

## On the positive weak almost limited operators

NABIL MACHRAFI<sup>a,\*</sup>, AZIZ ELBOUR<sup>b</sup>, KAMAL EL FAHRI<sup>a</sup>, KHALID BOURAS<sup>c</sup>

<sup>a</sup> Department of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kenitra 14000, Morocco <sup>b</sup> Department of Mathematics, Faculty of Sciences and Technologies, Moulay Ismaïl University, P.O. Box 509,

Erachidia 52000, Morocco

<sup>c</sup> Faculty Polydisciplinary, Abdelmalek Essaadi University, P.O. Box 745, Larache 92004, Morocco

Received 8 November 2014; accepted 5 February 2015 Available online 14 February 2015

Abstract. Using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish some new characterizations of positive weak almost limited operators on Banach lattices. Consequently, we derive some results about the weak Dunford–Pettis\* and the Dunford–Pettis\* property of  $\sigma$ -Dedekind complete Banach lattices.

Keywords: Weak almost limited operator; The weak Dunford-Pettis\* property; Banach lattice

2010 Mathematics Subject Classification: primary 46B42; secondary 46B50; 47B65

## **1. INTRODUCTION AND NOTATIONS**

Throughout this paper X, Y will denote real Banach spaces, and E, F will denote real Banach lattices.  $E^+$  denotes the positive cone of E and sol (A) denotes the solid hull of a subset A of a Banach lattice. The notation  $x_n \perp x_m$  will mean that the sequence  $(x_n)$  of a Banach lattice is disjoint, that is,  $|x_n| \wedge |x_m| = 0$ ,  $n \neq m$ . An operator  $T : E \to F$  is positive if  $T(x) \ge 0$  in F whenever  $x \ge 0$  in E. A lattice seminorm  $\rho$  on a Banach lattice E is a seminorm such that for every  $x, y \in E$ ,  $|x| \le |y|$  implies  $\rho(x) \le \rho(y)$ . The closed unit ball associated to a lattice seminorm  $\rho$  is defined by  $B_{\rho} = \{x \in E : \rho(x) \le 1\}$ . The lattice operations in a Banach lattice E (resp. E') are weakly (resp. weak\*) sequentially continuous if for every weakly null sequence  $(x_n)$  in E (resp. weak\* null sequence  $(f_n)$  in E'),  $|x_n| \to 0$  for  $\sigma(E, E')$  (resp.  $|f_n| \to 0$  for  $\sigma(E', E)$ ). Finally, we will use the term

\* Corresponding author.

*E-mail addresses:* nmachrafi@gmail.com (N. Machrafi), azizelbour@hotmail.com (A. Elbour), kamalelfahri@gmail.com (K.El Fahri), bouraskhalid@hotmail.com (K. Bouras). Peer review under responsibility of King Saud University.



Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2015.02.001

<sup>1319-5166 © 2015</sup> The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

operator  $T: E \to F$  between two Banach lattices to mean a bounded linear mapping. We refer to [1,6] for unexplained terminology of Banach lattice theory and positive operators.

Several types of the Dunford–Pettis property are considered in the theory of Banach lattices. Namely, a Banach lattice E has

- the Dunford–Pettis property, whenever  $x_n \xrightarrow{w} 0$  in E and  $f_n \xrightarrow{w} 0$  in E' imply  $f_n(x_n) \to 0$ .
- the Dunford-Pettis\* property, whenever  $x_n \xrightarrow{w} 0$  in E and  $f_n \xrightarrow{w^*} 0$  in E' imply  $f_n(x_n) \rightarrow 0$ .
- the weak Dunford-Pettis property (abb. wDP property) [7], whenever

$$x_n \perp x_m, x_n \xrightarrow{w} 0$$
 in E and  $f_n \xrightarrow{w} 0$  in E' imply  $f_n(x_n) \to 0$ .

- the weak Dunford-Pettis\* property (abb. wDP\* property), whenever

 $x_n \xrightarrow{w} 0$  in E and  $f_n \perp f_m, f_n \xrightarrow{w^*} 0$  in E' imply  $f_n(x_n) \to 0$ .

The wDP\* property, introduced recently by J. X. Chen et al. [3], is a weak version of the Dunford–Pettis\* property and stronger than the wDP property. Note that the weak Dunford–Pettis\* property is related to the so called *weak almost limited* operators. An operator  $T: E \to F$  between Banach lattices is said to be weak almost limited [4], whenever

$$x_n \xrightarrow{w} 0$$
 in E and  $f_n \perp f_m, f_n \xrightarrow{w} 0$  in F' imply  $f_n(T(x_n)) \to 0$ .

