On the equation $V_{n}=w x^{2} \mp 1$

ÜmmÜGÜLSÜm ÖĞÜT, REFIK KESKíN*
Sakarya University, Mathematics Department, Sakarya, Turkey

Received 25 February 2016; accepted 11 June 2016
Available online 30 June 2016

Abstract

Let $P \geq 3$ be an integer and $\left(V_{n}\right)$ denote Lucas sequence of the second kind defined by $V_{0}=2, V_{1}=P$, and $V_{n+1}=P V_{n}-V_{n-1}$ for $n \geq 1$. In this study, when P is odd and $w \in\{10,14,15,21,30,35,42,70,210\}$, we solved the equation $V_{n}=w x^{2} \mp 1$. We showed that only V_{1} can be of the form $w x^{2}+1$ and only V_{1} or V_{2} can be of the form $w x^{2}-1$.

2010 Mathematics Subject Classification: 11B37; 11B39; 11B50; 11B99; 11D41

Keywords: Lucas sequence of the second kind; Congruences; Diophantine equations

1. Introduction

Let $P \geq 3$ be an integer and $\left(V_{n}\right)$ denote Lucas sequence of the second kind defined by $V_{0}=2, V_{1}=P$, and $V_{n+1}=P V_{n}-V_{n-1}$ for $n \geq 1$.

In [1], the authors showed that when $a \neq 0$ and $b \neq \pm 2$, the equation $V_{n}=a x^{2}+b$ has only a finite number of solutions n. In [5], Keskin solved the equations $V_{n}=w x^{2}+1$ and $V_{n}=w x^{2}-1$ for $w=1,2,3,6$ when P is odd. In [4], when P is odd, Karaatlı and Keskin solved the equations $V_{n}=5 x^{2} \pm 1$ and $V_{n}=7 x^{2} \pm 1$. In the present paper, when P is odd, we solve the equations $V_{n}=w x^{2} \pm 1$ for $w=10,14,15,21,35,42,70,210$. We show that only V_{1} can be of the form $w x^{2}+1$ and only V_{1} or V_{2} can be of the form $w x^{2}-1$.

We will use the Jacobi symbol throughout this study. Our method of proof is similar to that used by Cohn, Ribenboim and McDaniel in [3] and [6,7], respectively.

[^0]Peer review under responsibility of King Saud University.

http://dx.doi.org/10.1016/j.ajmsc.2016.06.004
1319-5166 © 2016 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. Preliminaries

The following theorem is given in [8].
Theorem 2.1. Let $n \in \mathbb{N} \cup\{0\}$ and $m, r \in \mathbb{Z}$. Then

$$
\begin{equation*}
V_{2 m n+r} \equiv(-1)^{n} V_{r}\left(\bmod V_{m}\right) \tag{2.1}
\end{equation*}
$$

If $n=2 \cdot 2^{k} a+r$ with a odd, then we get

$$
\begin{equation*}
V_{n}=V_{2 \cdot 2^{k} a+r} \equiv-V_{r}\left(\bmod V_{2^{k}}\right) \tag{2.2}
\end{equation*}
$$

by (2.1).
When P is odd, an induction method shows that

$$
V_{2^{k}} \equiv 7(\bmod 8)
$$

and thus

$$
\begin{equation*}
\left(\frac{2}{V_{2^{k}}}\right)=1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{-1}{V_{2^{k}}}\right)=-1 \tag{2.4}
\end{equation*}
$$

for all $k \geq 1$.
Moreover, if P is odd and $3 \nmid P$, then $V_{2^{k}} \equiv-1(\bmod 3)$ and therefore

$$
\begin{equation*}
\left(\frac{3}{V_{2^{k}}}\right)=1 \tag{2.5}
\end{equation*}
$$

for all $k \geq 1$.
If P is odd and $3 \mid P$, then $V_{2^{k}} \equiv-1(\bmod 3)$ and therefore

$$
\begin{equation*}
\left(\frac{3}{V_{2^{k}}}\right)=1 \tag{2.6}
\end{equation*}
$$

for all $k \geq 2$.
Thus (2.5) and (2.6) shows that

$$
\begin{equation*}
\left(\frac{3}{V_{2^{k}}}\right)=1 \tag{2.7}
\end{equation*}
$$

for all $k \geq 2$.
When P is odd, we have

$$
\begin{equation*}
\left(\frac{P-1}{V_{2^{k}}}\right)=\left(\frac{P+1}{V_{2^{k}}}\right)=1 \tag{2.8}
\end{equation*}
$$

for $k \geq 1$.

