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Abstract. We establish equality between the essential spectrum of the Schrödinger

operator with magnetic field in the exterior of a compact arbitrary dimensional domain

and that of the operator defined in all the space, and discuss applications of this

equality.
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1. INTRODUCTION

Magnetic Schrödinger operators in domains with boundaries appear in several areas of
physics, one can mention the Ginzburg–Landau theory of superconductors, the theory
of Bose–Einstein condensates, and the study of edge states in Quantum mechanics. We
refer the reader to [1,2,7] for details and additional references on the subject. From the
point of view of spectral theory, the presence of boundaries has an effect similar to that
of perturbing the magnetic Schrödinger operator by an electric potential. If we focus at
present on two dimensional domains and constant magnetic fields, we observe in both
cases (exterior domain and electric potential), that the essential spectrum consists of the
Landau levels and the discrete spectrum form clusters of eigenvalues around the
Landau levels. Several papers are devoted to the study of different aspects of these clus-
ters of eigenvalues in domains with or without boundaries. In case of domains with
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boundaries, one can cite [3–5,8,9] for results in the semi-classical context, [10,11] and
the references therein for the study of accumulation of eigenvalues.

Consider a compact and connected domain K � Rd whose boundary consists of a fi-
nite number of smooth closed curves. Denote by X ¼ Rd n K. Given a function
c 2 L1(oX) and a vector potential A 2 C1ðRd; RdÞ, we define the Schrödinger operator
Lc

X;B with domain D Lc
X;B

� �
as follows,
D Lc
X;B

� �
¼ fu 2 L2ðXÞ : ðr � iAÞju 2 L2ðXÞ; j ¼ 1; 2; m � ðr � iAÞu

þ cu ¼ 0 on @Xg; ð1:1Þ

8u 2 D Lc
X;B

� �
; Lc

X;Bu ¼ �ðr � iAÞ2u: ð1:2Þ
The vector m is the unit outward normal vector of the boundary oX. The magnetic field
B is identified by an antisymmetric matrix (bk,j)16k,j6d whose entries are defined by the
components (aj) of A as follows, bk;j ¼ @xjak � @xkaj. Associated with the operator Lc

X;B

is the quadratic form,
qc
X;BðuÞ ¼

Z
X
jðr � iAÞuj2dxþ

Z
@X

cjuj2dS; u 2 H1
AðXÞ; ð1:3Þ
where the space H1
AðXÞ ¼ fu 2 L2ðXÞ : ðr � iAÞu 2 L2ðXÞg is the form domain of qc

X;B.
Since the function c 2 L1(oX), the operator Lc

X;B is semi-bounded from below and
its associated quadratic form is closed, Friedrichs’ theorem tells us that Lc

X;B is self-
adjoint in L2(X).

We introduce the magnetic Schrödinger operator LB in L2ðRdÞ with magnetic field B

as follows. The domain of the operator is DðLBÞ ¼ fu 2 L2ðRdÞ : ðr � iAÞju 2 L2

ðRdÞ; j ¼ 1; 2g, and the action of the operator on its domain is as follows,
LBu ¼ �ðr � iAÞ2u; ðin L2ðRdÞÞ: ð1:4Þ

In this note, we establish the following result and discuss consequences of it.

Theorem 1.1. The essential spectrum of the operator Lc
X;B is the same as that of the

operator LB.

Earlier versions of Theorem 1.1 are already proven for two-dimensional domains
[10,11] under different boundary conditions and for constant magnetic fields only. The-
orem 1.1 remains true for the magnetic Schrödinger operator with Dirichlet boundary
condition (that is when replacing the Robin condition in (1.1) by the condition u = 0
on oX). The proof is exactly the same as the one we present here.

