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Abstract. In this work, we establish the real Paley–Wiener theorem for the general-

ized Fourier transform on R. Therefore, we study the connection between the real

Paley–Wiener theorem and local spectral theory. Finally, we generalize Roe’s theorem.
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1. INTRODUCTION

In this paper, we consider the first-order singular differential-difference operator on R
KfðxÞ ¼ df

dx
þ A0ðxÞ

AðxÞ
fðxÞ � fð�xÞ

2

� �
� qfð�xÞ; ð1:1Þ
where
AðxÞ ¼ jxj2aþ1BðxÞ; a >
�1
2
;
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B being a positive C1 even function on R, with Bð0Þ ¼ 1 and q > 0. In addition we
suppose that

(i) For all x P 0; AðxÞ is increasing and limx!þ1 AðxÞ ¼ þ1.

(ii) For all x > 0; A0ðxÞ
AðxÞ is decreasing and limx!þ1

A0ðxÞ
AðxÞ ¼ 2q.

For
AðxÞ ¼ ðsinh jxjÞ2aþ1ðcosh xÞ2bþ1; q ¼ aþ bþ 1; a P b >
�1
2
;

we regain the differential-difference operator
Tða;bÞfðxÞ ¼ f 0ðxÞ þ ½ð2aþ 1Þ coth xþ ð2bþ 1Þ tanh x� fðxÞ � fð�xÞ
2

� qfð�xÞ:
In Cherednik’s notation, Tða;bÞ is written as
Tða;bÞfðxÞ ¼ f 0ðxÞ þ 2k1

1� e�2x
þ 4k2

1� e�4x

� �
½fðxÞ � fð�xÞ� � ðk1 þ 2k2ÞfðxÞ;
with a ¼ k1 þ k2 � 1
2
and b ¼ k2 � 1

2
. For recent results and more details in this direction

we refer to [6,7,9,10,13,15].
For each k 2 C, the differential-difference equation
Ku ¼ iku; uð0Þ ¼ 1; ð1:2Þ

admits a unique C1 solution on R, denoted by Uk and given by
UkðxÞ ¼
ukðxÞ þ 1

ik�q
d
dx

ukðxÞ if k–� iq;

1þ 2q
AðxÞ

R x

0
AðtÞdt if k ¼ �iq;

(

where uk is the eigenfunction of the second order singular differential operator D on
�0;þ1½:
D ¼ d2

dx2
þ A0ðxÞ

AðxÞ
d

dx
: ð1:3Þ
The function uk satisfies the following properties:

(i) For every x 2 ½0;þ1½, the function k! ukðxÞ is even and entire on C.
(ii) For all x 2 ½0;þ1½ and k 2 C such that jImkj 6 q, we have jukðxÞj 6 1.
(iii) We have
8x P 0; 8k 2 R; jukðxÞj 6 u0ðxÞ; ð1:4Þ
and there exists a positive constant c0 such that
8x P 0; 0 < u0ðxÞ 6 c0ð1þ xÞe�qx: ð1:5Þ
Furthermore, for every x 2 R, the function k! UkðxÞ is entire on C, and there exists a
positive constant M such that
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jUkðxÞj 6Mð1þ jxjÞð1þ jkjÞe�qjxj; 8x 2 R; 8k 2 C: ð1:6Þ

For more details see [8,16].

Remark. If AðxÞ ¼ ðsinh jxjÞ2aþ1ðcosh xÞ2bþ1, a P b P �1
2 and a– �1

2 then the functions
Uða;bÞk are closely related to the Jacobi functions. Specifically
Uða;bÞk ðxÞ ¼ uða;bÞk ðxÞ � 1

q� ik
d

dx
uða;bÞk ðxÞ; ð1:7Þ
where uða;bÞk ðxÞ ¼ F2 1
qþik
2
; q�ik

2
; aþ 1;�sinh2x

� �
, (see [3, p. 3]) and references there.

The Paley–Wiener theorem [11] for functions is one of most useful theorems in
harmonic analysis. This theorem has as aim to characterize functions with compact
support through the properties of the analytic extensions of their classical Fourier
transform. Recently there has been a great interest to characterize the space of func-
tions who’s Fourier transform has compact support in several situations. They have
become known as real Paley Wiener theorems, in which the adjective real expresses that
information about the support of f comes from growth rates associated to the function
F f on Rd. We refer to the survey of Andersen and de Jeu [2] and references there.

The set-up is as follows. Let f be a C1-function on R such that for all n 2 R, the

function dnf
dxn

belongs to the Lebesgue space LpðRÞ, then the limit Rf :¼ limn!1
dnf
dxn

�� ��1
n

p

exists in ½0;þ1� and we have
Rf ¼ supfjkj; k 2 suppFðfÞg;

where FðfÞ is the classical Fourier transform of f. This result is due to Bang [4]. It was
established for many other integral transforms in [1,2].

