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Abstract A variational method on C1 variety is adapted to show the existence

of an increasing sequence of positive eigencurves of the p-biharmonic operator

without any assumption on the regularity of the domain. A direct characteriza-

tion of the principal curve (first one) is given.
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1. Introduction

Let X be any bounded domain in N-dimensional Euclidean space
RN; N P 1; 1 < p <1 and q 2 L1ðXÞ; q – 0, an indefinite weight function
which can change its sign. We consider the following nonlinear eigenvalue
problem:
EpðkÞ D2
pu� kqðxÞjujp�2u ¼ ljujp�2u in X:
The solution u is required to belong to the Sobolev space W2;p
0 ðXÞ and the real

parameters k 2 R and l 2 R play the role of eigenvalues. D2
pu :¼ DðjDujp�2DuÞ is

the operator of fourth order, the so called p-biharmonic operator, which has
attracted growing interest, and figures in a variety of applications, where this
operator is used to control the nonlinear artificial viscosity or diffusion of non-
Newtonian fluids. The case p ¼ 2 is reduced to the well-understood linear equation
D2
2uþ kqðxÞuþ lu ¼ 0;
which is the prototype of linear equations appearing in connection with Schrö-
dinger’s equation of fourth order. Here, D2

2 ¼ D2 ¼ D � D is the iterated Laplacian
that appears often in the equations of Navier–Stokes as being a term of viscosity
coefficient, and its reciprocal operator, denoted ðD2Þ�1, is the celebrated Green’s
operator, see Lions (1969).

Notice that the biharmonic equation is the partial differential equation (PDE) of
fourth order which appears in quantum mechanics and in the theory of linear elas-
ticity and PDEs modeling Stokes’ flows. It is obtained when p ¼ 2 and by setting
D2w ¼ 0:
In Cartesian coordinates the biharmonic equation in 3-D is given by
r4w ¼ @2

@x2
þ @2

@y2
þ @2

@z2

� �2

w ¼ 0:
That is,
r4w ¼ @
4w
@x4
þ @

4w
@y4
þ @

4w
@z4
þ 2

@4w
@x2@y2

þ 2
@4w
@x2@z2

þ 2
@4w
@y2@z2

¼ 0:
In polar coordinates ðr; hÞ it becomes
r4w ¼ wrrrr þ
2

r2
wrrhh þ

1

r4
whhhh þ

2

r
wrrr �

2

r3
wrhh �

1

r2
wrr þ

4

r4
whh þ

1

r3
wr ¼ 0:
For a radial function w � wðrÞ, the biharmonic equation becomes
r4w ¼ 1

r

d

dr
r
d

dr

1

r
r
@w
@r

� �� �� �
¼ wrrrr þ

2

r
wrrr �

1

r2
wrr þ

1

r3
wr ¼ 0:
Note that if wðrÞ ¼ 1
r
then we obtain, in R3 n f0g, by calculation of derivatives that
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wr ¼ �
1

r2

wrr ¼
2

r3

wrrr ¼ �
6

r4

wrrrr ¼
24

r5
:

We deduce in this case that 1
r
is a solution of the biharmonic equation.

In general, in N-dimensional space RN n f0g; r ¼
Pi¼N

i¼1 x
2
i

� 	1
2and
r4 1

r

� �
¼ 3ðN2 � 8Nþ 15Þ

r5
:

Notice at the end that any harmonic function is biharmonic and the inverse fails.
The principal objective of this paper is to show that for any parameter k 2 R,

the problem EpðkÞ has at least a nondecreasing sequence of positive eigenvalues
ðlkðkÞÞkP1, object of Theorem 3.1, by using the Ljusternich–Schnirelmann theory
on C1 manifolds; see e.g. Szulkin (1988) for more details about this theory. We give
a variational formulation (direct characterization) of lkðkÞ involving a mini-max
over sets of genus greater than k. It is important here to notice that our result
is obtained without any assumptions at all on the regularity of the domain X.