If P is odd, then $V_{2^{k}} \equiv-1\left(\bmod P^{2}-3\right)$ and therefore

$$
\begin{equation*}
\left(\frac{P^{2}-3}{V_{2^{k}}}\right)=1 \tag{2.9}
\end{equation*}
$$

for all $k \geq 2$.
When P is odd, we have

$$
\left(\frac{5}{V_{2^{k}}}\right)=\left\{\begin{array}{l}
-1, \quad \text { if } 5 \mid P \tag{2.10}\\
1, \quad \text { if } P^{2} \equiv 1(\bmod 5) \\
-1, \quad \text { if } P^{2} \equiv-1(\bmod 5)
\end{array}\right.
$$

and

$$
\left(\frac{7}{V_{2^{k}}}\right)= \begin{cases}-1, & \text { if } P^{2} \equiv 4(\bmod 7) \tag{2.11}\\ 1, & \text { if } P^{2} \equiv 1(\bmod 7)\end{cases}
$$

for all $k \geq 1$.
Now we give some identities concerning the terms of the Lucas sequence:

$$
\begin{align*}
& V_{-n}=V_{n} \\
& V_{2 n}=V_{n}^{2}-2 \tag{2.12}
\end{align*}
$$

When $P^{2} \equiv-1(\bmod 5)$, we have

$$
V_{n} \equiv \begin{cases}2(\bmod 5), & \text { if } n \text { is even } \tag{2.13}\\ P(\bmod 5), & \text { if } n \text { is odd }\end{cases}
$$

When $P^{2} \equiv 4(\bmod 7)$, by using induction, it can be seen that

$$
V_{n} \equiv \begin{cases}2(\bmod 7), & \text { if } n \text { is even } \tag{2.14}\\ P(\bmod 7), & \text { if } n \text { is odd }\end{cases}
$$

If $P^{2} \equiv 2(\bmod 7)$, then we have $7 \mid V_{2}$ and $V_{8 q+r} \equiv V_{r}\left(\bmod V_{2}\right)$ by (2.1). Therefore we get,

$$
V_{n} \equiv\left\{\begin{array}{lc}
0, \pm 2(\bmod 7), & \text { if } n \text { is even } \tag{2.15}\\
\pm P(\bmod 7), & \text { if } n \text { is odd }
\end{array}\right.
$$

The following lemma can be given from Theorem 2.1.
Lemma 1. If n is a positive integer, then $V_{2 n} \equiv \pm 2(\bmod P)$ and $P \mid V_{n}$ if n is odd.

3. MAIN THEOREMS

From now on, we will assume that n is a positive integer and P is an odd positive integer.
Theorem 3.1. Let $w \in S=\left\{2^{a_{1}} 3^{a_{2}} 5^{a_{3}} 7^{a_{4}}: a_{i} \in\{0,1\}\right.$ and $a_{3} \neq 0$ or $\left.a_{4} \neq 0\right\}$. If $V_{n}=w x^{2}+1$ for some positive integer x, then $n=1$.