This paper is organized as follows. In Section 2, the necessary notations and
previous results are given. Section 3, we prove the real Paley–Wiener theorem for
the generalized Schwartz spaces and for the Lp

A-functions. Finally, in the last section
we give the analogue of Roe’s theorem for generalized Fourier transform.

2. NOTATIONS AND BACKGROUNDS

In this section we give an introduction to the harmonic analysis associated with the
differential-difference operator and some notations. In the following we denote by:

� DðRÞ the space of C1 functions on R with compact support. We have
DðRÞ ¼
[
a>0

DaðRÞ;
where DaðRÞ is the space of C1 functions on R with support in ½�a; a�. The topology on
DaðRÞ is defined by the semi-norms
pnðwÞ ¼ sup
k6n;x2½�a;a�

jwðkÞðxÞj; n 2 N:
The space DðRÞ is equipped with the inductive limit topology.
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� EðRÞ the space of C1 functions on R. Its topology is defined by the semi-norms
qn;kð/Þ ¼ sup
k6n;x2K

j/ðkÞðxÞj; n 2 N;
where K is a compact subset of R and n 2 N.
� SðRÞ the classical Schwartz space on R. The topology of this space is given by the
semi-norms
ml;nðfÞ ¼ sup
k6n;x2R

ð1þ jxjÞljfðkÞðxÞj:
� S2ðRÞ the space of C1 functions on R, such that for all l; n 2 N,
rl;nðfÞ ¼ sup
k6n;x2R

ð1þ jxjÞlu�10 ðxÞjfðkÞðxÞj < þ1:
Its topology is defined by the semi-norms rl;n; l; n 2 N.
� PwaðCÞ the space consists of all entire functions h on C which satisfy
8m 2 N; PmðhÞ ¼ sup
k2C
ð1þ jkjÞme�ajIm kjjhðkÞj < þ1:
The topology on PwaðCÞ is defined by the semi-norms Pm;m 2 N.We set
PwðCÞ ¼
[
a>0

PwaðCÞ:
This space called Paley–Wiener space is equipped with the inductive limit topology.
� D0ðRÞ the space of distributions on R. It is the topological dual space of DðRÞ.
� S02ðRÞ the topological dual space of S2ðRÞ.

In the following we give some properties and we recall some results associated with
the operator K.

Lemma 2.1. For all f in EðRÞ and all g in DðRÞ, we have
Z
R

KfðxÞgðxÞAðxÞdx ¼ �
Z

R

fðxÞ½KgðxÞ þ 2qSgðxÞ�AðxÞdx; ð2:1Þ
where S is the operator defined by SgðxÞ ¼ gð�xÞ. Moreover, for all n 2 N, we have
Z
R

KnfðxÞgðxÞAðxÞdx ¼ ð�1Þn
Z

R

fðxÞ½KngðxÞ þ 2 �nqKn�1SgðxÞ�AðxÞdx; ð2:2Þ	

where �n ¼ 1 if n isodd

0 if n is even:

Notation. We denote by
T :¼ Kþ 2qS:
Remark. We can see by a direct calculation that for all n in N, we have T2n ¼ K2n.

For all 1 6 p 61, we denote by Lp
AðRÞ, the space of measurable functions f is such

that
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kfkpp;A ¼
R

R
jfðxÞjpAðxÞdx <1; if 1 6 p <1;

kfk1 ¼ ess sup
x2R

jfðxÞj; if p ¼ 1:

(

In the sequel, we give some results about the generalized Fourier transform.

Definition 2.1. [8] The generalized Fourier transform of a function f in DðRÞ is defined
by
F fðkÞ ¼
Z

R

fðxÞU�kðxÞAðxÞdx; k 2 C: ð2:3Þ
Theorem 2.2. [8]

(i) For all f in DðRÞ,

FTfðkÞ ¼ ikF fðkÞ: ð2:4Þ
(ii) For all f in DðRÞ,

F fðkÞ ¼ FDðfeÞðkÞ þ ðik� qÞFDJfoðkÞ; ð2:5Þ
where fe (resp fo) denotes the even (resp odd) part of f, FD stands for the Fourier
transform related to the differential operator D as donated by (1.3), defined on the
subspace of DðRÞ consisting of even functions by
FDhðkÞ ¼
Z

R

hðxÞukðxÞAðxÞdx; k 2 C;
and
JfoðxÞ :¼
Z x

�1
foðtÞdt:
Theorem 2.3. [8] For all f 2 DðRÞ,
fðxÞ ¼
Z

R

F fðkÞU�kð�xÞdr1ðkÞ þ
Z q

�q
F fðikÞU�ikð�xÞdr2ðkÞ; ð2:6Þ
where
dr1ðkÞ ¼ 1� iq
k

� �
dl1ðkÞanddr2ðkÞ ¼ 1� q

k


 �
dl2ðkÞ; ð2:7Þ
where l1 is an even positive tempered measure on R and l2 is positive measure on R with
support in ½�q; q�.

