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Abstract. This study concerns the existence of positive solutions for the following nonlin-

ear boundary value problem:
−∆u = am(x)u − bu2 − c

up

up + 1
− K in Ω ,

u = 0 on ∂Ω ,

where ∆u = div(∇u) is the Laplacian of u, while a, b, c, p, K are positive constants with
p ≥ 2 and Ω is a bounded smooth domain of RN with ∂Ω in C2. The weight function m

satisfies m ∈ C(Ω) and m(x) ≥ m0 > 0 for x ∈ Ω , also ∥m∥∞ = l < ∞. We prove the
existence of positive solutions under certain conditions.

Keywords: Ecological systems; Indefinite weight; Grazing and constant yield harvesting;
Sub–super solution method

2010 Mathematics Subject Classification: 35J65; 35J25

1. INTRODUCTION

In this note, we mainly consider the following reaction–diffusion equation:
−∆u = am(x)u − bu2 − c

up

up + 1
− K in Ω ,

u = 0 on ∂Ω ,
(1.1)
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where ∆u = div(∇u) is the Laplacian of u, while a, b, c, p,K are positive constants with
p ≥ 2 and Ω is a bounded smooth domain of RN with ∂Ω in C2. The weight function m
satisfies m ∈ C(Ω) and m(x) ≥ m0 > 0 for x ∈ Ω , also ∥m∥∞ = l < ∞. We denote by
λ1 the first eigenvalue of

−∆φ = λm(x)φ x ∈ Ω ,
φ = 0 x ∈ ∂Ω , (1.2)

with positive principal eigenfunction φ1 satisfying ∥φ1∥∞ = 1 (see [4]).
Here u is the population density and am(x)u − bu2 represents the logistics growth. This

model describes grazing of a fixed number of grazers on a logistically growing species (see
[6,8]). The herbivore density is assumed to be a constant which is a valid assumption for man-
aged grazing systems and the rate of grazing is given by cup

1+up . At high levels of vegetation
density this term saturates to c as the grazing population is a constant. This model has also
been applied to describe the dynamics of fish populations (see [6,12]). The diffusive logistic
equation with constant yield harvesting, in the absence of grazing was studied in [9]. Recently,
in the case when m(x) = 1 problem (1.1) has been studied by R. Shivaji et al. (see [2]).

The purpose of this paper is to improve the result of [2] with weight m. We shall establish
our abstract existence result via the method of sub–super solutions. The concepts of sub–super
solution were introduced by Nagumo [7] in 1937 who proved, using also the shooting method,
the existence of at least one solution for a class of nonlinear Sturm–Liouville problems. In
fact, the premises of the sub–super solutions method can be traced back to Picard. He ap-
plied, in the early 1880s, the method of successive approximations to prove the existence of
solutions for nonlinear elliptic equations that are suitable perturbations of uniquely solvable
linear problems. This is the starting point of the use of sub–super solutions in connection
with monotone methods. Picard’s techniques were applied later by Poincaré [10] in connec-
tion with problems arising in astrophysics. We refer the reader to [11].

Definition 1.1. We say that ψ (resp. z) in C2(Ω) ∩ C(Ω) is a subsolution (resp. super solu-
tion) of (1.1), if ψ (resp. z) satisfies

−∆ψ ≤ am(x)ψ − bψ2 − c
ψp

ψp + 1
− K in Ω ,

ψ ≥ 0 in Ω ,
ψ = 0 on ∂Ω

(1.3)

resp.


−∆z ≥ am(x)z − bz2 − c

zp

zp + 1
− K in Ω ,

z ≥ 0 in Ω ,
z = 0 on ∂Ω

 . (1.4)

Then the following lemma holds (see [1]).

Lemma 1.2 (See [1]). If there exist sub–super solutionsψ and z respectively, such that ψ ≤ z
on Ω , Then (1.1) has a positive solution u such that ψ ≤ u ≤ z in Ω .

Proposition 1.3. If a ≤ λ1 then (1.1) has no positive solution.
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Proof. Suppose not, i.e., assume that there exists a positive solution u of (1.1), then u satisfies
Ω

|∇u|2dx =

Ω


am(x)u − bu2 − c

up

up + 1
− K


udx.

