On the study of Brück conjecture and some non-linear complex differential equations

Dilip Ch. Pramanik ${ }^{\text {a,* }}$, Manab Biswas ${ }^{\text {b }}$, Rajib Mandal ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, University of North Bengal, Raja Rammohanpur, Darjeeling, PIN-734013, West Bengal, India
${ }^{\mathrm{b}}$ Barabilla High School, P.O. Haptiagach, Uttar Dinajpur, PIN-733202, West Bengal, India
${ }^{c}$ Department of Mathematics, Raiganj University, Raiganj, Uttar Dinajpur, PIN-733134, West Bengal, India

Received 6 May 2016; received in revised form 26 August 2016; accepted 12 October 2016 Available online 2 November 2016

Abstract

In this paper, we prove the following result: Let $f(z)$ and $\alpha(z)$ be two non-constant entire functions satisfying $\sigma(\alpha)<\mu(f)$ and $P(z)$ be a polynomial. If f is a non-constant entire solution of the differential equation $M[f]+\beta(z)-\alpha(z)=$ $\left(f^{\gamma_{M}}-\alpha(z)\right) e^{P(z)}$, where $\beta(z)$ is an entire function satisfying $\sigma(\beta)<\mu(f)$. Then $\sigma_{2}(f)=\operatorname{deg} P$. Our result generalizes the results due to Gundersen and Yang, Chang and Zhu and Li and Cao.

Keywords: Entire function; Nevanlinna theory; Differential equations in the complex domain

2010 Mathematics Subject Classification: 39B32; 30D35

1. Introduction

Let $f(z)$ be a non-constant meromorphic function in the complex plane \mathbb{C}. We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory such as $T(r, f), m(r, f), N(r, f)$ (e.g. [3,5,12,13]). By $S(r, f)$ we denote any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow+\infty$, possibly outside a set of r with finite linear measure. A function $\alpha(z)$ is said to be small with respect to $f(z)$ if $\alpha(z)$ is a meromorphic function satisfying $T(r, \alpha)=S(r, f)$ i.e. $T(r, \alpha)=o(T(r, f))$ as $r \rightarrow+\infty$.

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2016.10.001
1319-5166 © 2016 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. For a small function $a(z)$ with respect to both f and g, if the zeros of $f(z)-a(z)$ and $g(z)-a(z)$ coincide in locations and multiplicities we say that $f(z)$ and $g(z)$ share the function $a(z) \mathrm{CM}$ (counting multiplicities) and if coincide in locations only we say that $f(z)$ and $g(z)$ share $a(z)$ IM (ignoring multiplicities). Note that $a(z)$ can be a polynomial or a value in $\mathbb{C} \cup\{\infty\}$.

For an entire function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, the central index $\nu(r, f)$ is the greatest exponent m such that $\left|a_{m}\right| r^{m}=\mu(r, f)$, where $\mu(r, f)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$ denote the maximum term of f on $|z|=r$. In this paper, we also need the following definitions.

Definition 1. Let $f(z)$ be a non-constant meromorphic function, then the order $\sigma(f)$ of $f(z)$ is defined by

$$
\sigma(f)=\limsup _{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\limsup _{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}
$$

and the lower order $\mu(f)$ of $f(z)$ is defined by

$$
\mu(f)=\liminf _{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\liminf _{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}
$$

where

$$
M(r, f)=\max _{|z|=r}|f(z)| .
$$

Definition 2 ([5]). The type $\tau(f)$ of an entire function $f(z)$ with $0<\sigma(f)=\sigma<+\infty$ is defined by

$$
\tau(f)=\limsup _{r \rightarrow+\infty} \frac{\log M(r, f)}{r^{\sigma}}
$$

Following Yi an Yang [13] we define,
Definition 3. Let f be a non-constant meromorphic function, then the hyper order $\sigma_{2}(f)$ of $f(z)$ is defined as follows

$$
\sigma_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

and finally
Definition 4. Let f be a transcendental meromorphic function in the open complex plane \mathbb{C}. A differential monomial is an expression of the form

$$
M[f]=(f)^{n_{0}}\left(f^{(1)}\right)^{n_{1}}\left(f^{(2)}\right)^{n_{2}} \ldots\left(f^{(k)}\right)^{n_{k}}
$$

where $n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are non negative integers. The degree and weight of the differential monomial are respectively given by $\gamma_{M}=n_{0}+n_{1}+n_{2}+\cdots+n_{k}$ and $\Gamma_{M}=n_{0}+2 n_{1}+$ $\cdots+(k+1) n_{k}$.