We set
l1ðkÞ ¼ inf
kDvkpp � k

R
X qðxÞjvjpdx
kvkpp

; v 2W2;p
0 ðXÞ n f0g

( )
; ð1Þ
where k � kp denotes the LpðXÞ-norm. It is not difficult to show that u ! kDukp
defines a norm in W2;p

0 ðXÞ and W2;p
0 ðXÞ equipped with it is a uniformly convex

Banach space for 1 < p < þ1. The norm kD � kp is uniformly equivalent on
W2;p

0 ðXÞ with the usual norm of W2;p
0 ðXÞ (El Khalil et al., 2002).

We understand by the principal eigencurve (or the first frequency) of the p-
biharmonic operator, the graph of the function l1 : k ! l1ðkÞ from R into R,
defined by (1).

Equations of the type
Au� kBu ¼ lCu; ð2Þ

where A and B are linear operators and C is the identity, are studied extensively by
several authors. Preliminary work has been done by Richardson (1912) and by
other authors on the first eigencurve of the Sturn–Liouville equation, i.e., the
set of ðk; lÞ satisfying (2) with uX0. Binding and Huang (1995) studied the case:
Au ¼ �Dpu; ðp� LaplacianÞ Bu ¼ qðxÞjujp�2u and Cu ¼ jujp�2u, on a bounded
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regular domain, generalizing the results of the linear case ðp ¼ 2Þ obtained by Hess
and Kato (1980) and of Kato (1982).

For k ¼ 0 or l ¼ 0, we cite the work of De Thélin (1986) for X is the unit ball
and the works of Anane (1987) and Azorero and Alonso (1987) for a regular do-
main. We cite also the work of Ôtani and Theshima (1988) for a domain which is
an interval in one-dimensional space ðN ¼ 1Þ. In the case of a domain not neces-
sarily regular, we indicate the paper of Lindqvist (1990) and the work of El Khalil
et al. (2004). Here, in this paper, we study the case where
A ¼ D2
p; Bu ¼ qðxÞjujp�2u and Cu ¼ jujp�2u:
The rest of the paper is organized as follows. In Section 2, we establish some
definitions and prove certain basic lemmas. In Section 3, we use a variational tech-
nique to prove the existence of a sequence of the eigencurves of the p-biharmonic
operator with unbounded indefinite weight, and without any assumption on the
regularity of the domain.

2. Preliminary notes

Throughout this paper, all solutions are weak ones, i.e., u 2W2;p
0 ðXÞ is a solution

of (1), if for all u 2 C10 ðXÞ,
Z
X
jDujp�2DuDudx ¼

Z
X

kqðxÞ þ lð Þjujp�2uudx: ð3Þ
If u 2W2;p
0 ðXÞ n f0g, then u is called an eigenfunction of the p-biharmonic opera-

tor (or of Ek) associated to the eigenvalue ðk;lÞ.

Definition 2.1. Let X be a real reflexive Banach space and let X� stand for its dual
with respect to the pairing h; i. We shall deal with mappings T acting from X into
X�. The strong convergence in X (and in X�) is denoted by ! and the weak
convergence by ,!. T is said to belong to the class ðSþÞ, if for any sequence fung in
X converging weakly to u 2 X and lim supn!þ1hTun; un � ui 6 0, it follows that un
converges strongly to u in X. We write T 2 ðSþÞ.

We consider the following functionals on W2;p
0 ðXÞ, defined by
UkðuÞ ¼
1

p

Z
X
jDujpdx� k

p

Z
X

qðxÞjujpdx ¼ 1

p

Z
X
jDujp dxþ UðuÞ
and
WðuÞ ¼ 1

p
kukpp:
We set
M¼ u 2W1;p
0 ðXÞ; pWðuÞ ¼ 1


 �
: ð4Þ



Lemma 2.1. We have the following statements,
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(i) Uk;U et W are even, and of class C1 on W 2;p
0 ðXÞ.

(ii) M is a closed C1-manifold.
Proof

(i) It is clear that Uk;U and W are even, and of class C1 on W 2;p
0 ðXÞ.

W0ðuÞ ¼ jujp�2u; U0ðuÞ ¼ qjujp�2u on X. And U0kðuÞ ¼ D2
pðuÞ þ U0ðuÞ on X.

(ii) M¼ W�1 1
p

n o
. Thus M is closed. Its derivative operator W0 satisfies

W0ðuÞ – 0 8u 2M (i.e., W0ðuÞ is onto 8u 2M).