But 
Ω

|∇u|2dx ≥ λ1


Ω

am(x)u2dx.

Thus, we have
Ω


am(x)u − bu2 − c

up

up + 1
− K


udx ≥ λ1


Ω

am(x)u2dx,

and hence

(a − λ1)

Ω

m(x)u2dx ≥

Ω


bu2 + c

up

up + 1
+K


udx ≥ 0.

Since u > 0, m(x) ≥ m0 > 0, this requires a > λ1, which is a contradiction. Hence (1.1)
has no positive solution. �

2. EXISTENCE OF SOLUTION

In this section we prove the existence of solution for problem (1.1) by comparison method
(see [5]). It is easy to see that any subsolution of−∆u = am0u − bu2 − c

up

up + 1
− K in Ω ,

u = 0 on ∂Ω ,
(2.1)

is a subsolution of (1.1). Also any super solution of
−∆u = alu − bu2 − c

up

up + 1
− K in Ω ,

u = 0 on ∂Ω ,
(2.2)

is a super solution of (1.1), where l is as defined above.
We denote by λ′

1 the first eigenvalue of
−∆φ = λ′φ x ∈ Ω ,
φ = 0 x ∈ ∂Ω , (2.3)

with positive principal eigenfunction φ′
1 satisfying ∥φ′

1∥∞ = 1.

Theorem 2.1. If a > λ′
1

m0
, b > 0 and c > 0, then there exists a K0(a, b, c, p,m0) > 0 such

that for K < K0(a, b, c, p,m0), (1.1) has a positive solution.

Proof. We use the method of sub–super solutions. We recall the anti-maximum principle
(see [3]) in the following form. Let λ′ is as defined above, then there exist σ = σ(Ω) > 0
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and a solution zλ′ (with zλ′ > 0 in Ω and ∂zλ′
∂ν < 0 on ∂Ω , where ν is the outer unit normal

to Ω ) of
−∆z − λ′z = −1 in Ω ,
z = 0 on ∂Ω , (2.4)

for λ′ ∈ (λ′
1, λ

′
1 + σ). Fix

λ′
∗ ∈ (λ′

1,min {λ′
1 + σ,m0a}) .

Let zλ′
∗
> 0 be the solution of (2.4) when λ′ = λ′

∗ and α = ∥zλ′
∗

∥∞. Define

ψ := µKzλ′
∗
,

where µ ≥ 1 is to be determined later. We will choose µ and K > 0 properly so that ψ is a
subsolution. Then,

−∆ψ = −∆(µKzλ′
∗
) = λ′

∗ψ − µK.

Thus, ψ is a subsolution if λ′
∗ψ − µK ≤ am0ψ − bψ2 − c ψp

ψp+1 − K. That is if

(am0 − λ′
∗)ψ − bψ2 − c

ψp

ψp + 1
+ (µ − 1)K ≥ 0.

Consider

H(y) = (am0 − λ′
∗)y − by2 − c

yp

yp + 1
+ (µ − 1)K.

It can be written as

H(y) = h1(y) + h2(y),

where

h1(y) = (am0 − λ′
∗)y − by2 − cyp + (µ − 1)K

and

h2(y) =
cy2p

yp + 1
.

Obviously, h2(y) ≥ 0 for all y ≥ 0. So if we can find K and µ such that h1(y) ≥ 0
for 0 ≤ y ≤ µKα, then ψ will be a subsolution. Now h1(0) = (µ − 1)K, h′′

1(y) =
−2b− cp(p− 1)yp−2 < 0 and there exists a unique y0 such that h1(y0) = 0. This means that
ψ is a subsolution if h1(µKα) ≥ 0, i.e. if

(am0 − λ′
∗)µKα − b(µKα)2 − c(µKα)p + (µ − 1)K ≥ 0.

Let

G(K) = (am0 − λ′
∗)µα − b(µα)2K − c(µα)pKp−1 + (µ − 1).
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Notice that G(0) = (am0 −λ′
∗)µα+(µ− 1) > 0, since µ ≥ 1 and am0 > λ′

∗. Also we have
G′(K) = −b(µα)2 − c(p − 1)(µα)pKp−2 < 0. Hence, given µ and p, there exists a unique
K∗ = K∗(a, b, c, µ, p,m0) > 0 with G(K∗) = 0. Since

G(K) ≤ (am0 − λ′
∗)µα − b(µα)2K + (µ − 1)K = G(K),

we see that

K∗ ≤ (am0 − λ′
∗)µα+ (µ − 1)
bµ2α2

:= K1(a, b, µ,m0).