Rubel and Yang [10] proved that if a non-constant entire function f and its derivative f^{\prime} share two distinct finite complex numbers CM , then $f=f^{\prime}$. What is the relation between
f and f^{\prime}, if an entire function f and its derivative f^{\prime} share one finite complex number CM ? Brück [1] made the conjecture that if f is a non-constant entire function satisfying $\sigma_{2}(f)<\infty$, where $\sigma_{2}(f)$ is not a positive integer and if f and f^{\prime} share one finite complex number $a \mathrm{CM}$, then $f^{\prime}-a=c(f-a)$ for some finite complex number $c \neq 0$. For the case $a=0$, the above conjecture had been proved by Brück [1]. Under the assumptions $N(r, 1 / f)=S(r, f)$, Brück [1] proved that the conjecture is true provided $a=0$. In 1998, Gundersen and Yang [4] proved that the conjecture is true for entire functions of finite order. Later in 2009, Chang and Zhu [2] proved that conjecture remains valid if the value a is replaced by a function $a(z)$, provided $\sigma(a)<\sigma(f)$. Also, in 2008 Li and Cao [8] improved Brück's conjecture for entire function and its derivation sharing polynomials and obtained that if f is a non-constant entire solution of the equation $f^{(k)}-Q 1=e^{P}(f-Q 2)$, where $Q 1$ and $Q 2$ are non-zero polynomials and $P(z)$ be any polynomial, then $\sigma_{2}(f)=$ degree of P.

Problem. In connection with Brück's conjecture the interesting question that presents itself is: what would happen if $f^{(k)}$ were replaced by a differential monomial and polynomials were replaced by entire functions?

In dealing with the above problem, we shall assume that f is a non-constant entire function such that $M[f]$ and $f^{\gamma_{M}}$ share an entire function $\alpha(z)$ with $\sigma(\alpha) \leq \sigma(f)$ thereby improving and generalizing the results of Gundersen and Yang [4], Chang and Zhu [2] and Li and Cao [8].

2. Preparatory lemmas

In this section we state without proofs some lemmas needed in the sequel.
Lemma 1 ([7]). Let $f(z)$ be a transcendental entire function, $\nu(r, f)$ be the central index of $f(z)$. Then there exists a set $E \subset(1,+\infty)$ with finite logarithmic measure, we choose z satisfying $|z|=r \notin[0,1] \cup E$ and $|f(z)|=M(r, f)$, we get

$$
\frac{f^{j}(z)}{f(z)}=\left\{\frac{\nu(r, f)}{z}\right\}^{j}(1+o(1)), \quad \text { for } j \in \mathbb{N}
$$

Lemma 2 ([6]). Let $f(z)$ be an entire function of finite order $\sigma(f)=\sigma<+\infty$, and let $\nu(r, f)$ be the central index of f. Then

$$
\limsup _{r \rightarrow+\infty} \frac{\log \nu(r, f)}{\log r}=\sigma(f)
$$

And if f is a transcendental entire function of hyper order $\sigma_{2}(f)$, then

$$
\limsup _{r \rightarrow+\infty} \frac{\log \log \nu(r, f)}{\log r}=\sigma_{2}(f)
$$

Lemma 3 ([9]). Let $f(z)$ be a transcendental entire function and let $E \subset[1,+\infty)$ be a set having finite logarithmic measure. Then there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f\left(z_{n}\right)\right|=$
$M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi), \lim _{n \rightarrow+\infty} \theta_{n}=\theta_{0} \in[0,2 \pi), r_{n} \notin E$ and if $0<\sigma(f)<+\infty$, then for any given $\varepsilon>0$ and sufficiently large r_{n},

$$
r_{n}^{\sigma(f)-\varepsilon}<\nu\left(r_{n}, f\right)<r_{n}^{\sigma(f)+\varepsilon} .
$$