So w is a submersion, thenM is a C1-manifold. h

Remark 2.1. The functional
J : W2;p
0 ðXÞ ! W�2;p0 ðXÞ

u ! kDuk2�pp D2
pu if u – 0

u ! 0 if u ¼ 0
is the duality map on (W2;p
0 ðXÞ; kD � kpÞ associated with the Gauge function

/ðtÞ ¼ jtjp�2t.
The following lemma is the key to establish the existence result.

Lemma 2.2. For any k 2 R, we have

(a) W0 : W 2;p
0 ðXÞ ! W �2;p0 ðXÞ is completely continuous;

(b) U0 : W 2;p
0 ðXÞ ! W �2;p0 ðXÞ is completely continuous;

(c) Uk is bounded from below onM;
(d) the functional Uk satisfies the Palais–Smale condition on M, i.e., for
fungn �M, if fUkðunÞgn is bounded and
UkjM
� 	0ðunÞ ! 0; ð5Þ
then fungn has a convergent subsequence in W2;p
0 ðXÞ.
Proof. k � k� is the dual norm of W�2;p0 ðXÞ associated with kD � kp.

(a) It is evident that W0 is completely continuous; it suffices to use the standard
Sobolev embedding: W 2;p

0 ðXÞ ,! LpðXÞ (compactly), see Adams (1975) or
Gilbarg and Trudinger (1983).

(b) Let fung � W 2;p
0 ðXÞ; un * u (weakly) in W 2;p

0 ðXÞ. By the Sobolev embed-
ding, we deduce that fung converges strongly to u in LpðXÞ, and there exists
g 2 LpðXÞ such that
junj 6 g a:e: in X:



94 A.E. Khalil et al.
Thus
junjp�1 6 gp�1 a:e: in X:
Since gp�1 2 Lp0 ðXÞ, we deduce that
jqðxÞjunjp�2unj 6 kqk1junj
p�1
6 kqk1gp�1 a:e: in X:
It follows from the Dominated Convergence Theorem that
qðxÞjunjp�2un ! qðxÞjujp�2u in Lp0 ðXÞ:

i.e.,
/0ðunÞ ! /0ðuÞ in Lp0 ðXÞ:

Recall that the following embeddings
W2;p
0 ðXÞ ! LpðXÞ and Lp0 ðXÞ ! W�2;p0 ðXÞ
are compact. Thus
/0ðunÞ ! /0ðuÞ in W�2;p0 ðXÞ:

(c) Let u 2 M. Then
k
Z

X
qðxÞjujpdx 6 jkjkqk1:
This implies that
/kðuÞP
1

p
kDukpp �

1

p
jkjkqk1: ð6Þ
Then
UkðuÞP
1

p
ðk1 � jkjkqk1Þ > �1;
where k1 ¼ l1ð0Þ is the first eigenvalue of the p-biharmonic operator (El Khalil
et al., 2002).
(D) Let fungn �M be such that fUkðunÞgn is bounded and
UkjM
� 	0ðunÞ ! 0:
fUkðunÞgn being bounded, so from (6), kDunkp is bounded in W2;p
0 ðXÞ. Without loss

of generality, we can assume that un converges weakly inW2;p
0 ðXÞ to some function

u 2W2;p
0 ðXÞ and kDunkp ! l.For the rest, we distinguish two cases:

� Suppose that l ¼ 0. In this case, we conclude that fungn converges strongly to 0
in W 2;p

0 ðXÞ.
� Suppose that l – 0. Then we argue as follows.

From (5), UkjM
� 	0ðunÞ ! 0. i.e.,
�n :¼ /0kðunÞ � gnw
0ðunÞ ! 0 as n ! 1; ð7Þ
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with
gn ¼
h/0kðunÞ; uni
hw0ðun; unÞi

:

The idea is to prove that
lim sup
n!þ1

hD2
pðunÞ; un � ui 6 0:
Indeed, note that
hD2
pðunÞ; un � ui ¼ kDunkpp � hD

2
pðunÞ; ui:
Applying �n of (7) to u, we deduce that the quantity
hn :¼ hD2
pðunÞ; ui þ h/