Clearly, a Banach lattice E has the weak Dunford–Pettis\* property if and only if the identity operator on E is weak almost limited.

Let us recall that an operator  $T : X \to Y$  is said to be *limited* if  $||T^*(f_n)|| \to 0$  for every weak\* null sequence  $(f_n) \subset Y^*$ . Furthermore, An operator  $T : X \to E$  from a Banach space into a Banach lattice is said to be *almost limited* [5], if  $||T^*(f_n)|| \to 0$  for every disjoint weak\* null sequence  $(f_n) \subset E^*$ . Accordingly, a Banach lattice E is said to have the *Schur property* (resp. *dual Schur property* [5]), if weakly null sequences in Eare norm null (resp. disjoint weak\* null sequences in E' are norm null). For a  $\sigma$ -Dedekind complete Banach lattice E (see [5, Theorem 3.3]), the dual Schur property coincide with the so called *dual positive Schur property* [2], that is, weak\* null sequences in  $(E')^+$  are norm null. Clearly, a Banach lattice E has the dual Schur property if and only if the identity operator on E is almost limited. For an operator  $T : E \to F$  between Banach lattices the following implications are clear:

T is limited  $\Rightarrow$  T is almost limited  $\Rightarrow$  T is weak almost limited.

However, there is a weak almost limited operator which needs not to be almost limited (and hence limited). Indeed, the identity operator  $I : \ell^1 \to \ell^1$  is weak almost limited as  $\ell^1$  has the Schur (wDP\*) property. But, as  $\ell^1$  does not have the dual positive Schur property [8, Proposition 2.1],  $I : \ell^1 \to \ell^1$  is not almost limited. On the other hand, the identity operator on the Banach lattice c is not weak almost limited. Indeed, let  $f_n \in c^* = \ell^1$  be such that  $f_n = (0, \ldots, 0, 1_{(2n)}, -1_{(2n+1)}, 0, \ldots)$ . Then  $(f_n)$  is a disjoint weak\* null sequence in  $c^*$  [3, Example 2.1(2)], and clearly, the sequence  $(x_n)$  defined by  $x_n = (0, \ldots, 0, 1_{(2n)}, 0, \ldots) \in c$  is weakly null, but  $f_n(x_n) = 1$  for all n.

In this paper, using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish a characterization of positive weak almost limited operators

(Theorem 2.5), and give consequently in terms of sequences in E and F', several characterizations of positive weak almost limited operators from E into a  $\sigma$ -Dedekind complete Banach lattice F (Theorem 2.7). As consequences we derive some new characterizations of the wDP\* property of a  $\sigma$ -Dedekind complete Banach lattice (Corollary 2.10). Finally, we establish some sufficient conditions under which the wDP\* and the Dunford–Pettis\* properties coincide (Corollary 2.12).

## 2. MAIN RESULTS

The following lemmas will be used throughout this paper.

**Lemma 2.1.** Let E be a Banach lattice, let  $(x_n) \subset E^+$  be a norm bounded sequence and let  $x = \sum_{n=1}^{\infty} 2^{-n} x_n$ . Then the sequences  $(u_n)$  and  $(v_n)$  defined for every  $n \ge 2$  by

$$u_n = \left(x_n - 2^n \sum_{i=1}^{n-1} x_i - x\right)^+$$

and

$$v_n = \left(x_n - 4^n \sum_{i=1}^{n-1} x_i - 2^{-n} x\right)^+$$

are a disjoint sequences.

**Proof.** Note that the proof is similar for the two sequences. If  $n > m \ge 2$ , then we have

$$0 \le u_n \le (x_n - 2^n x_m)^+$$
,

and

$$0 \le 2^n u_m \le 2^n \left( x_m - 2^{-n} x_n \right)^+ = (x_n - 2^n x_m)^-.$$

So, from  $(x_n - 2^n x_m)^+ \perp (x_n - 2^n x_m)^-$  we see that  $u_n \perp u_m$  as desired.  $\Box$ 

**Lemma 2.2** ([1, Theorem 4.34]). If A is a relatively weakly compact subset of a Banach lattice E, then every disjoint sequence in the solid hull of A converges weakly to zero. In particular, for every sequences  $(x_n)$ ,  $(y_n) \subset E$  such that  $|y_n| \leq |x_n|$ ,  $y_n \perp y_m$  and  $x_n \stackrel{w}{\to} 0$  we have  $y_n \stackrel{w}{\to} 0$ .