2. PROOF OF THEOREM 1.1

We denote by C the common boundary of X and K and define the following operator
on C,
@Cu ¼ @Nuþ c u ¼ m � ðr � ibAÞuþ c u; ð2:1Þ

where m is the unit outward normal vector to the boundary of X.
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We have introduced the operator Lc
X;B with quadratic form qc

X;B from (1.3). We will
also use the corresponding operator in K, namely L�c

K;B. Since the quadratic forms qc
X;B

and q�c
K;B are semi-bounded (see (1.3)), we get up to a shift by a positive constant that

they are strictly positive. Thus we assume, the hypothesis:

(H1) The operators LB, Lc
X;B and L�c

K;B are invertible.

Since X and K are complementary, the Hilbert space L2ðRdÞ is decomposed as the
direct sum L2(X) ¯ L2(K) in the sense that any function u 2 L2ðRdÞ can be represented
as uX ¯ uK where uX and uK are the restrictions of u to X and K, respectively. Notice
that, for all u ¼ uX � uK 2 L2ðRdÞ such that uX 2 D(LX,B) and uK 2 D(LK,B), then
oCuX = oCuK = 0, where oC is the trace operator from (2.1).

We can extend the operator Lc
X;B in L2(X) to an operator eL in L2ðRdÞ. Actually, leteL ¼ Lc

X;B � L�c
K;B in D Lc

X;B

� �
�D L�c

K;B

� �
� L2ðRdÞ. More precisely, eL is the self-adjoint

extension associated with the quadratic form
~qðuÞ ¼ qc
X;BðuXÞ þ q�c

K;BðuKÞ; u ¼ uX � uK 2 L2ðRdÞ: ð2:2Þ
By the hypothesis (H1), we may speak of the resolvent eR ¼ eL�1 of eL. Since

rð eLÞ ¼ r Lc
X;B

� �
[ r L�c

K;B

� �
and L�c

K;B has a compact resolvent, then we get the following

lemma.

Lemma 2.1. With eL; eR and Lc
X;B defined as above, it holds true that:

(1) ress Lc
X;B

� �
¼ ressðeLÞ.

(2) k 2 ressðeRÞ n f0g if and only if k „ 0 and k�1 2 r ess Lc
X;B

� �
.

In the next lemma, we observe that the operator Lc
X;B can be viewed as a compact

perturbation of the magnetic Schrödinger operator LB in L2ðRdÞ introduced in (1.4).
Lemma 2.2. The operator V ¼ eL�1 � L�1B is compact. Moreover, for all f; g 2 L2ðRdÞ, it
holds that
hf;VgiL2ðRdÞ ¼
Z

C
@Cu � ðvX � vKÞdS; ð2:3Þ
where u ¼ L�1B f and v ¼ eL�1g.
Proof. Since f = LBu and g ¼ eLv ¼ Lc

X;BvX � L�c
K;BvK, it follows that,
hf;VgiL2ðRdÞ ¼
Z

X
LBu � vXdxþ

Z
K

LBu � vKdx�
Z

X
u � Lc

X;BvXdx�
Z
K

u � L�c
K;BvKdx:
The identity in (2.3) then follows by integration by parts and by using the boundary
conditions oCvX = oCvK = 0.
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As we will show below, compactness of the trace operators together with (2.3) give
us compactness of the operator V. Let (gn) be a sequence in L2ðRdÞ that converges
weakly to 0. We will prove that (Vgn) converges strongly in L2ðRdÞ. We define,
uðnÞ ¼ L�1B Vgn; vðnÞ ¼ eL�1gn:

Let U � Rd be an open and bounded set that contains the common boundary C of X
and K. We claim that there exists a positive constant C such that,
8n 2 N; kuðnÞkH2ðXÞ þ v
ðnÞ
X

��� ���
H2ðX\UÞ

þ v
ðnÞ
K

��� ���
H2ðK\UÞ

6 C: ð2:4Þ
Once the estimate in (2.4) is established, we get compactness of the operator V as fol-
lows. Since the embeddings of H2(U \ X) and H2(X \ K) in L2(C) are compact, we get
that,
v
ðnÞ
X

