ARAB JOURNAL OF Arab J Math Sci 21(1) (2015), 22-38
MATHEMATICAL SCIENCES

CrossMark

On the range of the generalized Fourier transform associated
with a Cherednick type operator on the real line

Najoua Baruoumr ¢, Maher Mili >*

# University of Monastir, Faculty of Sciences of Monastir,
Department of Mathematics, 5019 Monastir, Tunisia
® University of Sousse, Institut Supérieur des Sciences, Appliquées et de Technologie,
Cité Taffala, 4003 Sousse, Tunisia

Received 7 August 2013; accepted 16 November 2013
Available online 5 December 2013

Abstract.  In this work, we establish the real Paley—Wiener theorem for the general-
ized Fourier transform on R. Therefore, we study the connection between the real
Paley—Wiener theorem and local spectral theory. Finally, we generalize Roe’s theorem.
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1. INTRODUCTION

In this paper, we consider the first-order singular differential-difference operator on R

M) =+ 58 (S E0) e, (1)
where
A(x) = X" B(x), «> _71
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B being a positive C* even function on R, with B(0) =1 and p > 0. In addition we
suppose that

(i) For allx > 0, A( ) is increasing and lim,_, ., 4(x) = +o0.

(i1) For all x > 0 ) is decreasing and lim,_, i((x)) 2p.
For
A(x) = (sinh |x[)* ' (cosh )" p=a+p+1, a=p> _71,
we regain the differential-difference operator
Jx) = f(=x)

Topf(x) = f/(x) + [(20 + 1) coth x + (28 + 1) tanh x] % — pf(=x).
In Cherednik’s notation, T{,p is written as

Tpf) =00+ | g 2 () — (0] — (k2K )f(),

witha =k +k, — % and f =k, — % For recent results and more details in this direction
we refer to [6,7,9,10,13,15].
For each 1 € C, the differential-difference equation

Au=ilu, u(0)=1, 12
admits a unique C™ solution on R, denoted by @, and given by
(%) + 55 [ﬁi @, (x) if A# —ip,
0.09=1 12 v
1 + p f() dt lf /1 = —lp7

where ¢, is the eigenfunction of the second order singular differential operator A on
10, +o00[:

& Ax) d
A=—+4+—"2—. 1.3
dx*  A(x) dx (13)
The function ¢, satisfies the following properties:
(i) For every x € [0, +o0], the function 1 — ¢,(x) is even and entire on C.
(i) For all x € [0,4+o0c[ and A € C such that |ImA| < p, we have |p,(x)| < 1.
(iii) We have
Vx 2 0, V2 € R, |p,(x)] < ¢y(x), (1.4)
and there exists a positive constant ¢, such that
Vx 20, 0<@y(x) <ol +x)e™. (1.5)

Furthermore, for every x € R, the function 1 — ®;(x) is entire on C, and there exists a
positive constant M such that
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|®;(x)] < M1+ |x])(1+|2))e?™,  V¥xeR,VieC. (1.6)
For more details see [8,16].

Remark. If 4(x) = (sinh|x|)***' (coshx)”™!, & > f > 5! and a7 3! then the functions
(I)E“’ﬁ ) are closely related to the Jacobi functions. Specifically

I d up
p — il dx ¢ (%),

where ¢} (x) = Fy, (252, 25%; 4+ 1; —sinh’x), (see [3, p. 3]) and references there.

O (x) = o (x) -

A

(1.7)

The Paley—Wiener theorem [11] for functions is one of most useful theorems in
harmonic analysis. This theorem has as aim to characterize functions with compact
support through the properties of the analytic extensions of their classical Fourier
transform. Recently there has been a great interest to characterize the space of func-
tions who’s Fourier transform has compact support in several situations. They have
become known as real Paley Wiener theorems, in which the adjective real expresses that
information about the support of f'comes from growth rates associated to the function
Ffon RY. We refer to the survey of Andersen and de Jeu [2] and references there.

The set-up is as follows. Let f be a C™-function on R such that for all n € R, the

% A,
X X P

exists in [0, +oo] and we have
Ry = sup{|4l, 4 € suppF (/)},

where F(f) is the classical Fourier transform of f. This result is due to Bang [4]. It was
established for many other integral transforms in [1,2].