**Lemma 2.3** ([3, Lemma 2.2]). Let E be a  $\sigma$ -Dedekind complete Banach lattice. Then for every sequences  $(f_n), (g_n) \subset E'$  such that  $|g_n| \leq |f_n|, g_n \perp g_m$  and  $f_n \stackrel{w^*}{\to} 0$  we have  $g_n \stackrel{w^*}{\to} 0$ .

Let us recall that for a lattice seminorm  $\rho$  on a Banach lattice E, a subset A of E is said to be *approximately order bounded* with respect to  $\rho$  if for every  $\varepsilon > 0$  there exists  $u \in E^+$  such that  $A \subset [-u, u] + \varepsilon B_{\rho}$  (see [6, Remark, p. 73]). Note that from [6, Remark, p. 73], it follows that  $A \subset E$  is approximately order bounded with respect to  $\rho$  if and only if for every  $\varepsilon > 0$  there exists  $u \in E^+$  such that  $\varrho\left((|x|-u)^+\right) \leq \varepsilon$  for every  $x \in A$ . Moreover, if  $A \subset E$  is a norm bounded subset, and  $T : E \to F$  is a positive operator, then it is easy to see that  $\varrho_{T,A}(f) := \sup\{|f|(T(|x|)) : x \in A\}$  defines a lattice seminorm on F'. For the identity operator  $I : E \to E$ , we get the lattice seminorm on E' defined by  $\varrho_A(f) = \sup\{|f|(|x|) : x \in A\}$ .

We shall need the following lemma which characterizes approximately order bounded sequences with respect to a lattice seminorm.

**Lemma 2.4.** A sequence  $(x_n)$  of a Banach lattice E is approximately order bounded with respect to a lattice seminorm  $\varrho$ , if and only if for every  $\varepsilon > 0$  there exist  $u \in E^+$  and a natural number k such that  $\varrho\left((|x_n| - u)^+\right) \leq \varepsilon$  for every n > k.

**Proof.** The "only if" part is obvious. For the "if" part, let  $\varepsilon > 0$ . There exist  $u \in E^+$  and a natural number k such that  $\varrho\left((|x_n|-u)^+\right) \leq \varepsilon$  for every n > k. Put  $v_k = \bigvee_{n=1}^k |x_n|$  and  $v = u + v_k$ . So  $\varrho\left((|x_n|-v)^+\right) \leq \varepsilon$  holds for every n. In fact,

- if 
$$n \leq k$$
 then  $\rho\left((|x_n| - v)^+\right) = \rho(0) = 0 \leq \varepsilon$ ;  
- if  $n > k$  then  $(|x_n| - v)^+ \leq (|x_n| - u)^+$  and hence  
 $\rho\left((|x_n| - v)^+\right) \leq \rho\left((|x_n| - u)^+\right) \leq \varepsilon$ .

This ends the proof.  $\Box$ 

Our following result characterizes positive weak almost limited operators from E into  $\sigma$ -Dedekind complete Banach lattice F through weak\* null sequences in F' that are approximately order bounded with respect to a lattice seminorm.

**Theorem 2.5.** Let E and F be two Banach lattices such that F is  $\sigma$ -Dedekind complete. Then, a positive operator  $T : E \to F$  is a weak almost limited if, and only if, each weak\* null sequence  $(f_n) \subset F'$  is approximately order bounded with respect to the lattice seminorm  $\varrho_{T,A}$  for every relatively weakly compact set  $A \subset E$ .

**Proof.** For the "only if" part, assume by way of contradiction that there exist a weak\* null sequence  $(f_n) \subset F'$ , a relatively weakly compact subset  $A \subset E$ , such that  $(f_n)$  is not approximately order bounded with respect to  $\rho_{T,A}$ . That is by Lemma 2.4, there is some  $\varepsilon > 0$  so that for each  $g \in (F')^+$  and each natural number k we have

$$\varrho_{T,A}\left(\left(|f_n|-g\right)^+\right) > \varepsilon$$

for at least one n > k and thus,  $(|f_n| - g)^+ (T |x_n|) > \varepsilon$  for at least one  $x_n \in A$ . In particular, an easy inductive argument shows that there exist a subsequence of  $(f_n)$  (which we still denote  $(f_n)$ ) and a sequence  $(x_n) \subset A$  such that

$$\left(|f_n| - 4^n \sum_{i=1}^{n-1} |f_i|\right)^+ (T|x_n|) > \varepsilon$$

holds for all  $n \ge 2$ . Let  $f = \sum_{n=1}^{\infty} 2^{-n} |f_n|$  and

$$g_n = \left( |f_n| - 4^n \sum_{i=1}^{n-1} |f_i| - 2^{-n} f \right)^+ (n \ge 2).$$
 Clearly,  $0 \le g_n \le |f_n|$  holds for every