Remark. [8]

(i) The pair ðl1; l2Þ is called the spectral measure associated with the differential
operator D.
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(ii) For AðxÞ ¼ ðsinh jxjÞ2aþ1ðcosh xÞ2bþ1; a P b > �1
2
, we have
l1ðdkÞ ¼
dk

jcðkÞj2
andl2 ¼ 0;
where cðkÞ ¼ 2q�ikCðaþ1ÞCðikÞ
C qþik

2ð ÞC aþ1�q�ik
2ð Þ, k 2 C n iZf g.

Theorem 2.4. The generalized Fourier transform F is a topological isomorphism from

(i) DðRÞ onto PwðCÞ, ([8]).
(ii) S2ðRÞ onto SðRÞ, ([16]).

In the sequel we give the essential properties of the generalized convolution product
which are developed in the paper [8].

Definition 2.2. The generalized translation operators tsx; x 2 R, are defined on S2ðRÞ,
by the relation
FðtsxfÞðkÞ ¼ U�kðxÞF fðkÞ; k 2 C:
Remark.

(i) From the relation (2.6) we deduce that for all x; y in R, we have
tsxfðyÞ ¼ ts�yfð�xÞ:

(ii) From the definition above and the relations (1.6) and (2.6), there exists a positive

constant C such that for all x; y 2 R and all k 2 C, we have
jtsxfðyÞj 6 Cð1þ jxjÞð1þ jyjÞe�qjxj e�qjyj: ð2:8Þ
Theorem 2.5. [8] For f in S2ðRÞ, the function vðx; yÞ ¼ ts�x ðfÞ ðyÞ is the unique solution of
the problem
Tx vðx; yÞ ¼ Ty vðx; yÞ;
vð0; yÞ ¼ fðyÞ:

	

Proposition 2.6. For all f in S2ðRÞ and y in R, we have tsyf belongs to S2ðRÞ and for all
integer n, we have
Tn tsyf ¼ tsy Tn f: ð2:9Þ
Proof. From the Definition 2.2, the relation (1.6) and (ii) of the Theorem 2.4, we con-
clude that tsyf belongs to S2ðRÞ for all f in S2ðRÞ and all y in R. Moreover, for all y in R

and k in C, we have
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FðTtsyfÞðkÞ ¼ ikU�kðyÞF fðkÞ ¼ Fðtsy TfÞðkÞ;

then the relation (2.9) follows easily from the injectivity of the generalized fourier trans-
form. h

Definition 2.3. For f in DðRÞ and g in EðRÞ, the generalized convolution product f#g is
defined by
f#gðxÞ ¼
Z

R

ðtsyfÞðxÞgðyÞAðyÞdy; x 2 R:
Proposition 2.7. Let f and g in S2ðRÞ then
Fðf#gÞ ¼ FðfÞFðgÞ: ð2:10Þ
Proposition 2.8. For all f; g in DðRÞ (resp S2ðRÞ) we have
Z
R

fð�xÞgðxÞAðxÞdx ¼
Z

R

F fðkÞFgðkÞr1ðdkÞ þ
Z q

�q
F fðikÞFgðikÞr2ðdkÞ: ð2:11Þ
Proof. We have,
f#gð0Þ ¼
Z

R

tsyfð0ÞgðyÞAðyÞdy ¼
Z

R

fð�yÞgðyÞAðyÞdy:
Moreover, using the relations (2.6) and (2.10), we get
f#gð0Þ ¼
Z

R

F fðkÞFgðkÞr1ðdkÞ þ
Z q

�q
F fðikÞFgðikÞr2ðdkÞ: �
Lemma 2.9. For all f; g; h 2 DðRÞ (resp S2ðRÞ), we have
ðiÞ
Z

R

ðf#gÞðxÞhð�xÞAðxÞdx ¼
Z

R

fðxÞ ðg#hÞð�xÞAðxÞdx; ð2:12Þ

ðiiÞ Tðf#gÞðxÞ ¼ ðTfÞ#gðxÞ ¼ f#ðTgÞðxÞ: ð2:13Þ
Proof.