This paper is organized as follows. In Section 2, the necessary notations and
previous results are given. Section 3, we prove the real Paley-Wiener theorem for
the generalized Schwartz spaces and for the L/-functions. Finally, in the last section
we give the analogue of Roe’s theorem for generalized Fourier transform.

function belongs to the Lebesgue space I”(R), then the limit R, := lim,HocH

2. NOTATIONS AND BACKGROUNDS

In this section we give an introduction to the harmonic analysis associated with the
differential-difference operator and some notations. In the following we denote by:

e D(R) the space of C* functions on R with compact support. We have
D(R) = [JP.(R),
a>0

where D, (R) is the space of C* functions on R with support in [—a, a]. The topology on
D,(R) is defined by the semi-norms

)= sup W), neN.

k<n,x€[—a,a]

The space D(R) is equipped with the inductive limit topology.
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e £(R) the space of C*™ functions on R. Its topology is defined by the semi-norms
i (d) = sup |[$W(x)], neN,

k<nxeK

where K is a compact subset of R and n € N.
e S(R) the classical Schwartz space on R. The topology of this space is given by the
semi-norms

Vl,r1(f) = Sup (1 + |x|)llf(k>(x)|

k<n,xeR

e S;(R) the space of C* functions on R, such that for all /,n € N,
a(f) = sup (14 [x])py" ()" (x)] < +oe.

k<n,xeR

Its topology is defined by the semi-norms o;,, /,n € N.
e Pw,(C) the space consists of all entire functions 4 on C which satisfy

Vm € N, P, (h) = sup(1 + |A])" e~ | (1)
eC

< +o00.

The topology on Pw,(C) is defined by the semi-norms P,,,m € N.We set
Pw(C) = UPW‘,(C).

a>0

This space called Paley—Wiener space is equipped with the inductive limit topology.
e D'(R) the space of distributions on R. It is the topological dual space of D(R).
e S,(R) the topological dual space of S,(R).

In the following we give some properties and we recall some results associated with
the operator A.

Lemma 2.1. For all f'in E(R) and all g in D(R), we have

[ M)A s = = [ ) [Ael) + 2pSe(6] A0 1)
where S is the operator defined by Sg(x) = g(—x). Moreover, for all n € N, we have

/R N'f(x)g(x)A(x)dx = (=1)" /R S)[A"g(x) + 27 pA" ' Sg(x)] A(x)dx,  (2.2)

1 if n isodd

where n = . .
0 if n iseven.

Notation. We denote by
T:=A+2pS.

Remark. We can see by a direct calculation that for all 7 in N, we have 7% = A*".

For all 1 < p < oo, we denote by L (R), the space of measurable functions f'is such
that
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I, = fi A A(x)dx < 00, if 1< p < oo,
Al = ess suplA(x)l; if p = oo
xe

In the sequel, we give some results about the generalized Fourier transform.

Definition 2.1. [8] The generalized Fourier transform of a function fin D(R) is defined
by

:/Rf(x)qm(x)A(x)dx, Jec. (2.3)

Theorem 2.2. [&]

(i) For all f'in D(R),

FTf(4) = idF[(4). (24)
(i) For all f in D(R),
Ff(2) = Falfe)(2) + (i = p) Fatfo(4), (25)

where f, (resp f,) denotes the even (resp odd) part of f, Fa stands for the Fourier
transform related to the differential operator A as donated by (1.3), defined on the
subspace of D(R) consisting of even functions by

Fah(2) = /Rh(x)qo;v(x)A(x) dx, AeC,

Tl /fz

Theorem 2.3. [8] For all f € D(R),

and

/ff _i(=x)da (A / FfA)D_j(—x)doy (1), (2.6)
where
do (7)) = ( A) dy, (7) and do (1) = (1 —g)duz(i), (2.7)

where p, is an even positive tempered measure on R and , is positive measure on R with
support in [—p, p].