*n*, and note that from Lemma 2.1  $(g_n)$  is a disjoint sequence. Then by Lemma 2.3,  $g_n \xrightarrow{w^*} 0$ . Hence, as *T* is weak almost limited we see that  $T(\operatorname{sol}(A))$  is an almost limited set ([4, Theorem 2.4 (5)]), and then  $g_n(T|x_n|) \to 0$ . On the other hand, we have for every  $n \ge 2$ 

$$0 < \varepsilon < \left( |f_n| - 4^n \sum_{i=1}^{n-1} |f_i| \right)^+ (T |x_n|) \le g_n (T |x_n|) + 2^{-n} f (T |x_n|) \to 0,$$

which is impossible.

Now, for the "if" part, let  $(x_n) \subset E$ ,  $(f_n) \subset F'$  be respectively a disjoint weakly null and a disjoint weak\* null sequences. We shall see by [4, Theorem 2.4 (3)] that  $f_n(Tx_n) \to 0$ . To this end, put  $A = \{x_n : n \in \mathbb{N}\}$  and let  $\varepsilon > 0$ . By hypothesis there exists some  $g \in (F')^+$  so that  $(|f_n| - g)^+(T|x_n|) \leq \varrho_{T,A}\left((|f_n| - g)^+\right) \leq \varepsilon$  holds for all n. As  $|x_n| \stackrel{w}{\to} 0$  (Lemma 2.2), choose some natural number m such that  $g(T|x_n|) \leq \varepsilon$  holds for every  $n \geq m$ . Thus, for every  $n \geq m$  we get

$$|f_n(Tx_n)| \le |f_n|(T|x_n|)$$
  
$$\le (|f_n| - g)^+(T|x_n|) + g(T|x_n|)$$
  
$$\le 2\varepsilon.$$

This show that  $f_n(Tx_n) \to 0$ , and then T is a weak almost limited operator.  $\Box$ 

Consequently,  $\sigma$ -Dedekind complete Banach lattices with the wDP\* property enjoy the following lattice approximation property.

**Corollary 2.6.** A  $\sigma$ -Dedekind complete Banach lattice E has the wDP\* property if, and only if, each weak\* null sequence  $(f_n) \subset E'$  is approximately order bounded with respect to the lattice seminorm  $\rho_A$  for every relatively weakly compact set  $A \subset E$ .

The following main result gives some characterizations of positive weak almost limited operators (related to sequences with positive terms in statements (6)–(8)).

**Theorem 2.7.** Let E and F be two Banach lattices such that F is  $\sigma$ -Dedekind complete. Then for a positive operator  $T : E \to F$ , the following assertions are equivalent:

- (1) T is weak almost limited.
- (2)  $f_n(Tx_n) \to 0$  for every weakly null sequence  $(x_n) \subset E^+$  and every disjoint weak\* null sequence  $(f_n) \subset F'$ .
- (3)  $f_n(Tx_n) \to 0$  for every disjoint weakly null sequence  $(x_n) \subset E^+$  and every disjoint weak\* null sequence  $(f_n) \subset F'$ .
- (4)  $f_n(Tx_n) \to 0$  for every disjoint weakly null sequence  $(x_n) \subset E^+$  and every disjoint weak\* null sequence  $(f_n) \subset (F')^+$ .
- (5)  $f_n(Tx_n) \to 0$  for every disjoint weakly null sequence  $(x_n) \subset E$  and every weak\* null sequence  $(f_n) \subset F'$ .

140

- (6)  $f_n(Tx_n) \to 0$  for every weakly null sequence  $(x_n) \subset E^+$  and every weak\* null sequence  $(f_n) \subset F'$ .
- (7)  $f_n(Tx_n) \to 0$  for every weakly null sequence  $(x_n) \subset E$  and every weak\* null sequence  $(f_n) \subset (F')^+$ .
- (8)  $f_n(Tx_n) \to 0$  for every weakly null sequence  $(x_n) \subset E^+$  and every weak\* null sequence  $(f_n) \subset (F')^+$ .

**Proof.**  $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$  Obvious.

 $(4) \Rightarrow (1)$  Follows from ([4], Theorem 2.4 (1  $\Leftrightarrow$  7)).