0ðunÞ; ui � gnhw0ðunÞ; ui ! 0; as n ! 1:
Thus
hD2
pðunÞ; un � ui ¼ kDunkpp � hn þ h/0ðunÞ; ui � kDunkpp þ h/

0ðunÞ; uni
� 

� hw0ðunÞ; ui:

Hence
hD2
pðunÞ; un � ui ¼ kDunkppð1� hw

0ðunÞ; uiÞ � hn þ h/0ðunÞ; ui � h/0ðunÞ; uni
� hw0ðunÞ; ui:
On the other hand, from Lemma 2.2(b), U0 is completely continuous. Therefore
U0ðunÞ ! U0ðuÞ; hU0ðunÞ; uni ! hU0ðuÞ; ui and hU0ðunÞ; ui ! hU0ðuÞ; ui:
From Lemma 2.2(a), W0 is also completely continuous. So
hW0ðunÞ; uni ! hW0ðuÞ; ui in W�2;p0 ðXÞ

and pWðuÞ ¼ hW0ðuÞ; ui ¼ 1, because pWðunÞ ¼ 1; 8n 2 N. Thus
1� hW0ðunÞ; ui ¼ hW0ðuÞ; ui � hW0ðunÞ; ui:

Hence
j1� hW0ðunÞ; uij 6 kW0ðunÞ �W0ðuÞk�kDuk
p
p ¼ kW0ðunÞ �W0ðuÞk�l

p;
where k � k� is the dual norm associated to the norm kD � kp. This implies that
1� hw0ðunÞ; ui ! 0 as n ! 1:

Combining with the above inequalities, we conclude that
lim sup
n!þ1

hD2
pðunÞ; un � ui 6 1

lp
lim sup
n!þ1

ð1� hw0ðunÞ; uiÞ þ lim sup
n!1

ðh/0ðunÞ; ui

� h/0ðunÞ; uni � hw0ðunÞ; uiÞ:
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Then
lim sup
n!þ1

hD2
pðunÞ; un � ui 6 h/0ðuÞ; uið1� hw0ðuÞ; uiÞ:
On the other hand, we have hW0ðuÞ; ui ¼ 1, because
W0ðunÞ; un >¼ pWðunÞ ¼ 1
for any integer n. This implies that
lim sup
n!þ1

hD2
pðunÞ; un � ui 6 0: ð8Þ
We can write D2
pun ¼ kDunk

p�2
p JðunÞ, since kDunkp – 0 8n large enough, where J is

the duality mapping defined in Remark 2.1. Therefore
lim sup
n!þ1

hD2
pun; un � ui ¼ lp�2 lim sup

n!þ1
hJun; un � ui
According to (8), we conclude that
lim sup
n!þ1

hJun; un � ui 6 0:
J being a duality mapping, thus it satisfies the condition Sþ given in Trojanski
(1971), so that, un ! u strongly in W2;p

0 ðXÞ.
This completes the proof of the lemma. h
3. Main results

Set
Ck ¼ fK �M : K is symmetric; compact and cðKÞP kg;

where cðKÞ ¼ i is the genus of K, i.e., the smallest integer i such that there exists an
odd continuous map from K to Ri � f0g.

Now, by the Ljusternick–Schnirelmann theory, see e.g. Szulkin (1988), we have
our main result.

Theorem 3.1. For any k 2 Rand for any k 2 N�,
lkðkÞ :¼ inf
A2Ck

max
u2A

pUkðuÞ
is a critical value of Uk restricted on M. More precisely, there exist
ukðkÞ 2 M; lkðkÞ 2 R such that
pUk ukðkÞð Þ ¼ lkðkÞ

and ukðkÞ is an eigenfunction of Ek associated to the eigenvalue k;lkðkÞð Þ.

Proof. From the Ljusternick–Schnirelmann theory on C1-manifolds of Szulkin
(1988), We need only to prove that for any k 2 N�; Ck – ;.
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Indeed, since W
2;p
0 ðXÞ is separable, there exist ðeiÞiP1 linearly dense in W

2;p
0 ðXÞ

such that supp ei\ suppej ¼ ; if i – j. We can assume that ei 2 U
if not; we take e0i :¼ ei

keikp

� 
.

Let k 2 N�, denote Fk ¼ spanfe1; e2; . . . ; ekg. Fk is a vector subspace and
dimFk ¼ k.