Remark. [8]

(i) The pair (u,, u,) is called the spectral measure associated with the differential
operator A.
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. e 241 26+1 -
(ii) For A(x) = (sinh [x[)™"' (coshx)*"", o > B> 3L we have

Hy (d)“) = and:u2 = Oa

()

, 2P~ (o 1) (i 7 i
where ¢(1) = %» 4 € C\{iz}.

Theorem 2.4. The generalized Fourier transform F is a topological isomorphism from

(1) D(R) onto Pw(C), (/8]).
(ii) S (R) onto S(R), (/16]).

In the sequel we give the essential properties of the generalized convolution product
which are developed in the paper [8].

Definition 2.2. The generalized translation operators ‘t¥, x € R, are defined on S»(R),
by the relation

F( ) (2) = ®_;(x)Ff(A), LeC.
Remark.

(i) From the relation (2.6) we deduce that for all x,y in R, we have
TAY) =" =)

(i1) From the definition above and the relations (1.6) and (2.6), there exists a positive
constant C such that for all x,y € R and all 2 € C, we have

TS < CO A+ [ (1 + [y)e e P, (2:8)

X

Theorem 2.5. [8] For fin S»(R), the function v(x,y) = "t (f) () is the unique solution of
the problem
{ TX V(xvy) = T) V(Xay)v
v(0,) = f()-

Proposition 2.6. For all f'in S,(R) and y in R, we have 't*f belongs to S,(R) and for all
integer n, we have

O =7 T, (2.9)

Proof. From the Definition 2.2, the relation (1.6) and (ii) of the Theorem 2.4, we con-
clude that 'v’f belongs to S,(R) for all fin S,(R) and all y in R. Moreover, for all y in R
and A in C, we have
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F(T'IN)(4) = id®_(y) FAZ) = F('7" Tf)(4),
then the relation (2.9) follows easily from the injectivity of the generalized fourier trans-
form. O

Definition 2.3. For fin D(R) and g in £(R), the generalized convolution product f#g is
defined by

k() / (PN Ay, xR,

Proposition 2.7. Let f and g in S,(R) then
F(f#g) = F())F(g)- (2.10)

Proposition 2.8. For all f,g in D(R) (resp S»(R)) we have
[seamas = [ FraFe@n @+ [ FinFena@). @)
Proof. We have,

F200) = [ 20 Ady = [ iy
Moreover, using the relations (2.6) and (2.10), we get

F#(0 / FA2)Fe()or(di) / FAiA)Felit)or(d). O
Lemma 2.9. For all f,g,h € D(R) (resp S»(R)), we have

/R (F#8) (x) h(~x) A (x)dx = / S0) (g#h) (—x) A (x)dx, (2.12)
() T(#e)(x) = (T #(x) = f#(Te) (x). (2.13)
Proof.

(i) The result follows from Proposition 2.8.
(i) We have

F(T(f#))(4) = idF (f#)(4) = i2F () (A)F (g)(4), = F(TN(A)F (g)(4)
= F(f#(Tg)(4). O

Lemma 2.10. For f,g € D (resp. S»), for all n € N, we have
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T"(f#g) = (T"f)#g = 1#(T"g), (2.14)
T'f=F Y (FT'f) = F (P, Ff), (2.15)

where P,(x) = (ix)".
Definition 2.4.

(i) We define the distributional generalized Fourier transform F, on L (R) for all
1 < p <2, by transposition

(Foo ) =, F ) = / S)F $(x)A(x)dx, ¥ € S(R), ¥f € Ly(R).

(2.16)
In other words,
(Fuof. Fo) = {f,9). (2.17)
(ii) The generalized Fourier transform of a distribution S in S)(R) is defined by
< F(S),y >=< S, F 'y > ¢eSR). (2.18)

Remark. We have from [5], S»(R) C L (R), for all p > 2.

3. THE REAL PALEY—WIENER THEOREM

We will now consider the real Paley—Wiener theorem for L”-functions in the spirit of
Bang [4]. We define the real Paley—Wiener space PWxi(R) as the space of all f in
E(R) such that, for all Nin N,

sup R MM (1 + |x)V| T"f(x)| < oo, (3.1)

xeR,neN

where M = M(N) is a positive integer depending on N.

