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Abstract. Let n ≥ 3. We show that semi-symmetry and Ricci-semisymmetry conditions
are equivalent for any n-dimensional Lorentzian hypersurface in a Lorentzian space form
with nonzero curvature. We also show that these curvature conditions are equivalent for any
n-dimensional Lorentzian isoparametric hypersurface in Minkowski space Rn+1

1 , and we
construct an example of a Ricci-semisymmetric 5-dimensional Lorentzian hypersurface in
R6

1 which is not semi-symmetric.
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1. INTRODUCTION

Recall that if T is a tensor field of type (r, s) on a pseudo-Riemannian manifold (M, g),
and if ∇ and R denote the Levi-Civita connection and the curvature tensor ofM , respectively,
then for any vector fields X and Y on M , we define the action of R (X,Y ) on T as follows

R (X,Y ) · T = ∇X ∇Y T − ∇Y ∇XT − ∇[X,Y ]T.

We also define the tensor R · T of type (r, s+ 2) as follows

(R · T ) (X1, . . . , Xs, X, Y ) = (R (X,Y ) · T ) (X1, . . . , Xs) .
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A pseudo-Riemannian manifold (M, g) is said to be semi-symmetric if

R · R = 0 (1)

holds on M . It is said to be Ricci-semisymmetric if

R · S = 0 (2)

holds on M.
It is well known that the class of semi-symmetric manifolds includes the class of locally

symmetric manifolds (∇R = 0) as a proper subset and that the class of Ricci-semisymmetric
manifolds includes the class of locally Ricci-symmetric manifolds (that is, ∇S = 0) as
a proper subset. It is clear that every semi-symmetric manifold is Ricci-semisymmetric.
However, the converse is not true in general. It turns out that the conditions (1) and (2)
are equivalent on any 3-dimensional pseudo-Riemannian manifold. For n ≥ 3, P.J. Ryan
proved in [8] that (1) and (2) are equivalent for any hypersurface in a Riemannian space form
with nonzero curvature, and also for any hypersurface in Euclidean space with non-negative
or constant scalar curvature. Further, in [7] it was proved that (1) and (2) are equivalent
for complete hypersurfaces of Euclidean space. In [1], an example was given of a Ricci-
semisymmetric hypersurface in Euclidean space which is not semi-symmetric. Recall that for
a semi-Riemannian manifold (M, g), if the signature of the metric g is (−,+, . . . ,+) and
dimM ≥ 2, then (M, g) is called a Lorentzian manifold.

In this paper, we classify the shape operators of Ricci-semisymmetric Lorentzian
hypersurfaces in Lorentzian space forms. We consider the equivalence of semi-symmetry
and Ricci-semisymmetry conditions for Lorentzian hypersurfaces in Lorentzian space forms,
and we give an example of a 5-dimensional Ricci-semisymmetric Lorentzian hypersurface of
Minkowski space R6

1 which is not semi-symmetric.

2. PRELIMINARIES

Recall that a Lorentzian vector space (V, ⟨, ⟩) is a vector space V of dimension n > 1 that
is endowed with a scalar product ⟨, ⟩ of index one. An endomorphism A of (V, ⟨, ⟩) is said
to be self-adjoint if it satisfies ⟨AX,Y ⟩ = ⟨X,AY ⟩ for all X,Y ∈ V . We know that a self-
adjoint endomorphism in a Lorentzian vector space need not be diagonalizable. Self-adjoint
endomorphisms are classified according to the following well known result (see [6]).

Lemma 1. Let (V, ⟨, ⟩) be an n-dimensional Lorentzian vector space, and let A be a self-
adjoint endomorphism of (V, ⟨, ⟩). Then, A has one of the following forms:

(i) A = diag(λ1, . . . , λn),
(ii) A =


a b

−b a


⊕ diag(λ3, . . . , λn), with b ≠ 0,

(iii) A =


λ 0
ϵ λ


⊕ diag(λ3, . . . , λn), ϵ = ±1,

(iv) A =


λ 0 1
0 λ 0
0 1 λ


⊕ diag(λ4, . . . , λn),

where in cases (i) and (ii) , A is represented relative to an orthonormal basis {e1, . . . , en}
with nonzero products − ⟨e1, e1⟩ = ⟨ei, ei⟩ = 1, with 2 ≤ i ≤ n. In cases (iii) and (iv),
A is represented relative to a pseudo-orthonormal basis {e1, . . . , en} with nonzero products
− ⟨e1, e2⟩ = ⟨ei, ei⟩ = 1, with 3 ≤ i ≤ n.
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Let M
n+1