(i) The result follows from Proposition 2.8.
(ii) We have
FðTðf#gÞÞðkÞ ¼ ikFðf#gÞðkÞ ¼ ikFðfÞðkÞFðgÞðkÞ;¼ FðTfÞðkÞFðgÞðkÞ
¼ Fðf#ðTgÞÞðkÞ: �
Lemma 2.10. For f; g 2 D (resp. S2), for all n 2 N, we have
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Tnðf#gÞ ¼ ðTnfÞ#g ¼ f#ðTngÞ; ð2:14Þ
Tnf ¼ F�1ðFTnfÞ ¼ F�1ðPnF fÞ; ð2:15Þ
where PnðxÞ ¼ ðixÞn.

Definition 2.4.

(i) We define the distributional generalized Fourier transform F d on Lp
AðRÞ for all

1 6 p � 2, by transposition
hF df;/i :¼ hf;F�1/i ¼
Z

R

fðxÞF�1/ðxÞAðxÞdx; 8/ 2 SðRÞ; 8f 2 Lp
AðRÞ:

ð2:16Þ

In other words,
hF df;F/i ¼ hf;/i: ð2:17Þ

(ii) The generalized Fourier transform of a distribution S in S02ðRÞ is defined by
< FðSÞ;w >¼< S;F�1w >; w 2 SðRÞ: ð2:18Þ
Remark. We have from [5], S2ðRÞ � Lp
AðRÞ, for all p P 2.
3. THE REAL PALEY–WIENER THEOREM

We will now consider the real Paley–Wiener theorem for Lp-functions in the spirit of
Bang [4]. We define the real Paley–Wiener space PWRðRÞ as the space of all f in
EðRÞ such that, for all N in N,
sup
x2R;n2N

R�nn�Meqjxjð1þ jxjÞNjTnfðxÞj <1; ð3:1Þ
where M ¼MðNÞ is a positive integer depending on N.

Theorem 3.1. Let R > 0. The generalized Fourier transform F is a bijection from
PWRðRÞ onto DRðRÞ.

Proof. Let f 2 PWRðRÞ and consider k outside ½�R;R�. Then, we have with N P 2,
jF fðkÞj ¼ jk�nFðTnfÞðkÞj
6 jk�nj

R
R
jTnfðxÞjð1þ jkjÞð1þ jxjÞe�qjxjAðxÞdx

6 C R
jkj


 �n
nMð1þ jkjÞ

R
R
ð1þ jxjÞ1�Ndx! 0; as n!1;
and thus suppF f � ½�R;R�.
Assume conversely that F f has compact support in ½�R;R�, for f 2 S2ðRÞ. We fix

N 2 N, then we have
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jeqjxjð1þ jxjÞNTnfðxÞj ¼ jeqjxjð1þ jxjÞNF�1ðPnF fÞðxÞj
6 sup

x

eqjxjð1þ jxjÞNjF�1ðPnF fÞðxÞj:
Using the fact that F�1 is a topological isomorphism from SðRÞ onto S2ðRÞ, we obtain
jeqjxjð1þ jxjÞNTnfðxÞj 6 c sup
k

X
16k;l6M

ð1þ jkjÞk dl

dkl
ðknF fðkÞÞ

���� ����;

for a positive constant c and a positive integerM, depending only on N (independent of
n). Leibniz’s rule yields
d l

dkl
ðknF fðkÞÞ ¼

Xl

j¼0

l

j

� �
n!

ðn� jÞ! k
n�j d

dk

� �l�j

F fðkÞ: ð3:2Þ
Using the estimates
Xl

j¼0

l

j

� �
n!

ðn� jÞ! 6MM!nM and Rn�j
6 1þ 1

R

� �M

Rn;
we get
jeqjxjð1þ jxjÞNTnfðxÞj 6 cnMMM! 1þ 1

R

� �M

Rn;
for a positive constant c, independent of n, and we see that f belongs to PWRðRÞ. h

For f in Lp
AðRÞ; 1 6 p � 2, we define Rf the radius of distributional support of F df,

as
Rf :¼ supfjkj : k 2 suppF d fg:

We note that for all f 2 S2ðRÞ; suppF d f ¼ suppF f.

Theorem 3.2. Let f in EðRÞ be such that Tnfin L
p
AðRÞ, for all n 2 N and all 1 6 p � 2.

