ≤ a2
3∥f∥2 + b23∥Af∥2 for all f ∈ D(A) ⊂ D(G).
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Hence we obtain, for (f, g, h) ∈ D(A) × D(E) × D(K)
0 B 0

0 0 F
G 0 0

fg
h


2

=


 0 QBB 0

0 0 QFF
QGG 0 0

fg
h


2

.

= ∥QBBg∥2 + ∥QFFh∥2 + ∥QGGf∥2

= ∥Bg∥2 + ∥Fh∥2 + ∥Gf∥2

and 
A 0 0

0 E 0
0 0 K

fg
h


2

=


QAA 0 0

0 QEE 0
0 0 QKK

fg
h


2

.

= ∥QAAf∥2 + ∥QEFg∥2 + ∥QKKh∥2

= ∥Af∥2 + ∥Eg∥2 + ∥Kh∥2.

Then,
0 B 0

0 0 F
G 0 0

fg
h


2

= ∥Bg∥2 + ∥Fh∥2 + ∥Gf∥2

≤ a2
3∥f∥2 + b23∥Gf∥2 + a2

1∥g∥2

≤ η


fg
h


2

+ χ


A 0 0

0 B 0
0 0 C

fg
h


2

where η = max{a1, a2, a3}2 and χ = max{b1, b2, b3}2 as

max{b1, b2, b3} = {δ1 + ε, δ2 + ε, δ3 + ε} = δ + ε.

This shows that S is T − bounded with T -bound < δ. The proof of (ii) can be done in a
similar fashion as that of (i). �

Theorem 4.1. If the following conditions are satisfied:
D(E) ⊂ D(B), D(K) ⊂ D(F ), D(A) ⊂ D(G), D(F ) ⊂ D(C), D(G) ⊂ D(D),

D(B) ⊂ D(H), K(0) ⊂ S(0) ⊂ T (0) and

∥Bϕ∥ ≤ a1∥ϕ∥ + b1∥Eϕ∥ for all ϕ ∈ D(E)
∥Fϕ∥ ≤ a2∥ϕ∥ + b2∥Kϕ∥2 for all ϕ ∈ D(K)
∥Gϕ∥ ≤ a3∥ϕ∥ + b3∥Aϕ∥ for all ϕ ∈ D(A)
∥Cϕ∥ ≤ a4∥ϕ∥ + b4∥Fϕ∥ for all ϕ ∈ D(F )
∥Dϕ∥ ≤ a5∥ϕ∥ + b5∥Gϕ∥2 for all ϕ ∈ D(G)
∥Hϕ∥ ≤ a6∥ϕ∥ + b6∥Bϕ∥ for all ϕ ∈ D(B)
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with

max{b1, b2, b3}

1 + max{a4, a5, a6}


< 1.

Then, A :=


A B C
D E F
G H K


is closed if and only if A, E, K are closed.

Proof. Consider

T :=

A 0 0
0 E 0
0 0 K

 , S :=

0 B 0
0 0 F
G 0 0

 and K :=

 0 0 C
D 0 0
0 H 0

 .

Since,D(T ) = D(A) × D(E) × D(K),
D(S) = D(G) × D(B) × D(F ),
D(K) = D(D) × D(H) × D(C).

Then,

D(T ) ⊂ D(S) ⊂ D(K).

On the other hand we have,

∥Sϕ∥2 ≤ η2
1 ∥ϕ∥2 + χ2

1 ∥Tϕ∥2
, ϕ ∈ D(T )

∥Kϕ∥2 ≤ η2
2 ∥ϕ∥2 + χ2

2 ∥Sϕ∥2
, ϕ ∈ D(S),

where

η1 = max


a2
1 + a1b1,


a2
2 + a2b2,


a2
3 + a3b3


,

χ1 = max


b21 + a1b1,

b22 + a2b2,


b23 + a3b3


,

η2 = max


a2
4 + a4b4,


a2
5 + a5b5,


a2
6 + a6b6


,

χ2 = max


b24 + a4b4,

b25 + a5b5,


b26 + a6b6


.

From Remark 2.1 it follows that

∥Sϕ∥ ≤ max{a1, a2, a3} ∥ϕ∥ + max{b1, b2, b3} ∥Tϕ∥ , ϕ ∈ D(T )
∥Kϕ∥ ≤ max{a4, a5, a6} ∥ϕ∥ + max{b4, b5, b6} ∥Sϕ∥ , ϕ ∈ D(S)

where

max{b1, b2, b3}

1 + max{a4, a5, a6}


< 1.
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Using Theorem 3.2 we deduce thatA B C
D E F
G H K


is closed if and only ifA 0 0

0 E 0
0 0 K


is closed, which in turn is equivalent to the fact A, E and K are closed (Lemma 4.1). �

Theorem 4.2. Let T be the bijection associated with T . If we suppose that the conditions
of Theorem 4.1 are satisfied and we suppose that α1(1 + β1) < 1 and (1 + β1) < γ(T̂ )
where

α1 = max {max{a1, a2, a3},max{b1, b2, b3}}

and

β1 = max {max{a4, a5, a6},max{b4, b5, b6}} .

Then, if A, E and K are Fredholm linear relations then A is Fredholm linear relation, which
satisfies the following properties

(i) α(A) ≤ α(T )
(ii) β(A) ≤ β(T )
and if A is single valued then, i(A) = i(A) + i(E) + i(K).

Proof. The proofs follows from Theorems 3.3 and 4.1. Now if A is single valued, then by
Corollary 3.1, we have i(A) = i(T ).

On the other hand,A 0 0
0 E 0
0 0 K

 =

A 0 0
0 I 0
0 0 I

I 0 0
0 E 0
0 0 I

I 0 0
0 I 0
0 0 K


and i(A) = i(T ) = i(A) + i(E) + i(K). �

5. CONCLUSION

Sufficient conditions are obtained for the Fredholmness of the algebraic sum of three linear
relations (Theorem 3.3). Such a result generalizes that for single valued linear operators (see
for example Theorem 4.2 in [19, Theorem 4.2, Chapter XVII]). However, ifA1 is a Fredholm
linear relation and A2, A3, . . . , An for n ≥ 4 are (possible unbounded) linear relations such
that

D(A1) ⊂ D(A2) ⊂ ...D(An−1) ⊂ D(An) and An(0) ⊂ An−1(0) ⊂ ... ⊂ A1(0)

∥Ak+1ϕ∥ ≤ αk


∥ϕ∥ + ∥Akϕ∥


for k = 1, . . . , n − 1 for ϕ ∈ D(A1),
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it is unclear which additional conditions should be put on the linear relations Ak and the
scalars αk for k = 1, . . . , n, so that the algebraic sum

n
k=1Ak is a Fredholm linear relation.

This question will be left as an open question, even in the case of single valued operators. The
answer to this question is of a great interest as it helps investigate some properties of the n×n
matrix of linear relations:

A =

A11 · · · A1n

...
. . .

...
An1 · · · Ann

 , n ≥ 4.
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