Theorem 3.1. Let R > 0. The generalized Fourier transform F is a bijection from
PWR(R) onto Dr(R).

Proof. Let f'€ PWr(R) and consider 4 outside [—R, R]. Then, we have with N > 2

[Ff)| = |27 F(TH ()]
<7 g \T”fx (144D (1 + |X\)€’”""'A(X)dx

<c(# ‘)

and thus suppFf C [-R, R].
Assume conversely that Ff has compact support in [—R, R], for /' € S2(R). We fix
N € N, then we have

(14 |x]) Mdx -0, asn— oo,
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eI+ )V TA) | = e (1 + [ F ! (PEN(0)
< supe?M (1 + [x)Y|F (P, FN) ().

Using the fact that 7' is a topological isomorphism from S(R) onto S,(R), we obtain

M) T < esup S0 (14 1A . AN

A1k KM

for a positive constant ¢ and a positive integer M, depending only on N (independent of
n). Leibniz’s rule yields

dx’ ) :zl:<>

J=

il <%) Hff(z). (3.2)

j it

Using the estimates

()

we get

. N\
<MMn™M and R/ K (1+R) R",

\M
le”™ (1 + |x)N T"A(x)| < en™ M M! (1 —|—§> R",

for a positive constant ¢, independent of n, and we see that f'belongs to PWz(R). O

For fin L' (R), 1 < p <2, we define R, the radius of distributional support of F,f,
as

Ry :=sup{|A|: 1 € suppF, f}.
We note that for all f'€ S,(R), supp F, f = supp Ff.

Theorem 3.2. Let fin E(R) be such that T'fin L' (R), for all n € N and all 1 < p < 2.
Then we have

"l 4 = sup{|4| : 2 € suppFuf}. (3.3)

Proof. Let f be as in the theorem and such that supp F, f'C [ R, R], for some finite
R > 0. To this end, choose ¢ > 0 and fix a function ¢ € S>(R) such that F¢ =1 on
[~ Ry, Rj| and F¢ = 0 outside [~R; — ¢, R + ¢]. From the Proposition 2.7 and Remark
2, we have for yy € D(R),

(T"foih) = (Fa(T), Fih) = (Fu(T"]), FOFP),
= (T, ¢#) = ([, T" ),

= [0 [ 2T 6100140y ) atias

—/R(/Rf( )T T ) (—p)A (x)dx>lp(y),4(y)dy’



Generalized Fourier transform associated with a Cherednick type operator 31

As supp F¢ C [-R;— ¢, Ry+¢|, then from the Theorem 3.1, the Definition 2.2, the
inversion formula for the generalized fourier transform and the relations (1.6) and
(2.8), we deduce that there exists a positive constant M such that for all n, N in N
and x,y € R, we have

|(/,L.7xT2n¢)(_y)| < M(l + |y|)*Ne*P\X\ e*l’b’\ (Rf+ 8)2’1 (34)

Therefore, using Holder’s inequality and the last relation, we have for

v € DR), (T*f9) < | J,
/ FO (T T) (—p) A (X)X () A ()]

<Ml [ | 10T 0)-00a <>dxr|w<y>|A(y>dy

<M, [ [ e 0 (Rt o ) dx]”_’|w<y>| Ay)dy
<M R4, 0 [ W) Gy

<M (R4 1, W,
where p’ is the conjugate exponent of p. Moreover
(T o) = (Fa(T"N), Fy) = (Fa(T"'), FOF )
= (T, o) = (TL T o) = (THHT"P) ).
Therefore, using Holder’s inequality and the relation (3.4), we have for ¥ € D(R),

|<T2n+1f7 lﬁ>| < M’(Rf+ 3)2’1 ||Tf]|py,4 Hlﬁ”p/,A'

we conclude that

lim sup | 7"/]% , < Ry + .