(1)  $\Rightarrow$  (6) Let  $(x_n) \subset E^+$ ,  $(f_n) \subset F'$  be respectively a weak null and weak\* null sequences, and let  $\varepsilon > 0$ . Put  $A = \{x_n : n \in N\}$ . From Theorem 2.5, pick some  $g \in (F')^+$  so that  $(|f_n|-g)^+(Tx_n) \leq \varrho_{T,A}\left((|f_n|-g)^+\right) \leq \varepsilon$  holds for all n, and choose some natural number m such that  $g(Tx_n) < \varepsilon$  holds for every  $n \geq m$ . Now, for every  $n \geq m$  we have

$$|f_n(Tx_n)| \le |f_n|(Tx_n) \le (|f_n| - g)^+(Tx_n) + g(Tx_n) \le 2\varepsilon.$$

This shows that  $f_n(Tx_n) \to 0$ .

 $(6) \Rightarrow (4)$  Obvious.

(6)  $\Rightarrow$  (5) If  $(x_n) \subset E$  is a disjoint weakly null sequence then by Lemma 2.2, we have  $x_n^+ \stackrel{w}{\to} 0$  and  $x_n^- \stackrel{w}{\to} 0$  and the result follows from the equality  $f_n(Tx_n) = f_n(Tx_n^+) - f_n(Tx_n^-)$ .

 $(5) \Rightarrow (4)$  Obvious.

 $(5) \Rightarrow (7)$  Let  $(x_n) \subset E$ ,  $(f_n) \subset (F')^+$  be respectively a weak null and weak\* null sequences, and let  $\varepsilon > 0$ . We claim in this case that there exist  $z \in E^+$  and a natural number k such that

$$f_n\left(T\left(\left(|x_n|-z)^+\right)\right) < \varepsilon \tag{(*)}$$

holds for all n > k. To see this, assume by way of contradiction that (\*) is false. That is, for each  $z \in E^+$  and each k we have  $f_n\left(T\left((|x_n|-z)^+\right)\right) \ge \varepsilon$  for at least one n > k. An easy inductive argument shows that there exist a subsequence of  $(x_n)$  and a subsequence of  $(f_n)$  (which we still denote  $(x_n)$  and  $(f_n)$ ) such that

$$f_n\left(T\left(|x_n| - 2^n \sum_{i=1}^{n-1} |x_i|\right)^+\right) \ge \varepsilon$$

holds for all  $n \ge 2$ . Let  $x = \sum_{n=1}^{\infty} 2^{-n} |x_n|$  and  $y_n = \left( |x_n| - 2^n \sum_{i=1}^{n-1} |x_i| - x \right)^+$ . Clearly,  $0 \le y_n \le |x_n|$  holds for every  $n \ge 2$ , and note that from Lemma 2.1  $(y_n)$  is a disjoint sequence. Then by Lemma 2.2 we get  $y_n \xrightarrow{w} 0$ . Now, from our hypothesis we have  $f_n(Ty_n) \to 0$ . Or for every  $n \ge 2$  we have

$$0 < \varepsilon \le f_n \left( T\left( \left| x_n \right| - 2^n \sum_{i=1}^{n-1} \left| x_i \right| \right)^+ \right) \le f_n \left( Ty_n \right) + f_n \left( Tx \right) \to 0,$$

which is impossible. Therefore, (\*) is true.

Now, let  $z \in E^+$  and let k be such that (\*) is valid, and choose m > k such that  $f_n(T(z)) < \varepsilon$  holds for every  $n \ge m$ . Thus, for every  $n \ge m$  we have

 $|f_n(Tx_n)| \le f_n(T|x_n|) \le f_n(T(|x_n| - z)^+) + f_n(Tz) \le 2\varepsilon.$ 

This shows that  $f_n(Tx_n) \to 0$ .

 $(7) \Rightarrow (4)$  Obvious.

 $(6) \Rightarrow (8) \Rightarrow (4)$  Obvious.  $\Box$ 

From the statements (6) or (7) or (8) of Theorem 2.7, it follows easily the following corollaries.

**Corollary 2.8.** Let E, F and G be a Banach lattices such that both F and G are  $\sigma$ -Dedekind complete. If for the scheme of positive operators  $E \xrightarrow{T} F \xrightarrow{R} G$ , T or R is weak almost limited then, so is the product RT. In particular if E is a  $\sigma$ -Dedekind complete Banach lattice, then the square of each positive weak almost limited operator  $T : E \to E$  is likewise weak almost limited.