If $\sigma(f)=+\infty$, then for any given large $K>0$ and sufficiently large r_{n},

$$
\nu\left(r_{n}, f\right)>r_{n}^{K}
$$

Lemma 4 ([7]). Let $P(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}$ with $b_{n} \neq 0$ be a polynomial. Then for every $\varepsilon>0$, there exists $r_{0}>0$ such that for all $r=|z|>r_{0}$ the inequalities

$$
(1-\varepsilon)\left|b_{n}\right| r^{n} \leq|P(z)| \leq(1+\varepsilon)\left|b_{n}\right| r^{n}
$$

hold.
Lemma 5 ([11]). Let $f(z)$ and $A(z)$ be two entire functions with $0<\sigma(f)=\sigma(A)=$ $\sigma<+\infty, 0<\tau(A)=\tau(f)<+\infty$, then there exists a set $E \subset[1,+\infty)$ that has infinite logarithmic measure such that for all $r \in E$ and a positive number $\kappa>0$, we have

$$
\frac{M(r, A)}{M(r, f)}<\exp \left\{-\kappa r^{\sigma}\right\}
$$

3. Statements and proofs of the main theorems

In this section we present the main results of the paper.
Theorem 1. Let $f(z)$ and $\alpha(z)$ be two non-constant entire functions and satisfy $0<\sigma(\alpha)=$ $\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$. Also, let $P(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$
\begin{equation*}
M[f]-\alpha=\left(f^{\gamma_{M}}-\alpha\right) e^{P(z)} \tag{1}
\end{equation*}
$$

then $P(z)$ is a constant.
Proof. Suppose that $\operatorname{deg} P=m \geq 1$.
Let

$$
P(z)=b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0}
$$

where $b_{m}, b_{m-1}, \ldots, b_{0}$ are constants and $b_{m} \neq 0, m \geq 1$. Thus, it follows from (1) and Lemma 4 that

$$
\begin{align*}
\left|b_{m}\right| r^{m}(1+o(1)) & =|P(z)|=\left|\log \frac{\frac{M[f]}{f^{\gamma} M}-\frac{\alpha}{f^{\gamma} M}}{1-\frac{\alpha}{f^{\gamma} M}}\right| \\
& =\left|\log \frac{\frac{M[f]}{f^{\gamma} M^{\prime}}-\frac{\alpha}{f} \frac{1}{f^{\gamma} M^{-1}}}{1-\frac{\alpha}{f} \frac{1}{f^{\gamma} M^{-1}}}\right| . \tag{2}
\end{align*}
$$

Since

$$
\begin{aligned}
M[f] & =(f)^{n_{0}}\left(f^{(1)}\right)^{n_{1}}\left(f^{(2)}\right)^{n_{2}} \ldots\left(f^{(k)}\right)^{n_{k}} \\
& \left.=f^{\left(\sum_{j=0}^{k} n_{j}\right.}\right) \prod_{j=1}^{k}\left(\frac{f^{(j)}}{f}\right)^{n_{j}} \\
& =f^{\gamma_{M}} \prod_{j=1}^{k}\left(\frac{f^{(j)}}{f}\right)^{n_{j}}
\end{aligned}
$$

and from Lemma 1, there exists a subset $E_{1} \subset(1,+\infty)$ with finite logarithmic measure, such that for some point $|z|=r e^{i \theta}(\theta \in[0,2 \pi]), r \notin E_{1}$ and $M(r, f)=|f(z)|$, we have

$$
\frac{f^{j}(z)}{f(z)}=\left\{\frac{\nu(r, f)}{z}\right\}^{j}(1+o(1)), \quad 1 \leq j \leq k
$$

Thus, it follows that

$$
\begin{align*}
\frac{M[f]}{f^{\gamma_{M}}} & =\prod_{j=1}^{k}\left\{\frac{\nu(r, f)}{z}\right\}^{j \cdot n_{j}}(1+o(1)) \\
& =\left\{\frac{\nu(r, f)}{z}\right\}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)}(1+o(1)) . \tag{3}
\end{align*}
$$