Then we have
lim
n!1
kTnfk

1
n
p;A ¼ supfjkj : k 2 suppF d fg: ð3:3Þ
Proof. Let f be as in the theorem and such that supp F d f � ½�R;R�, for some finite
R > 0. To this end, choose e > 0 and fix a function / 2 S2ðRÞ such that F/ ¼ 1 on
½�Rf;Rf� and F/ ¼ 0 outside ½�Rf � e;Rf þ e�. From the Proposition 2.7 and Remark
2, we have for w 2 DðRÞ,
hT2nf;wi ¼ hF dðT2nfÞ;Fwi ¼ hF dðT2nfÞ;F/Fwi;
¼ hT2nf;/#wi ¼ hf;T2n/#wi;

¼
Z

R

fðxÞ
Z

R

ðtsyT2n/ÞðxÞwðyÞAðyÞdy
� �

AðxÞdx;

¼
Z

R

Z
R

fðxÞðts�xT2n/Þð�yÞAðxÞdx
� �

wðyÞAðyÞdy;
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As supp F/ � ½�Rf � e;Rf þ e�, then from the Theorem 3.1, the Definition 2.2, the
inversion formula for the generalized fourier transform and the relations (1.6) and
(2.8), we deduce that there exists a positive constant M such that for all n; N in N

and x; y 2 R, we have
jðts�xT2n/Þð�yÞj 6M ð1þ jyjÞ�N e�qjxj e�qjyj ðRf þ eÞ2n ð3:4Þ
Therefore, using Hölder’s inequality and the last relation, we have for
w 2 DðRÞ; jhT2nf;wij 6 j

R
R

½
Z

R

fðxÞðts�xT2n/Þð�yÞAðxÞdx�wðyÞAðyÞdyj

6 kfkp;A
Z

R

Z
R

jðts�xT2n/Þð�yÞjp
0
AðxÞdx

� � 1
p0

jwðyÞjAðyÞdy

6Mkfkp;A
Z

R

Z
R

e�q p0 ðjxjþjyjÞ ðRf þ eÞ2np
0
AðxÞdx

� � 1
p0

jwðyÞjAðyÞdy

6M0ðRf þ eÞ2n kfkp;A
Z

R

e�qjyjjwðyÞjAðyÞdy

6M00 ðRf þ eÞ2n kfkp;A kwkp0;A:
where p0 is the conjugate exponent of p. Moreover
hT2nþ1f;wi ¼ hF dðT2nþ1fÞ;Fwi ¼ hF dðT2nþ1fÞ;F/Fwi
¼ hT2nþ1f;/#wi ¼ hTf;T2n/#wi ¼ hððTfÞ�#T2n/Þ�;wi:
Therefore, using Hölder’s inequality and the relation (3.4), we have for w 2 DðRÞ,
jhT2nþ1f;wij 6M0 ðRf þ eÞ2n kTfkp;A kwkp0;A:
we conclude that
lim sup
n!1

kTnfk
1
n
p;A 6 Rf þ e:
Therefore,
lim sup
n!1

kTnfk
1
n
p;A 6 Rf: ð3:5Þ
Now, consider an arbitrary f 2 EðRÞ such that for all 1 6 p � 2 and all
n 2 N; Tnf 2 Lp

AðRÞ and let 0–k0 2 suppF d f. Choose e > 0 such that 0 < 2e < jk0j,
w 2 DðRÞ with supp w � ½jk0j � e; jk0j þ e� and hF d f;wi–0. Define
k2nw2nðkÞ :¼ ðk0 � 2eÞ2nwðkÞ:

Using Hölder’s inequality, we get
ðk0 � 2eÞ2njhF df;wij ¼ jhF df;FðT2nF�1ðw2nÞÞij ¼ jhf;T2nðF�1w2nÞij
¼ jhT2nf;F�1w2nij 6 kT2nfkp;AkF�1w2nkp0 ;A 6 ckT2nfkp;A:
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However, we have
ðjk0j � 2eÞ 6 jk0 � 2ej ¼ lim
n!1
½ðk0 � 2eÞ2njhF d f;wij�

1
2n

6 lim inf
n!1

c
1
2nkT2nfk

1
2n
p;A

¼ lim inf
n!1

kT2nfk
1
2n
p;A;
where p0 is the conjugate exponent of p. We conclude that, for any k0 2 suppF d f,
jk0j 6 lim inf
n!1

k2nfk
1
2n
p;A:
Now, choose e > 0 such that 0 < 2e < jk0j, and choose w 2 DðRÞ such that supp
w � ½jk0j � e; jk0j þ e� and hF dðTfÞ;wi–0. Define
k2nw2nðkÞ :¼ ðk0 � 2eÞ2nwðkÞ:

We have,
ðk0 � 2eÞ2njhF d ðTfÞ;wij ¼ jhF dðTfÞ;FðT2nF�1ðw2nÞÞij
¼ jhTf;T2nðF�1w2nÞij ¼ jhT2nþ1f;F�1w2nij
6 kT2nþ1fkp;AkF�1w2nkp0;A 6 CkT2nþ1fkp;A:
We conclude that, for any k0 2 suppF d f,
jk0j 6 lim inf
n!1

kT2nþ1fk
1

2nþ1
p;A :
These two estimates together yield
jk0j 6 lim inf
n!1

kTnfk
1
n
p;A
and the theorem follows. h
4. ROE’S THEOREM ASSOCIATED WITH THE DIFFERENTIAL-DIFFERENCE OPERATOR

Studying the classical Fourier transform, J. Roe has proved in [12], the following main
result.