**Corollary 2.9.** If E and F are a  $\sigma$ -Dedekind complete Banach lattices such that E or F has the wDP\* property, then each positive operator  $T : E \to F$  is weak almost limited.

The following corollary gives some new characterizations of the wDP\* property of a  $\sigma$ -Dedekind complete Banach lattice, other than those established in [3, Theorem 3.2].

**Corollary 2.10.** Let *E* be a  $\sigma$ -Dedekind complete Banach lattice. Then the following assertions are equivalent:

- (1) E has the wDP\* property.
- (2)  $f_n(x_n) \to 0$  for every disjoint weak null sequence  $(x_n) \subset E$  and every weak\* null sequence  $(f_n) \subset E'$ .
- (3)  $f_n(x_n) \to 0$  for every weakly null sequence  $(x_n) \subset E^+$  and every weak\* null sequence  $(f_n) \subset E'$ .
- (4)  $f_n(x_n) \to 0$  for every weakly null sequence  $(x_n) \subset E$  and every weak\* null sequence  $(f_n) \subset (E')^+$ .
- (5)  $f_n(x_n) \to 0$  for every weak null sequence  $(x_n) \subset E^+$  and every weak\* null sequence  $(f_n) \subset (E')^+$ .

**Corollary 2.11.** Let  $T : E \to F$  be a positive operator from a Banach lattice E into a  $\sigma$ -Dedekind complete Banach lattice F. If the lattice operations of E are sequentially weakly continuous (resp. the lattice operations of F' are sequentially weak\* continuous), then the following statements are equivalent:

- (1) T is weak almost limited.
- (2)  $f_n(Tx_n) \to 0$  for every weakly null sequence  $(x_n) \subset E$  and every weak\* null sequence  $(f_n) \subset F'$ .

**Proof.** (1)  $\Rightarrow$  (2) Let  $(x_n) \subset E$  and  $(f_n) \subset F'$  be respectively weak null and weak\* null sequences. We shall see that  $f_n(Tx_n) \rightarrow 0$ .

142

- If the lattice operations of E are sequentially weakly continuous, then the sequences  $(x_n^+)$  and  $(x_n^-)$  are both weak null. Thus, since T is weak almost limited, by Theorem 2.7(6) we have  $f_n(Tx_n^+) \to 0$  and  $f_n(Tx_n^-) \to 0$ . Now, the result follows from the equality  $f_n(Tx_n) = f_n(Tx_n^+) f_n(Tx_n^-)$ .
- If the lattice operations of F' are sequentially weak\* continuous, then the sequences  $(f_n^+)$ and  $(f_n^-)$  are both weak\* null. Thus, since T is weak almost limited, by Theorem 2.7(7) we have  $f_n^+(Tx_n) \to 0$  and  $f_n^-(Tx_n) \to 0$ , and the result follows from the equality  $f_n(Tx_n) = f_n^+(Tx_n) - f_n^-(Tx_n)$ .
- $(2) \Rightarrow (1)$  Obvious.  $\Box$

Note that a Banach lattice which has the wDP\* property needs not to have the DP\* one (eg  $L^1[0,1]$ , see [3, Proposition 3.3]). However, from the preceding theorem, another corollary can be derived easily.

**Corollary 2.12.** Let *E* be a  $\sigma$ -Dedekind complete Banach lattice such that the lattice operations of *E* are sequentially weakly continuous, or the lattice operations of *E'* are sequentially weak\* continuous. Then *E* has the wDP\* property if and only if it has the DP\* property.

## REFERENCES

- [1] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Berlin, 2006.
- [2] B. Aqzzouz, A. Elbour, A.W. Wickstead, Positive almost Dunford-Pettis operators and their duality, Positivity 15 (2011) 185–197.
- [3] J.X. Chen, Z.L. Chen, G.X. Ji, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412 (2014) 547–553.
- [4] A. Elbour, N. Machrafi, M. Moussa, On the class of weak almost limited operators, Quaest. Math. (2015) in press.
- [5] N. Machrafi, A. Elbour, M. Moussa, Some characterizations of almost limited sets and applications, http://arxiv.org/abs/1312.2770.
- [6] P. Meyer-Nieberg, Banach Lattices, Universitext. Springer-Verlag, Berlin, 1991.
- [7] W. Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Semin. Mat. Fis. Univ. Modena 42 (1994) 227–236.
- [8] W. Wnuk, On the dual positive Schur property in Banach lattices, Positivity 17 (2013) 759–773.