From Lemma 3, there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi]$, $\lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi], r_{n} \notin E_{1}$, then for any given $\varepsilon>0$ and sufficiently large r_{n},

$$
\begin{equation*}
r_{n}^{\sigma(f)-\varepsilon}<\nu\left(r_{n}, f\right)<r_{n}^{\sigma(f)+\varepsilon} . \tag{4}
\end{equation*}
$$

Then, from (3) and (4) we have

$$
\begin{align*}
\frac{M[f]}{f^{\gamma_{M}}} & =\left\{\frac{\nu\left(r_{n}, f\right)}{r_{n}}\right\}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)} \cdot(1+o(1)) \\
& <r_{n}^{(\sigma(f)+\varepsilon-1)\left(\sum_{j=0}^{k} j \cdot n_{j}\right)} \cdot(1+o(1)) . \tag{5}
\end{align*}
$$

Since $0<\sigma(\alpha)=\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$, using Lemma 5, there exists a set $E \subset[1,+\infty)$ that has infinite logarithmic measure such that for a sequence $\left\{r_{n}\right\}_{n=1}^{\infty} \in$ $E_{2}=E-E_{1}$, we have

$$
\begin{equation*}
\frac{M\left(r_{n}, \alpha\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty \tag{6}
\end{equation*}
$$

From (2), (5) and (6) and Lemma 2, we get that

$$
\left|b_{m}\right| r^{m}(1+o(1))=|P(z)|=O\left(\log r_{n}\right)
$$

which is impossible. Thus, $P(z)$ is not a polynomial, that is, $P(z)$ is a constant.
Hence, the proof.

Theorem 2. Let $f(z)$ and $\alpha(z)$ be two non constant entire functions and satisfy $0<\sigma(\alpha)=$ $\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$. Also, let $P(z)$ be a polynomial. If f is a non constant entire solution of the following differential equation.

$$
\begin{equation*}
M[f]+\beta(z)-\alpha(z)=\left(f^{\gamma_{M}}-\alpha(z)\right) e^{P(z)} \tag{7}
\end{equation*}
$$

where $\beta(z)$ is an entire function satisfying $0<\sigma(\beta)=\sigma(f)<+\infty$ and $\tau(f)>\tau(\beta)$. Then $P(z)$ is a constant.

Proof. Rewriting (7) as

$$
\frac{M[f]+\beta-\alpha}{f^{\gamma_{M}}-\alpha}=\frac{\frac{M[f]}{f^{\gamma} \gamma^{\prime}}+\frac{\beta}{f} \frac{1}{f^{\gamma} M^{-1}}-\frac{\alpha}{f} \frac{1}{f^{\gamma} M^{-1}}}{1-\frac{\alpha}{f} \frac{1}{f^{\gamma_{M}-1}}}=e^{P(z)} .
$$

Our assumptions on τ and σ values give, using Lemma 5, that there exists a set $E \subset$ $[1,+\infty)$ that has infinite logarithmic measure such that for a sequence $\left\{r_{n}\right\}_{n=1}^{\infty} \in E_{3}=$ $E-E_{1}$, we have

$$
\frac{M\left(r_{n}, \alpha\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

and

$$
\frac{M\left(r_{n}, \beta\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

The arguments employed in the proof of Theorem 1 show that $P(z)$ is a constant.
Hence, the proof.
Theorem 3. Let $f(z)$ and $\alpha(z)$ be two non constant entire functions satisfying $\sigma(\alpha)<\mu(f)$ and $P(z)$ be a polynomial. If f is a non constant entire solution of the following differential equation

$$
\begin{equation*}
M[f]+\beta(z)-\alpha(z)=\left(f^{\gamma_{M}}-\alpha(z)\right) e^{P(z)} \tag{8}
\end{equation*}
$$