Theorem 4.1. If a function and all its derivatives and integrals are absolutely uniformly
bounded, then the function is a sine function with period 2p.

In [14], the author looks at a theorem of Roe in n-dimensional setting, and in place
of derivatives and anti derivatives, he uses powers of the Laplacian.

Inspired by this work, we shall prove in this section an analogue result for the dif-
ferential-difference operator T.

Theorem 4.2. Suppose PðnÞ ¼
P

nann
n be a polynomial with complex values. Let

a P 0; d > 2 and let ffjgþ1�1 be a sequence of complex-valued functions on R satisfying
the two following conditions
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Pð�iTÞfj ¼ fjþ1; ð4:1Þ
jfjðxÞj 6Mjð1þ jxjÞa e�dqjxj; ð4:2Þ
where ðMjÞj2Z satisfies the sublinear growth condition
lim
j!1

Mjjj

j
¼ 0: ð4:3Þ
Then f0 ¼ fþ þ f� where Pð�iTÞfþ ¼ fþ and Pð�iTÞf� ¼ �f�. If 1 (or (-1)) is not in the
range of P then fþ ¼ 0 (or f� ¼ 0Þ.

To prove this theorem we need the following Lemmas.

Lemma 4.3. Let ðfjÞj2Z be a sequence of functions on R satisfying
Pð�iTÞfj ¼ fjþ1; ð4:4Þ
jfjðxÞj 6Mjð1þ jxjÞae�dqjxj; ð4:5Þ
and
lim
j!1

Mj

ð1þ eÞj
¼ 0; ð4:6Þ
for all e > 0, then
suppðF d ðf0ÞÞ � S :¼ fn; jPðnÞj ¼ 1g:
Proof. From the relation (4.5), we see that f0 belongs to Lp
AðRÞ for all 1 6 p 6 2. At

first we show that F d f0 is supported in fn; jPðnÞj 6 1g. To do this we need to show that
< F d ðf0Þ;/ >¼ 0 if / 2 DðRÞ and supp / \ fn; jPðnÞj 6 1g ¼ ;. Since suppð/Þ is com-
pact, there is some r < 1 so that 1

jPðnÞj 6 r, for all n 2suppð/Þ. Then
< F d f0;/ > ¼< PjF d ðf0Þ; /
Pj >;

¼< F dðPð�iTjf0ÞÞ; /
Pj >;

¼< Pð�iTjf0Þ;F�1 /
Pj

� �
> :
Choose an integer m with 2m P aþ 1. A direct calculation, using the hypothesis of the
Lemma and Cauchy-Schwartz inequality, implies
j < F d f0;/ > j 6
R

R
jPð�iTÞjf0ðxÞjjF�1 /

Pj

� �
ðxÞjAðxÞdx;

6 CMj eqjxjð1þ x2ÞmF�1 /
Pj

� �
ðxÞ

�� ��
1:
From the continuity of F�1 and the fact that / is supported in fn; jPðnÞjP 1þ eg for
some fixed e > 0, it is not hard to prove that the right-hand side of this goes to zero as
j!1 and so < F d f0;/ >¼ 0. To complete the proof we need to show that F d f0 is
also supported in fn; jPðnÞjP 1g, which means < F d f0;/ >¼ 0 if / is supported in
the set fn; jPðnÞj < 1g. Here we use (4.4) to obtain
< F d f0;/ >¼< PjF dðf�jÞ;/ >¼< F dðf�jÞ;Pj/ >;
and we proceed as previously. h
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The next step in the proof is we assume firstly that ð�1Þ is not a value of PðnÞ, and
show that Pð�iTÞf0 ¼ f0.

Lemma 4.4. There exists an integer N such that
ðP� 1ÞNþ1F df0 ¼ 0: ð4:7Þ
Proof. From the growth conditions on the sequence ðfjÞj2Z, Lemma 4.3 and the
assumption that PðnÞ–� 1, we obtain
suppðF dðf0ÞÞ � fn;PðnÞ ¼ 1g:

As F dðf0Þ is a continuous linear functional on SðRÞ, there is a constant C and integers
m and N so that
j < F dðf0Þ;/ > j 6 CmN;mð/Þ;

for all / 2 SðRÞ. Thus the distribution F dðf0Þ is of order 6 N. For this N we want to
prove that
ðP� 1ÞNþ1F df0 ¼ 0:
To simplify notation set Q :¼ P� 1. Then we need to show that for any compactly sup-
ported function / in DðRÞ, the
< QNþ1F df0;/ >¼< F df0;Q
Nþ1/ >¼ 0:
Let g : R! ½0; 1� be in DðRÞ such that g ¼ 1 on �1
2
; 1
2


 �
and g ¼ 0 outside ½�1; 1�.