P,
n—oo

Therefore,

lim sup ||T"ﬂ|p A < Rf (35)

n—o0

Now, consider an arbitrary f€ &(R) such that for all 1<p<2 and all
neN, T'f e LF(R) and let 0#4y € suppF, f. Choose ¢ > 0 such that 0 < 2& < |4o|,
Y € D(R) with supp ¥ C [|Ao| — &, |40] + €] and (F, f,)#0. Define

P2, (2) = (G0 = 26)"W(4).

Using Holder’s inequality, we get

(Ao = 26)"((Ff )| = UF . F(T FH (o)D) = 1 T (F )|
= WTf, F )| Nl AllF ol s < el TS,
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However, we have
1

(20| = 2¢) <20 = 2¢] = lim (2o — 2¢)"(Fa £ ]
7

L
2n
p, A

L
< liminfes: E
n—o0o

= lim inf]| 7*"]

where p’ is the conjugate exponent of p. We conclude that, for any 4y € suppF, f,

|| < Timinf |17 .
Now, choose ¢ > 0 such that 0 < 2¢ < |/y|, and choose ¥ € D(R) such that supp
W C [|ho] — & |Ao| + €] and (F4(Tf), y)#0. Define

P, () = (Fo — 26)" ().
We have,

(lo = 2" [(Fu (TN, )| = {F (TN, F(T" F~' (Y2,)))|

= [T T (F ) = (T, F )|
<N A AlF Wl s < CUT -

We conclude that, for any 4y € suppFy f,
ol < liminf | 774177,

These two estimates together yield
ol < Tim inf | ']

and the theorem follows. [

4. ROE’S THEOREM ASSOCIATED WITH THE DIFFERENTIAL-DIFFERENCE OPERATOR

Studying the classical Fourier transform, J. Roe has proved in [12], the following main
result.

Theorem 4.1. If a function and all its derivatives and integrals are absolutely uniformly
bounded, then the function is a sine function with period 2m.

In [14], the author looks at a theorem of Roe in n-dimensional setting, and in place
of derivatives and anti derivatives, he uses powers of the Laplacian.

Inspired by this work, we shall prove in this section an analogue result for the dif-
ferential-difference operator 7.

Theorem 4.2. Suppose P(&) =3 ,a,&" be a polynomial with complex values. Let
a>0,8>2and let {f;} be a sequence of complex-valued functions on R satisfving
the two following conditions
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P(=iT)f; = frs1s (4.1)
(01 < My(1+ [x]) e,

where (M) iz satisfies the sublinear growth condition

tim 200 _ g, (4.3)

Then fo = f1 +f- where P(—iT)f, = f\ and P(—iT)f_- = —f_. If I (or (-1)) is not in the
range of P then fy =0 (or f_ =0).

To prove this theorem we need the following Lemmas.

Lemma 4.3. Let (f;) jez be a sequence of functions on R satisfying

P(=iT)f; = fis1; (44)
(01 < My(1+ [x]) e,
and
. M;
g +js)f =0 (46)
for all € > 0, then
supp(Fy (fo)) € S :={& [P(S)] = 1}.

Proof. From the relation (4.5), we see that f; belongs to L% (R) for all 1 < p < 2. At

first we show that F, f; is supported in {&, |P(¢)| < 1}. To do this we need to show that

<Fi (), ¢ >=0if ¢ € D(R) and supp ¢ N {&, |P(&)] < 1} = 0. Since supp(¢) is com-
1

pact, there is some r < 1 so that S for all ¢ esupp(¢). Then

<Faford>=<PF; (). %>,
=< Fu(P(=iTHp)), 5 >,
=< P(—=iTf), F ' (%) >.
Choose an integer m with 2m > a + 1. A direct calculation, using the hypothesis of the
Lemma and Cauchy-Schwartz inequality, implies

| < Fufod > | < Jo IPITYRDIE ! (B) (1A (),
< CM||eM(1+ x2)"F ' (4) ()] .-
From the continuity of ' and the fact that ¢ is supported in {&, [P(&)| = 1+ ¢} for
some fixed ¢ > 0, it is not hard to prove that the right-hand side of this goes to zero as
j— oo and so < F, fy, ¢ >= 0. To complete the proof we need to show that F, f, is

also supported in {&,|P(£)| = 1}, which means < F, fy, ¢ >= 0 if ¢ is supported in
the set {&,|P(&)| < 1}. Here we use (4.4) to obtain

< Faford >=< PFf), ¢ >=< Fulf-), P >,

and we proceed as previously. [
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The next step in the proof is we assume firstly that (—1) is not a value of P(¢), and
show that P(—iT)fy = fy.