where $\beta(z)$ is an entire function satisfying $\sigma(\beta)<\mu(f)$. Then $\sigma_{2}(f)=\operatorname{deg} P$.
Proof. We will consider two cases (I) $\sigma(f)<+\infty$ and (II) $\sigma(f)=+\infty$.
Case I. Suppose that $\sigma(f)<+\infty$. Then $\sigma_{2}(f)=0$. Since $\sigma(\alpha)<\mu(f)$ and $\sigma(\beta)<\mu(f)$, from Definitions of the order and the lower order, there exists infinite sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$, we have

$$
\frac{\left|\alpha\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0, \text { and } \frac{\left|\beta\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus, by using the same argument as in Theorem 1 , we get that $P(z)$ is a constant, that is, $\operatorname{deg} P=0$. Therefore, $\sigma_{2}(f)=\operatorname{deg} P$.

Case II. Suppose that $\sigma(f)=+\infty$.

Rewriting (8), we have

$$
\frac{\frac{M[f]}{f^{\gamma} M}+\frac{\beta}{f} \frac{1}{f^{\gamma} M^{-1}}-\frac{\alpha}{f} \frac{1}{f^{\gamma_{M}-1}}}{1-\frac{\alpha}{f} \frac{1}{f^{\gamma} M^{-1}}}=e^{P(z)} .
$$

From Lemma 1, there exists a subset $E_{4} \subset[1,+\infty)$ with finite logarithmic measure, we choose z satisfying $|z|=r \notin[0,1] \cup E_{4}$ and $|f(z)|=M(r, f)$, we get

$$
\frac{f^{j}(z)}{f(z)}=\left\{\frac{\nu(r, f)}{z}\right\}^{j}(1+o(1)), 1 \leq j \leq k
$$

Thus, it follows that

$$
\begin{equation*}
\frac{M[f]}{f^{\gamma_{M}}}=\prod_{j=1}^{k}\left\{\frac{\nu(r, f)}{z}\right\}^{j . n_{j}}(1+o(1))=\left\{\frac{\nu(r, f)}{z}\right\}^{\left(\sum_{j=0}^{k} j . n_{j}\right)}(1+o(1)) \tag{9}
\end{equation*}
$$

since $\sigma(f)=+\infty$, then it follows from Lemma 3 that there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ with $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi], \lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi], r_{n} \notin E_{5} \subset[1,+\infty)$, such that for any large constant K and for sufficiently large r_{n}, we have

$$
\begin{equation*}
\nu\left(r_{n}, f\right) \geq r_{n}^{K} \tag{10}
\end{equation*}
$$

Since $\sigma(\alpha)<\mu(f)$ and $\sigma(\beta)<\mu(f)$, from definitions of order and lower order, there exists infinite sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$, we have

$$
\begin{equation*}
\frac{\left|\alpha\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0, \text { and } \frac{\left|\beta\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0, \text { and as } n \rightarrow \infty \tag{11}
\end{equation*}
$$

Thus, it follows from (8) to (11) that

$$
\begin{equation*}
\left\{\frac{\nu\left(r_{n}, f\right)}{z_{n}}\right\}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)}(1+o(1))=e^{P\left(z_{n}\right)} \tag{12}
\end{equation*}
$$

Let

$$
P(z)=b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0},
$$

where $b_{m}, b_{m-1}, \ldots, b_{0}$ are constants and $b_{m} \neq 0, m \geq 1$. From Lemma 4, there exists sufficiently large positive number r_{0} and $n_{0} \in N_{+}$, such that for sufficiently large positive integer $n>n_{0}$ satisfying $\left|z_{n}\right|=r_{n}>r_{0}$, we have for every $\varepsilon^{\prime}>0$

$$
\begin{equation*}
\log \left|b_{m}\right|+m \log \left|z_{n}\right|+\log \left|1-\varepsilon^{\prime}\right| \leq \log \left|P\left(z_{n}\right)\right| \leq\left|\log \log e^{P\left(z_{n}\right)}\right| \tag{13}
\end{equation*}
$$

It follows from (12) that

$$
\begin{align*}
& \left|\log \log e^{P\left(z_{n}\right)}\right| \leq \log \log \nu\left(r_{n}, f\right)+\log \log r_{n}+O(1) \\
& \leq \log \log \nu\left(r_{n}, f\right)+O\left(\log \log r_{n}\right) \tag{14}
\end{align*}
$$