If v 2 Fk, then there exist a1; . . . ak in R such that v ¼
Pk

i¼1aiei. Thus

WðvÞ ¼
Pk

i¼1jaij
pWðeiÞ ¼ 1

p

Pk
i¼1jaij

p. It follows that the map v # ðpWðvÞÞ
1
p :¼ kvk

defines a norm on Fk. Consequently, there is a constant c > 0 such that
ckDukp 6 kvk 6
1

c
kDukp: ð9Þ
This implies that the set
V ¼ Fk \ v 2W2;p
0 ðXÞ : WðvÞ 6 1

p

� �
is bounded, because
V � B 0;
1

c

� �
;

where
B 0;
1

c

� �
¼ u 2W2;p

0 ðXÞ; such that kDukp 6
1

c

� �
:

Thus V is a symmetric bounded neighborhood of 0 2 Fk.
By Szulkin (1988, Proposition 2.3(f)), we deduce that cðFk \MÞ ¼ k, because

Fk \M is compact (it is exactly the boundary of V) and Ck – ;. This completes
the proof of the theorem. h

Corollary 3.1

(i) l1ðkÞ given by the above theorem is exactly the one defined by the characteriza-
tion (1).

(ii) 0 < l1ðkÞ 6 l2ðkÞ 6 . . . 6 lnðkÞ ! þ1.
Proof

(i) For u 2M, we put K1 ¼ fu;�ug. Then cðK1Þ ¼ 1. Since /k is even, we
obtain
pUkðuÞ ¼ max
K1

pUk P inf
K2C1

max
K

pUk:
Then



98 A.E. Khalil et al.
inf
u2M

pUkðuÞP inf
K2C1

max
K

pUk ¼ l1ðkÞ:
On the other hand, 8K 2 C1; 8u 2 K,
sup
K

pUk P pUkðuÞP inf
u2M

pUkðuÞ:
So
inf
K2C1

max
K

p/k ¼ l1ðkÞP inf
u2M

p/kðuÞ:
Then
l1ðkÞ ¼ inf
kDvkpp � k

R
X mðxÞjvj

p
dx

kvkpp
; v 2W2;p

0 ðXÞ and kvkp – 0

( )
:

(ii) From the definition of liðkÞ; i 2 N�, we have liðkÞP ljðkÞ, for any i P j.

Now let ðen; e�j Þn;j be a bi-orthogonal system such that en 2W
2;p
0 ðXÞ,

e�j 2W�2;p
0 ðXÞ. The en’s are linearly dense in W2;p

0 ðXÞ; and the e�j ’s are total for
W�2;p

0 ðXÞ. For k 2 N� set
Fk ¼ spanfe1; . . . ; ekg

and
F?k ¼ spanfekþ1; ekþ2; . . .g:

By Szulkin (1988, Proposition 2.3(g)), we have for any A 2 Ck; A \ F?k�1 – ;.
tk :¼ inf
A2Ck

sup
u2A\F?

k�1

pUkðuÞ ! þ1:
Indeed, if not, for k large enough, there exists uk 2 F?k�1 with kukkp ¼ 1 such that
tk 6 pUkðukÞ 6M
for some M > 0 independent of k. Thus from (5)
kDukkp 6 ðMþ jkjkqk1Þ
1
p:
This implies that ðukÞk is bounded in W2;p
0 ðXÞ. For a subsequence of fukg, if nec-

essary, we can assume that fukg converges weakly in W2;p
0 ðXÞ and strongly in

LpðXÞ.
By our choice of F?k�1, we have uk ,! 0 in W

2;p
0 ðXÞ, and then by compactness,

uk ! 0 in LpðXÞ. This contradicts the fact that kukkp ¼ 18k.
On the other hand, for any positive integer k and any A � Ck we have

A \ F?k�1 � and
max
u2A

pUkðuÞ 6 sup
u2A\F?

k�1

pUkðuÞ:
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Then
lkðkÞ ¼ inf
A2Ck

max
u2A

pUkðuÞ 6 inf
A2Ck

sup
u2A\F?

k�1

pUkðuÞ ¼ tk:
Consequently,
lkðkÞ ! þ1;

as k! þ1. This completes the proof. h
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