Set grðtÞ :¼ g t
r

� �
, Qr ¼ grðQÞQNþ1/. Then Qr ¼ QNþ1/ in a neighborhood of
suppF df0 � fn;QðnÞ ¼ 0g ¼ fn;PðnÞ ¼ 1g:

Thus, we have
j < F df0;Q
Nþ1/ > j ¼ j < F df0;Qr > j 6 cmN;mðQrÞ:
We prove that mN;mðQrÞ ! 0 as r! 0. Thus (4.7) is proved.
Inverting the generalized Fourier transform in (4.7) yields that
ðPð�iTÞ � 1ÞNþ1f0 ¼ 0: ð4:8Þ

This equation implies
spanff0; f1; . . .g ¼ spanff0;Pð�iTÞf0;Pð�iTÞ2f0; . . .g
¼ spanff0;Pð�iTÞf0; . . . ;Pð�iTÞNf0g:
We shall now prove that we can take N ¼ 0 in (4.8). If not then ðPð�iTÞ � 1Þf0–0. Let
p be the largest positive integer so that ðPð�iTÞ � 1Þpf0–0. Clearly p 6 N. Thus
f :¼ ½Pð�iTÞ � 1�p�1f0 2 spanff0; f1; . . . ; fNg;

will satisfy
½Pð�iTÞ � 1�2f ¼ 0 and ½Pð�iTÞ � 1�f–0: ð4:9Þ
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Write
f ¼ a0f0 þ � � � þ aNfN;
for constants a0; . . . ; aN. Then
Pjð�iTÞf ¼ a0fj þ � � � þ aNfNþj:
If cj ¼ ja0jMj þ � � � þ jaNjMjþN, then the previous relation and the relation (4.2) imply
that
jPjð�iTÞfðxÞj 6 cjð1þ jxjÞae�dqjxj:
By (4.3) the constant cj satisfies the sublinear growth condition
lim
j!1

cj
j
¼ 0: ð4:10Þ
An induction using (4.9) implies that for j P 2 we have
Pjð�iTÞf ¼ jPð�iTÞf� ðj� 1Þf ¼ jððPð�iTÞ � 1Þfþ fÞ:

Thus
jðPð�iTÞ � 1ÞfðxÞj 6 1

j
jPjð�iTÞfðxÞj þ jfðxÞj

j
6

cj
j
ð1þ jxjÞae�dqjxj þ jfðxÞj

j
:

Letting j!1 and using (4.10) implies ½Pð�iTÞ � 1� f ¼ 0. But this contradicts (4.9).
Consequently, N ¼ 0 in (4.8). This completes the proof in the case that ð�1Þ is not
in the range of P.

In the case that 1 is not in the range of P we apply the same argument to �Pð�iTÞ to
conclude Pð�iTÞf0 ¼ �f0.

In the general case, let L ¼ Pð�iTÞ2. Then
FðLfÞðnÞ ¼ PðnÞ2FðfÞðnÞ:

Lf2p ¼ f2ðpþ1Þ and PðnÞ2–� 1. Thus we can (as before) conclude, for the sequence
ðf2pÞp2Z that
Lf0 ¼ Pð�iTÞ2f0 ¼ f0:
Set fþ ¼ 1
2
ðf0 þ Pð�iTÞf0Þ and f� ¼ 1

2
ðf0 � Pð�iTÞf0Þ. Then f ¼ fþ þ f�, Pð�iTÞfþ ¼ fþ

and Pð�iTÞf� ¼ �f�.
This completes the proof of Theorem 4.2. h

Remark. If we take PðyÞ ¼ �jyj2, then Pð�iTÞ ¼ D and Theorem 4.2 gives Df0 ¼ �f0.
This characterizes eigenfunctions f of generalized Laplace operator D with polynomial
growth in terms of the size of the powers Djf; �1 < j < þ1. It also generalizes results
of Roe [12].
4.1. The heat kernel

Proposition 4.5. The heat kernel utðxÞ defined for t > 0 by
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utðxÞ ¼ F�1ðe�tð:Þ
2ÞðxÞ: ð4:11Þ
belongs to S2ðRÞ for all t > 0, and satisfies the equation
K2
x utðxÞ � @t utðxÞ ¼ 0; for all ðt; xÞ 2�0;þ1½�R: ð4:12Þ
Proof. For all t > 0, as the function k#e�tk
2

belongs to SðRÞ, we deduce that the func-
tion ut belongs to S2ðRÞ for all t > 0. Now from the definition of ut, we have
utðxÞ ¼
Z