1 (c) be an (n+ 1)-dimensional Lorentzian space form, that is, a complete sim-
ply connected and connected (n+ 1)-dimensional Lorentzian manifold of constant curvature

c. If f : Mn
1 → M

n+1

1 (c) is an isometric immersion from an n-dimensional Lorentzian man-

ifold (Mn
1 , g) into M

n+1

1 (c), then we say that Mn
1 is a Lorentzian hypersurface of M

n+1

1 (c).
Let Mn

1 be a Lorentzian hypersurface of M
n+1

1 (c), and let ξ be a local spacelike unit
normal field on M

n

1 . For any vector fields X and Y tangent to M
n

1 , the Gauss formula and
the Weingarten formula are

∇XY = f∗ (∇XY ) + h(X,Y )ξ,
∇Xξ = −f∗ (AX) ,

where ∇ and ∇ denote, respectively, the Levi-Civita connections on M
n+1

1 (c) and Mn
1 , and

h is the second fundamental form, and A is defined by g (AX,Y ) = h(X,Y ). In fact, A is
nothing but the shape operator ofMn

1 derived from ξ. Since h is symmetric,Ax is self-adjoint
on Tx (Mn

1 ), for all x. At each point x, the type number of Mn
1 at x is defined to be the rank

of Ax, and it is denoted by k(x).
Let Mn

1 be a Lorentzian hypersurface of M
n+1

1 (c). If the shape operator A is
diagonalizable, Mn

1 is said to be isoparametric if A has constant eigenvalues. If A is not
diagonalizable, Mn+1

1 is said to be isoparametric if the minimal polynomial of A is constant.

3. RICCI-SEMISYMMETRIC LORENTZIAN HYPERSURFACES

Let (Mn
1 , g) be a Lorentzian hypersurface in a Lorentzian space form M

n+1

1 (c) . The
Ricci tensor field of Mn

1 can be written as

S(X,Y ) = c(n − 1)g (X,Y ) +mg (AX,Y ) − g

A2X,Y


where m = trace (A) (see [3] or [7]). Let S denote the tensor field satisfying

S(X,Y ) = g

SX, Y


.

It is clear that R ·S = 0 if and only if R ·S = 0, and it is easy to prove the following fact.

Lemma 2. R · S = 0 if and only if R(X,Y ) commutes with S for all X,Y.

Proposition 3. Let n ≥ 3 and c ≠ 0, and let Mn
1 be a Ricci-semisymmetric Lorentzian

hypersurface in M
n+1

1 (c). Then the shape operator cannot admit complex eigenvalues.

Proof. Assume the contrary that the shape operator A has a complex eigenvalue at some
point x ∈ Mn

1 . Let {e1, e2, . . . , en} be an orthonormal basis of TxM
n
1 relative to which A

takes the second form of Lemma 1. Then,

SR(e1, e2)e1 = (a2 + b2 + c)(c(n − 1) +ma − a2 + b2)e2
−b(a2 + b2 + c)(2a − m)e1

R(e1, e2)Se1 = (c(n − 1) +ma − a2 + b2)(a2 + b2 + c)e2
−b(a2 + b2 + c)(2a − m)e1.
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By Lemma 2, we have SR(e1, e2)e1 = R(e1, e2)Se1, which is equivalent to

(a2 + b2 + c)(2a − m) = 0. (3)

Similarly, for i ≥ 3, we have

SR(e1, ei)e1 = (aλi + c)(c(n − 1) +mλi − λ2
i )ei

R(e1, ei)Se1 = (aλi + c)(c(n − 1) +mλi − λ2
i )ei + b2(2a − m)λiei.

Since SR(e1, ei)e1 = R(e1, ei)Se1, then

(aλi + c)

(a − λi)(m − a − λi) + b2


+ b2(2a − m)λi = 0. (4)

Also, for i ≥ 3, we have

SR(e1, ei)e2 = bλi(c(n − 1) +mλi − λ2
i )ei

R(e1, ei)Se2 = bλi(c(n − 1) +ma − a2 + b2)ei − b(2a − m)(aλi + c)ei.

Since SR(e1, ei)e2 = R(e1, ei)Se2, then
(a − λi)(m − a − λi) + b2


λi = (2a − m)(aλi + c). (5)

By multiplying (4) by λi and substituting (5) into the resulting equation, we get

(2a − m)

(aλi + c)2 + b2λ2

i


= 0.