Thus, we have from (13) and (14) and Lemma 2 that

$$
\begin{equation*}
m=\operatorname{deg} P \leq \sigma_{2}(f) \tag{15}
\end{equation*}
$$

Also, it follows from (12) that

$$
M\left(r_{n}, e^{P\left(z_{n}\right)}\right) \geq\left\{\frac{\nu\left(r_{n}, f\right)}{r_{n}}\right\}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)} .
$$

Then we have

$$
\begin{equation*}
\left.\left\{\nu\left(r_{n}, f\right)\right\}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)} \leq{\left(r_{n}\right)}^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right.}\right) M\left(r_{n}, e^{P\left(z_{n}\right)}\right) . \tag{16}
\end{equation*}
$$

Thus, it follows from (16) and Lemma 2 that

$$
\begin{align*}
\sigma_{2}(f) & =\limsup _{r_{n} \rightarrow+\infty} \frac{\log \log \nu\left(r_{n}, f\right)}{\log r_{n}} \\
& =\limsup _{r_{n} \rightarrow+\infty} \frac{\log \log \left(\nu\left(r_{n}, f\right)\right)^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)}}{\log r_{n}} \\
& \leq \limsup _{r_{n} \rightarrow+\infty} \frac{\log \log \left(r_{n}\right)^{\left(\sum_{j=0}^{k} j \cdot n_{j}\right)} M\left(r_{n}, e^{P\left(z_{n}\right)}\right)}{\log r_{n}}=\sigma\left(e^{P}\right) . \tag{17}
\end{align*}
$$

Since $P(z)$ is a polynomial, then $\sigma\left(e^{P}\right)=\operatorname{deg} P=m$. By combining (15) and (17), we have $\sigma_{2}(f)=\operatorname{deg} P$.

Corollary 1. Let $f(z)$ and $\alpha(z)$ be two non constant entire functions and satisfy $\sigma(\alpha)<$ $\mu(f)$. Also, let $P(z)$ be a polynomial. If f is a non constant entire solution of the following differential equation

$$
M[f]-\alpha=\left(f^{\gamma_{M}}-\alpha\right) e^{P(z)}
$$

then $\sigma_{2}(f)=\operatorname{deg} P$.

Acknowledgment

The authors would like to thank the referee for his/her comments and suggestions.

References

[1] R. Brück, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996) 21-24.
[2] J.M. Chang, Y.Z. Zhu, Entire functions that share a small function with their derivatives, J. Math. Anal. Appl. 351 (2009) 491-496.
[3] W. Cherry, Z. Ye, Nevanlinna'S Theory of Value Distribution, Springer Verlag, 2001.
[4] G.G. Gundersen, L.Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl. 223 (1998) 85-95.
[5] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[6] Y.Z. He, X.Z. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, Beijing, 1988.
[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[8] X.M. Li, C.C. Cao, Entire functions sharing one polynomial with their derivatives, Proc. Indian Acad. Sci. Math. Sci. 118 (2008) 13-26.
[9] Z.Q. Mao, Uniqueness theorems on entire functions and their linear differential polynomials, Results Math. 55 (2009) 447-456.
[10] L. Rubel, C.C. Yang, Values shared by an entire function and its derivative, in: Complex Analysis, Kentucky 1976 (Proc. Conf.), in: Lecture Notes in Mathematics, vol. 599, Springer-Verlag, Berlin, 1977, pp. 101-103.
[11] H.Y. Xu, L.Z. Yang, On a conjecture of R. Brück and some linear differential equations, Springer Plus 4 (748) (2015) 1-10. http://dx.doi.org/10.1186/s40064-015-1530-5.
[12] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[13] H.X. Yi, C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

[^0]: * Corresponding author.

 E-mail addresses: dcpramanik.nbu2012@gmail.com (D.Ch. Pramanik), manab_biswas83@yahoo.com (M. Biswas), rajib547mandal@gmail.com (R. Mandal).

 Peer review under responsibility of King Saud University.