Lemma 4.4. There exists an integer N such that
P- DM Ffp=0. (4.7)

Proof. From the growth conditions on the sequence (f}) Lemma 4.3 and the

jez’
assumption that P(¢)# — 1, we obtain

supp(Falfo)) C {¢, P(S) = 1}

As F4(f) is a continuous linear functional on S(R), there is a constant C and integers
m and N so that

| < }_d(/lo)vqb > | < CVN,m(¢):

for all ¢ € S(R). Thus the distribution F,(fy) is of order < N. For this N we want to
prove that

(P - DM Ffy = 0.

To simplify notation set Q := P — 1. Then we need to show that for any compactly sup-
ported function ¢ in D(R), the

<O Fufo, ¢ >=< Fuf0,@""'dp >=0.
Let g: R — [0, 1] be in D(R) such that g =1 on [3,1] and g = 0 outside [-1, 1].
Set g,(1) == g(%), 0, = £,(Q)0"*'¢. Then Q, = Q"' in a neighborhood of
supp Fofo C {¢,0(¢) =0} ={& P(¢) =1}
Thus, we have
| < Fafo, 0" > | = | < Fufo, O, > | < cvwm(0Q,)-

We prove that vy,,(Q,) — 0 as r — 0. Thus (4.7) is proved.
Inverting the generalized Fourier transform in (4.7) yields that

(P(—iT) — D)M'fy = 0. (4.8)
This equation implies
span{fy,fi,...} = span{fy, P(—=iT)fy, P(—iT)’fy, ...}
= span{fy, P(—iT)fo, - .., P(—iT)"fy}.

We shall now prove that we can take N = 0 in (4.8). If not then (P(—iT) — 1)f,#0. Let
p be the largest positive integer so that (P(—iT) — 1)’f,7#0. Clearly p < N. Thus

f=[P(=iT) = 11"y € span{fo. fi, ... . /v},
will satisfy

[P(—iT) — 1’f=0 and [P(—iT) — 1]f0. (4.9)
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Write
f.: anO + - +aNf}V7
for constants ay, . ..,ay. Then

P (=iT)f = ayf; + - - + anfvs).

If ¢; = |ap|M; + - - - + |an| M.y, then the previous relation and the relation (4.2) imply
that

|Pj(—iT)f(x)‘ <l + |x‘)“e*‘5/)\«\‘|.
By (4.3) the constant ¢; satisfies the sublinear growth condition

lim < = 0. (4.10)

=2 J
An induction using (4.9) implies that for j > 2 we have

P(=iT)f = jP(=iT)f = (j = 1)f = j((P(=iT) = 1)f + ).
Thus

Py = 100 < 12| + 0 < 91 o L
Letting j — oo and using (4.10) implies [P(—iT) — 1] f = 0. But this contradicts (4.9).
Consequently, N =0 in (4.8). This completes the proof in the case that (—1) is not
in the range of P.

In the case that 1 is not in the range of P we apply the same argument to —P(—iT) to
conclude P(—iT)fy = —fo.

In the general case, let £ = P(—iT)2. Then

FEN©) = PEF(N(E).
Lfop = fop+1) and P(¢)’# — 1. Thus we can (as before) conclude, for the sequence
(fQP)pEZ that

Lfy = P(—iT)*fy = fo.

Set f, = L(fy + P(—iT)fy) and f- = L (fy — P(—iT)fy). Then f = f, + f-, P(—iT)f: = f-
and P(—iT)f- = —f_.
This completes the proof of Theorem 4.2. [

Remark. If we take P(y) = —|y[°, then P(—iT) = A and Theorem 4.2 gives Afy = —f;.
This characterizes eigenfunctions f of generalized Laplace operator A with polynomial

growth in terms of the size of the powers A/f, —co < j < +o0. It also generalizes results
of Roe [12].