Since b ≠ 0 and c ≠ 0, the last equation implies that m = 2a.
Now, by substituting this into (4) and (5), we deduce that aλi + c = 0 and λi = 0,

respectively. This implies that c = 0, a contradiction. Thus, A cannot admit complex
eigenvalues. �

In the case c = 0, we return to the proof of the last proposition. From Eq. (3) we get that
m = 2a, and by substituting this into (5) we deduce that λi = 0 for any i. In this case, it turns
out that the hypersurface is semi-symmetric. In this case, we have the following proposition
and example (see [2]).

Proposition 4. Let Mn
1 be a semi-symmetric Lorentzian hypersurface in Rn+1

1 , n ≥ 3, and
let x ∈ Mn

1 . If the shape operator Ax admits a complex eigenvalue a+ ib with b ≠ 0, then

Ax =

a b

−b a


⊕ 0n−2.

In particular, k (x) ≤ 2.

Examples of semi-symmetric Lorentzian hypersurfaces in Minkowski space whose shape
operators have a complex eigenvalue do exist. Here is an example.

Example 5. Let M2
1 be the surface defined by the parametrization X : R × (0,+∞) → R3

1

given by X (s, t) = (cosh s sinh t, sinh s sinh t, s). It is easy to see that M2
1 is a Lorentzian
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surface in R3
1 with induced metric g = cosh2 t


ds2 − dt2


and normal vector field

N± =
±1

cosh t
(sinh s, cosh s, − sinh t) .

The shape operator associated to N+ is

A =

 0
1

cosh2 t

− 1
cosh2 t

0

 .

Now, in order to obtain examples of semi-symmetric Lorentzian hypersurfaces of dimensions
n ≥ 3 in Rn+1

1 whose shape operators have a complex eigenvalue, it suffices to consider
cylinders over the above Lorentzian surface, that is, products of the form M2

1 × En−2.

The following result describes the shape operators of Ricci-semisymmetric Lorentzian
hypersurfaces.

Theorem 6. Let n ≥ 3, and let Mn
1 be a Ricci-semisymmetric Lorentzian hypersurface in

M
n+1

1 (c). Then,

(i) If c = 0, then Ax takes one of the following forms

Ax = λIp ⊕ µIn−p, where either λµ = 0 or λ = µ,

Ax =

λ 0
0 µ


⊕ 0n−2,

Ax =

a b

−b a


⊕ 0n−2, with b ≠ 0,

Ax =

λ 0
ϵ λ


⊕ diag (µ, 0, . . . , 0) , with λµ = 0,

Ax =

0 0 1
0 0 0
0 1 0

 ⊕ 0n−3

where the first three forms are relative to orthonormal bases, and the last two forms are
relative to pseudo-orthonormal bases.

(ii) If c ≠ 0, then Ax takes one of the following forms

Ax = λIn, with λ ∈ R,
Ax = λIp ⊕ µIn−p, with λµ ≠ 0 and λ ≠ µ. In this case, we have either

λµ+ c = 0 or 1 ≤ p ≤ n − 1,

Ax =

λ 0
0 0n−2


, with λ ≠ 0,

Ax =

λ 0
ϵ λ


⊕ λIn−2, with λ = 0 or c = −λ2,

where the first three forms are relative to orthonormal bases, and the last two forms are
relative to pseudo-orthonormal bases.
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Proof. By Propositions 3 and 4, we know that if the shape operator Ax admits a complex
eigenvalue then c = 0 and

Ax =

a b

−b a


⊕ 0n−2, with b ≠ 0.

Thus, by Lemma 1, there are three cases to be considered.

Case 1. Ax is diagonalizable. In this case, let {e1, . . . , en} be an orthonormal basis of
TxM

n
1 such that Aei = λiei, 1 ≤ i ≤ n. We easily verify that the Ricci-semisymmetry

condition (2) is equivalent to

(λi − λj) (λiλj + c) (m − λi − λj) = 0, i ≠ j.

In this case, we see that the diagonal forms of Ax described in the statement of Theorem 6
easily follow from the above equation (compare [7], Theorem 4.5 and its proof).

Case 2. The shape operator Ax has the form (iii) of Lemma 1. Let {e1, . . . , en} be a
pseudo-orthonormal basis of TxM

n
1 such that Ax has such a form. We compute

SR(e1, e2)e1 = (λ2 + c)

(c(n − 1) +mλ − λ2)e1 + ϵ(m − 2λ)e2


,

and

R(e1, e2)Se1 =

c(n − 1) +mλ − λ2


(λ2 + c)e1 + ϵ(m − 2λ)(λ2 + c)e2.