��� ���
L2ðCÞ
þ v

ðnÞ
K

��� ���
L2ðCÞ
! 0 as n!1:
Also, the trace theorem yields that k@Cu
ðnÞkL2ðCÞ is bounded. Now, we may use (2.3)

with f= Vgn, g = gn and deduce that,
kVgnk
2
L2ðRdÞ ¼

Z
C
@Cu

ðnÞ � v
ðnÞ
X � v

ðnÞ
K

� �
d S! 0 as n!1;
thereby establishing compactness of V. To finish the proof of Lemma 2.2, we need to
prove the claim in (2.4). Since Vgn is in L2ðRdÞ we get by definition of L�1B that
LBu

(n) = Vgn. As a consequence, elliptic L2-estimates yield boundedness of u(n) in
H2(U). In a similar way we obtain boundedness of v

ðnÞ
X and v

ðnÞ
K in H2. Actually, it holds

true that,
LB;Xv
ðnÞ
X ¼ gn inX; LB;Kv

ðnÞ
K ¼ gn in L2ðKÞ;
together with the boundary conditions @Cv
ðnÞ
X ¼ 0 and @Cv

ðnÞ
K ¼ 0. Boundedness of v

ðnÞ
X

and v
ðnÞ
K in H2 then result from elliptic L2-estimates (up to the boundary). h

Proof of Theorem 1.1. As corollary of Lemma 2.2 and Weyl’s theorem, we get that LB

and eL have the same essential spectrum. Consequently, Lemma 2.1 tells us that The-
orem 1.1 is true. h
3. APPLICATIONS OF THEOREM 1.1

The spectrum of the operator LB is studied in several papers, see [6] and the references
therein. Under the assumptions made in Corollary 3.1 below, it is proved in [6, Thm.
1.5] that the essential spectrum of LB is exactly the union of spectra of all operators of
the form LB1 , where B1 is a cluster value of the magnetic field B at 1. The spectrum
ofLB1 is either the interval [B1,1) (ifB1= 0or d is odd) or theLandau levels otherwise.
SinceLc

X;B has the same essential spectrum asLB, we get the result in Corollary 3.1 below.

Corollary 3.1. Suppose that the magnetic field B 2 C3 satisfies the following condition,
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X
16jaj63

X
16i;j6n

jDabi;jðxÞj ¼ Oðjxj�aÞ; as jxj ! 1; ð2:5Þ
where bi,j are the components of B and a is a positive real number. The following state-
ments are true.

(1) If d P 2, then inf ress Lc
X;B

� �
P lim infjxj!1jBðxÞj.

(2) If lim infŒxŒfi1ŒB(x)Œ = 0, then ress Lc
X;B

� �
¼ ½0;1Þ.

(3) If d = 2, limŒxŒfi1ŒB(x)Œ = b and b > 0, then, ress Lc
X;B

� �
¼ fð2n� 1Þb : n 2 Ng.

(4) If d = 3 and lim infŒxŒfi1ŒB(x)Œ = b, then, ress Lc
X;B

� �
¼ ½b;1Þ.

The next corollary indicates situations where the spectrum of Lc
X;B is purely discrete.

Corollary 3.2. Suppose that there exists a non-negative integer r such that B 2 Crþ1ðRdÞ.
Let bk,j be the components of B. If there exists a positive constant C such that,
X
k;j

X
a 2 Nd

jaj ¼ rþ 1

jDabk;jðxÞj 6 C
X
k;j

X
a 2 Nd

jaj 6 r

jDabk;jðxÞj þ 1

0
BBBBBB@

1
CCCCCCA
;

and
P

k;j

P
a 2 Nd

jaj 6 r

jDabk;jðxÞj ! 1 as Œx Œ fi1, then the operator Lc
X;B has compact

resolvent.

Under the conditions in Corollary 3.2, the operator LB has compact resolvent [6,
Corollaire 1.2]. As a consequence of Lemma 2.2, we get that the operator Lc

X;B has com-
pact resolvent too, thereby proving Corollary 3.2.
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