Note that K1(a, b, µ,m0) is bounded for µ ∈ [1, ∞). Hence K∗ is bounded for µ ∈ [1, ∞).
Let

K0(a, b, c,m0, p) = sup
µ≥1

K∗(a, b, c, µ,m0, p).

Now let K < K0(a, b, c,m0, p). By definition there will exist a µ ≥ 1 such that

K < K∗(a, b, c, µ,m0, p) < K0(a, b, c,m0, p).

Choose ψ = µ Kz. With µ = µ we have G( K) ≥ 0 and hence

(am0 − λ′
∗)µ Kα − b(µ Kα)2 − c(µ Kα)p + (µ − 1) K ≥ 0.

Hence ψ turns out to be a subsolution to (1.1).
We next construct the super solution z for (1.1) such that z ≥ ψ. Let z = Me, whereM >

0 is such that alu−bu2 −c up

up+1 −K ≤ M for all u ≥ 0 and e is the unique positive solution of
−∆e = 1 in Ω ,
e = 0 on ∂Ω .

Clearly,

−∆z = M ≥ alz − bz2 − c
zp

zp + 1
− K.

Thus, z is a super solution of (2.2). Therefore, z is a super solution of (1.1).
Since by the Hopf maximum principle ∂e

∂ν < 0 on ∂Ω (where ν is the outer unit normal to
Ω ), we can choose M ≫ 1 so that z = Me ≥ ψ. Hence by Lemma 1.2 the problem has a
positive solution for all K < K0(a, b, c,m0, p). The proof is complete. �

3. AN EXTENSION TO SYSTEM (3.1)

In this section, we consider the extension of (1.1) to the following system:
−∆u = a1m(x)u − b1u

2 − c1
vp

vp + 1
− K1 in Ω ,

−∆v = a2m(x)v − b2v
2 − c2

up

up + 1
− K2 in Ω ,

u = v = 0 on ∂Ω ,

(3.1)
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where ∆u = div(∇u) is the Laplacian of u, while a1, a2, b1, b2, c1, c2, p,K1,K2 are positive
constants with p ≥ 2, and Ω is a bounded smooth domain of RN with ∂Ω in C2. The weight
function m satisfies m ∈ C(Ω) and m(x) ≥ m0 > 0 for x ∈ Ω , also ∥m∥∞ = l < ∞. We
prove the following result by finding sub–super solutions to reaction–diffusion system (3.1).

Theorem 3.1. If min{a1, a2} > λ′
1

m0
, then there exists a K∗

0 (a1, a2, b1, b2, c1, c2, p,m0) > 0
such that for max{K1,K2} < K∗

0 , (3.1) has a positive solution. Here λ′
1 is the first

eigenvalue of operator −∆ with Dirichlet boundary conditions.

Proof. Choose λ′
∗ ∈ (λ′

1,min {λ′
1 + σ,m0ã}) where ã = min{a1, a2} and σ is as before

from the anti-maximum principle in the previous section. Define

(ψ1, ψ2) := (µK1zλ′
∗
, µK2zλ′

∗
).

By the same argument as in the proof of Theorem 2.1 we can show that (ψ1, ψ2) is a
subsolution of (3.1) for max{K1,K2} < K∗

0 . Also it is easy to check that constant function
(z1, z2) := (Me,Me) is a super solution of (3.1) for M large. Further M can be chosen
large enough so that (z1, z2) ≥ (ψ1, ψ2) on Ω . Hence for max{K1,K2} < K∗

0 , (3.1) has a
positive solution and the proof is complete. �
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[5] P. Drábek, P. Kerjc̆ı́, P. Takác̆, Nonlinear Differential Equations, in: CRC Research Notes Math., vol. 404,
Chapman & Hall/CRC, Boca Raton, FL-London-New York-Washington, DC, 1999.

[6] R.M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature 269 (1977)
471–477.
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