4.1. The heat kernel

Proposition 4.5. The heat kernel u,(x) defined for t > 0 by
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u(x) = F (e ") (x). (4.11)
belongs to S,(R) for all t > 0, and satisfies the equation
Alu(x) — d,u,(x) =0, for all (¢,x) €]0, +oo[xR. (4.12)

Proof. For all 7 > 0, as the function J—e~ belongs to S(R), we deduce that the func-
tion u, belongs to S>(R) for all 7 > 0. Now from the definition of u,, we have

() = /R 1D, (—x)dor (1) + / " 1y (—x)doa ().

P
Deriving the last equation by report ¢, we obtain

Dtg(x) = — /R e P10, (—x)de () + / " 20 (—x)dos(7).

—p

Moreover, we have

d (A —fl—
wr=amo + 5 (5 ) 4 o,
with
& A d
Af = ﬁf +7 &f
This gives,

2 P 2
Alu,(x) = / eI D (—x)day () + / AN D (—x)day(]).
R

-p
However, we get

(A*)(—x) = A*(f(—x)), for all f. (4.13)
Using (1.2) and (4.13), this gives

AND_;(—x) = —2D_;(—x),
and

Az(I),i;_(—x) = )LZCD,,-,{(—X).
This yields

Au,(x) — Oy (x) = 0. O

As an application of the above Theorem we have the following Corollary.
Corollary 4.6. If in Theorem 4.2, we replace (4.2) by

1], < Mje™™, 1< p<2, (4.14)
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where (M) ez satisfies the sublinear growth condition

M,
lim =2 = 0. (4.15)

joo
Then f=f. +f_ where P(—iT)f. = f and P(—iT)f_ = —f_. If 1 (or (-1)) is not in the
range of P then f, =0 (or f_ =0).

Proof. Let n € N. Consider the functions Fj,(x) = (fi#u,)(x) where u, is defined in
(4.11). Using Hoélder’s inequality gives

Vx € R, [Fi ()| < Will, all'Tuully 4
where p’ is the conjugate exponent of p. On the other hand, we have

P(—iT)F;, = Fj11,,] € Z.

Thus {Fﬁ,ﬂ}/‘ez verifies the relations (4.2) and (4.3) of Theorem 4.2 and the result follows
immediately. [

In the space of distributions D'(R), we use the regularization of distributions to ob-
tain the analogue of Theorem 4.2.

Theorem 4.7. Let P(¢) =", a,&" be a polynomial with complex values in & and let

P(=iT) =Y (=i)'a,T". (4.16)

n

Let u; € D'(R), j € Z. Suppose that for every compact subset K of R, there exist a non-
negative integer N and a positive constants M; := M;(k, N) such that

(i) [lu#Pllo < M3,y sup [T"d(x)|for all j € Z and ¢ € D(R), where (M;),_, satis-
xek

fies the sublinear growth condition

M,;
lim —4 = 0.
j—oo  J
Then ug = u, + u_ where P(—iT)u, = u, and P(—iT)u_ = —u_.If 1 (or (—1)) isnot in

the range of P then u, =0 (or u_ =0).

Proof. Let y € D(R) such that [, y(x)A(x)dx =1 and set

_ A(nx)
nA(x)

Then y, — ¢ in D'(R) and support y, C support y for all n. For each j € Z, u#y,, be-
longs to £(R) which is a regularization of u; and u;#y, — u; in D'(R) as n — oo. Let
hin == u;#y,. Then for K :=support y and all j € Z, it follows from the hypothesis (i)
and (i) that

% (X)

z(nx), n e N*.
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P(_inhj,n = uj-H#Xn = Mjtlns

N (4.17)
||hjﬂ’l||oo < Mi’

where AA/[/, = My, \SUP.ek| T"%,(x)] is a positive constant. It then follows from (4.17)
and Theorem 4.2 that w,=u,, +u,_ where P(—iT)u,. =u,, and
P(—iTu,_ = —u, _.

If 1 (or (—1)) is not in the range of P then u,; = 0 (or u, - = 0). Letting n — oo, we
obtain the result. [
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