By Lemma 2, we have SR(e1, e2)e1 = R(e1, e2)Se1, which is equivalent to

(m − 2λ)

λ2 + c


= 0. (6)

Similarly, for i ≠ 1, 2, we have

SR(e1, ei)e1 = −ϵλi


c(n − 1) +mλi − λ2

i


ei,

and

R(e1, ei)Se1 = −ϵ

λi


c(n − 1) +mλ − λ2


+ (m − 2λ) (λλi + c)


ei,

from which we get

λi(λi − λ)(m − λi − λ) = (m − 2λ) (λλi + c) . (7)

Also, for i ≠ 1, 2, we have

SR(e1, ei)e2 = − (λλi + c)

c(n − 1) +mλi − λ2

i


ei,

and

R(e1, ei)Se2 = −

c(n − 1) +mλ − λ2


(λλi + c) ei,

from which we get

(λλi + c) (λi − λ)(m − λi − λ) = 0. (8)



80 M. Guediri, N. Alshehri

By multiplying (7) by (λλi + c) and using (8), we deduce that

(m − 2λ) (λλi + c) = 0. (9)

Also, by subtracting (9) from (6), we get

λ (m − 2λ) (λ − λi) = 0. (10)

Finally, for i ≠ j, we have

SR(ei, ej)ej = (λiλj + c)

c(n − 1) +mλi − λ2

i


ei,

and

R(ei, ej)Sej = (λiλj + c)

c(n − 1) +mλj − λ2

j


ei.

Since SR(ei, ej)ej = R(ei, ej)Sej , we get

(λiλj + c) (λi − λj) (m − λi − λj) = 0. (11)

If m ≠ 2λ, we deduce from (6) and (9) that c = −λ2 = −λλi, that is λ (λ − λi) = 0. If
λ ≠ 0, then λ = λi for all i. This covers the last form for Ax of case (ii) with the assumption
that c = −λ2. If λ = 0, then c = 0, and we get from (6) that

λi(m − λi) = 0. (12)

Since m =
n

i=3 λi ≠ 0, it follows that there exists some i0 such that λi0 ≠ 0. Now, (12)
implies that m = λi0 , from which we deduce that all other λi are equal to zero. This covers
the fourth form for Ax of case (i), with the assumption that λ = 0 and µ ≠ 0.

If m = 2λ, then (7), (8), and (11) become

λi (λ − λi) = 0 (13)

(λλi + c) (λi − λ) = 0 (14)

(λiλj + c) (λi − λj) (m − λi − λj) = 0. (15)

We notice that, by (13), each nonzero λi must be equal to λ. Since m = 2λ, this implies
λi = 0 for all i. By substituting this into (14), we get cλ = 0.

If c = 0, then we obtain the fourth form forAx of case (i), with the assumption that µ = 0.
If c ≠ 0, then we obtain the last form for Ax of case (ii) with the assumption that λ = 0.

Case 3. The shape operator has the form (iv) of Lemma 1. Let {e1, . . . , en} be a pseudo-
orthonormal basis of TxM

n
1 such that Ax has such a form. We compute

SR(e1, e2)e2 = −(λ2 + c)(c(n − 1) +mλ − λ2)e2 +

(λ2 + c) − λ(m − 2λ)


e1

−

(λ2 + c) (m − 2λ) + λ


c(n − 1) +mλ − λ2


e3

and

R(e1, e2)Se2 = −

c(n − 1) +mλ − λ2


(λ2 + c)e2

− λ

c(n − 1) +mλ − λ2


e3 −


(λ2 + c) − λ(m − 2λ)


e1.
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By Lemma 2, we have SR(e1, e2)e2 = R(e1, e2)Se2, which is equivalent to

(λ2 + c)(m − 2λ) = 0, (16)

3λ2 − mλ+ c = 0. (17)

Similarly, for i ≥ 4, we have

SR(e1, ei)e2 = −(λλi + c)(c(n − 1) +mλi − λ2
i )ei

and

R(e1, ei)Se2 = −(λλi + c)

c(n − 1) +mλ+ λ2


ei,

from which, we get

(λλi + c) (λ − λi) (m − λ − λi) = 0. (18)

Also, we have

SR(e2, e3)e2 = λ(c(n − 1) +mλ − λ2)e2 − [λ − (m − 2λ)] e1
+


λ (m − 2λ) +


c(n − 1) +mλ − λ2


e3

and

R(e2, e3)Se2 =

c(n − 1) +mλ − λ2


+ (m − 2λ)


λ2 + c


e2

+ (3λ − m)u+ (c(n − 1) +mλ+ c) e3

from which, we get m = 3λ. By Substituting this into (17), we get c = 0. It follows then
from (16) that λ = 0.