R

e�k2tU�kð�xÞdr1ðkÞ þ
Z q

�q
ek2tU�ikð�xÞdr2ðkÞ:
Deriving the last equation by report t, we obtain
@tutðxÞ ¼ �
Z

R

k2e�k2tU�kð�xÞdr1ðkÞ þ
Z q

�q
k2ek2tU�ikð�xÞdr2ðkÞ:
Moreover, we have
K2f ¼ DfðxÞ þ d

dx

A0

A

� �
fðxÞ � fð�xÞ

2
þ q2fðxÞ:
with
Df ¼ d2

dx2
fþ A0

A

d

dx
f:
This gives,
K2utðxÞ ¼
Z

R

e�k2tK2U�kð�xÞdr1ðkÞ þ
Z q

�q
ek2tK2U�ikð�xÞdr2ðkÞ:
However, we get
ðK2fÞð�xÞ ¼ K2ðfð�xÞÞ; for all f: ð4:13Þ

Using (1.2) and (4.13), this gives
K2U�kð�xÞ ¼ �k2U�kð�xÞ;

and
K2U�ikð�xÞ ¼ k2U�ikð�xÞ:

This yields
K2utðxÞ � @tutðxÞ ¼ 0: �
As an application of the above Theorem we have the following Corollary.

Corollary 4.6. If in Theorem 4.2, we replace (4.2) by
kfjkp;A 6Mje
�dqjxj; 1 6 p � 2; ð4:14Þ
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where ðMjÞj2Z satisfies the sublinear growth condition
lim
j!1

Mjjj

j
¼ 0: ð4:15Þ
Then f ¼ fþ þ f� where Pð�iTÞfþ ¼ fþ and Pð�iTÞf� ¼ �f�. If 1 (or (-1)) is not in the
range of P then fþ ¼ 0 (or f� ¼ 0Þ.

Proof. Let n 2 N. Consider the functions Fj;nðxÞ ¼ ðfj#utÞðxÞ where ut is defined in
(4.11). Using Hölder’s inequality gives
8x 2 R; jFj;nðxÞj 6 kfjkp;Aktsxutkp0;A;
where p0 is the conjugate exponent of p. On the other hand, we have
Pð�iTÞFj;n ¼ Fjþ1;n; j 2 Z:
Thus fFj;ngj2Z verifies the relations (4.2) and (4.3) of Theorem 4.2 and the result follows
immediately. h

In the space of distributions D0ðRÞ, we use the regularization of distributions to ob-
tain the analogue of Theorem 4.2.

Theorem 4.7. Let PðnÞ ¼
P

nann
n be a polynomial with complex values in n and let
Pð�iTÞ ¼
X
n

ð�iÞnanTn: ð4:16Þ
Let uj 2 D0ðRÞ; j 2 Z. Suppose that for every compact subset K of R, there exist a non-
negative integer N and a positive constants Mj :¼Mjðk;NÞ such that

(i) P ð�iT Þuj ¼ ujþ1,
(ii) kuj#/k1 6 Mj

P
n6N sup

x2K
jT n/ðxÞjfor all j 2 Z and / 2 DðRÞ, where ðMjÞj2Z satis-

fies the sublinear growth condition
lim
j!1

Mjjj

j
¼ 0:
Then u0 ¼ uþ þ u� where Pð�iTÞuþ ¼ uþ and Pð�iTÞu� ¼ �u�. If 1 (or (�1)) is not in
the range of P then uþ ¼ 0 (or u� ¼ 0Þ.

Proof. Let v 2 DðRÞ such that
R

R
vðxÞAðxÞdx ¼ 1 and set
vnðxÞ ¼
AðnxÞ
nAðxÞ vðnxÞ; n 2 N	:
Then vn ! d in D0ðRÞ and support vn � support v for all n. For each j 2 Z; uj#vn be-
longs to EðRÞ which is a regularization of uj and uj#vn ! uj in D0ðRÞ as n!1. Let
hj;n :¼ uj#vn. Then for K :¼support v and all j 2 Z, it follows from the hypothesis ðiÞ
and ðiiÞ that



38 N. Barhoumi, M. Mili
Pð�iTÞhj;n ¼ ujþ1#vn ¼ hjþ1;n;

khj;nk1 6 fMj ;
ð4:17Þ
where fMj :¼Mj

P
n6Nsupx2KjTnvnðxÞj is a positive constant. It then follows from (4.17)

and Theorem 4.2 that un ¼ un;þ þ un;� where Pð�iTÞun;þ ¼ un;þ and
Pð�iTÞun;� ¼ �un;�.

If 1 (or (�1)) is not in the range of P then un;þ ¼ 0 (or un;� ¼ 0). Letting n!1, we
obtain the result. h
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