Now, for i ≥ 4, we compute

SR(e2, ei)ei = 0

and

R(e2, ei)Sei = −λ3
i e3,

from which, we get λi = 0. This covers the last form for Ax of case (i). And the proof of
Theorem 6 is then complete. �

4. ON THE EQUIVALENCE OF SEMI-SYMMETRY AND RICCI-SEMISYMMETRY

CONDITIONS

In this section we shall prove that the Ricci-semisymmetry and semi-symmetry conditions
are equivalent on Lorentzian hypersurfaces in Lorentzian space forms with nonzero curvature,
and we construct an example of a Ricci-semisymmetric Lorentzian hypersurface in R6

1 which
is not semi-symmetric.

Proposition 7. Let n ≥ 3, and let Mn
1 be a Lorentzian hypersurface in a space form

M
n+1

1 (c), with c ≠ 0. Then R · S = 0 if and only if R · R = 0.
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Proof. If the shape operator is diagonalizable, then we easily verify that the conditions
R · S = 0 and R · R = 0 are equivalent (compare [8], Proposition 7).

If the shape operator is nondiagonalizable, then we see from the Proof of Theorem 4.5
in [2] that R · R = 0 if and only if the following equations are satisfied for i ≠ j

λ2 + c

λi = 0

(λλi + c)λ (λ − λi) = 0
λj


2λλi + c − λ2

i


= 0.

But we have seen in the proof of Theorem 6 that, in this case, we have either λ2 + c = 0 and
λi = λ2 or λi = 0 for all i. Thus, the above equations are satisfied. �

Proposition 8. Let n ≥ 3, and let Mn
1 be a Lorentzian isoparametric hypersurface of the

Minkowski space Rn+1
1 . Then R · S = 0 if and only if R · R = 0.

Proof. If the shape operator Ax is diagonalizable, then Mn
1 has at most one nonzero

eigenvalue (see [4], Corollary 2.7). In this case, it is clear that R · S = 0 and R · R = 0
are equivalent. If the shape operator Ax is nondiagonalizable then, by Theorem 6, the shape
operator Ax has one of the following forms

Ax =

λ 0
ϵ λ


⊕ diag (µ, 0, . . . , 0) , with λµ = 0, or Ax =

0 0 1
0 0 0
0 1 0

 ⊕ 0n−3.

If Ax has the first form then, as in Theorem 4.5 in [2], we get R · R = 0 if and only if the
following equations are satisfied for 3 ≤ i, j, k ≤ n

λλi = 0
λiλ (λ − λi) = 0

λj(2λλi − λ2
i ) = 0, i ≠ j

λiλjλk (λi − λj) = 0, i, j and k are distinct.

Since λµ = 0, the above equations are satisfied.
If Ax has the second form then, as in the proof of Theorem 4.5 in [2], R · R = 0 if and

only if c = λ = λi = 0 for 3 ≤ i ≤ n, which is clearly satisfied. �

The following example, which is inspired from [5], shows that the conditions R · R = 0
and R · S = 0 are not equivalent for general Lorentzian hypersurfaces.

Example 9. We consider

S2 =

(x, y, z) ∈ R3 : x2 + y2 + z2 = 1


.

and

S2
1 =


(x, y, z) ∈ R3 : x2 + y2 − z2 = 1


.
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Inside the product M4 = S2
1 × S2, we consider the cone

C5 =

(tp, tq) ∈ R6 : (p, q) ∈ M4, t > 0


.

It is clear that we can parametrize C5 by

f (t, u, v, φ, ψ)
= (t coshu cos v, t coshu sin v, t sinhu, t sinφ cosψ, t sinφ sinψ, t cosφ) ,

and it is easy to check that the induced metric ds2 on C5 is

ds2 = 2dt2 − t2du2 + t2 cosh2 udv2 + t2dφ2 + t2 sin2 φdψ2.

Since t > 0, then C5 is Lorentzian hypersurface of the Minkowski space R6
1. Note that

ξ = 1√
2

(−p, q) is a unit normal on C5.

Let x and y be parameters in S2
1 and S2, respectively. Therefore, we have

∂x = (tpx, 0)
∂y = (0, tqy)
∂t = (0, 0) .

Now, we compute

D∂xξ = − 1√
2

(px, 0)

D∂yξ =
1√
2

(0, qy)

D∂tξ = (0, 0) .

By Weingarten formula

Ax(∂x) =
1√
2

(px, 0) =
1√
2t
∂x

Ax(∂y) = − 1√
2

(0, qy) = − 1√
2t
∂y

Ax(∂t) = 0.

It follows thatAx = diag(0, 1√
2t
, 1√

2t
, − 1√

2t
, − 1√

2t
), and it is clear now that the eigenvalues

of Ax satisfy the condition R · S = 0 but not the condition R · R = 0.
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