Proof. Assume that n is even. Then $V_{n}=V_{2 m}=V_{m}^{2}-2$ by (2.12) and thus $V_{m}^{2}-2=$ $w x^{2}+1$. Therefore $V_{m}^{2}=3(\bmod w)$. If $a_{3} \neq 0$ or $a_{4} \neq 0$, then $V_{m}^{2}=3(\bmod 5)$ or $V_{m}^{2}=3(\bmod 7)$, respectively. These are impossible. And so n is odd and therefore $P \mid V_{n}$
by Lemma 1 . Thus it can be seen that $(w, P)=1$. Let $3 \mid w$. Then $3 \nmid P$ since $(w, P)=1$. Therefore $\left(\frac{3}{V_{2^{k}}}\right)=1$ by (2.5). If $3 \nmid w$, then $a_{2}=0$ and we conclude that

$$
\begin{equation*}
\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1 \tag{3.1}
\end{equation*}
$$

Now we divide the proof into three cases.
Case 1: Assume that $a_{3} \neq 0$ and $a_{4}=0$. Then $5 \mid w$ and thus $5 \nmid P$ since $(w, P)=1$. Moreover we have $V_{n} \equiv 1(\bmod 5)$ in this case. If $P^{2} \equiv-1(\bmod 5)$, then $V_{n} \equiv$ $P \equiv \pm 2(\bmod 5)$ by (2.13), which is impossible since $V_{n} \equiv 1(\bmod 5)$. Assume that $P^{2} \equiv 1(\bmod 5)$ and $n>1$. Then $n=4 q \pm 1$ for some positive integer $q>0$. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=-1+V_{n} \equiv-1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P+1)\left(\bmod V_{2^{k}}\right)
$$

which implies that

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P+1}{V_{2^{k}}}\right)
$$

i.e.

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8). But $\left(\frac{w}{V_{2^{k}}}\right)=1$ since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{5}{V_{2^{k}}}\right)=1$ and $\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$ by (2.3), (2.10), and (3.1), respectively. This contradicts the fact that $\left(\frac{w}{V_{2^{k}}}\right)=-1$.

Case 2: Assume that $a_{3}=0$ and $a_{4} \neq 0$. Then $7 \mid w$ and so $V_{n} \equiv 1(\bmod 7)$. Moreover, $7 \nmid P$ since $(w, P)=1$. If $P^{2} \equiv 2,4(\bmod 7)$ then $V_{n} \equiv \pm P \equiv \pm 2, \pm 3(\bmod 7)$ by (2.14) and (2.15), which is impossible since $V_{n} \equiv 1(\bmod 7)$. Now assume that $P^{2} \equiv 1(\bmod 7)$ and $n>1$. Then $n=4 q \pm 1$ for some $q>0$. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=-1+V_{n} \equiv-1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P+1)\left(\bmod V_{2^{k}}\right)
$$

which implies that

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P+1}{V_{2^{k}}}\right) .
$$

Therefore,

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8). But $\left(\frac{w}{V_{2^{k}}}\right)=1$ since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{7}{V_{2^{k}}}\right)=1$, and $\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$ by (2.3), (2.11), and (3.1), respectively. This contradicts the fact that $\left(\frac{w}{V_{2} k}\right)=-1$.

Case 3: Assume that $a_{3} \neq 0$ and $a_{4} \neq 0$. Then $5 \mid w$ and $7 \mid w$ and so $V_{n} \equiv 1(\bmod 35)$. Moreover, $5 \nmid P$ and $7 \nmid P$ since $(w, P)=1$. If $P^{2} \equiv 2,4(\bmod 7)$, then $V_{n} \equiv \pm P \equiv$ $\pm 2, \pm 3(\bmod 7)$ by (2.14) and (2.15), respectively. This is impossible since $V_{n} \equiv 1(\bmod 7)$. If $P^{2} \equiv-1(\bmod 5)$, then $V_{n} \equiv P \equiv \pm 2(\bmod 5)$ by (2.13), which is impossible since $V_{n} \equiv 1(\bmod 5)$. Therefore $P^{2} \equiv 1(\bmod 5)$ and $P^{2} \equiv 1(\bmod 7)$. Let $n>1$. Then $n=4 q \pm 1$ for some positive integer $q>0$. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=-1+V_{n} \equiv-1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P+1)\left(\bmod V_{2^{k}}\right),
$$

which implies

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P+1}{V_{2^{k}}}\right) .
$$

Then it follows that

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8). But this is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{5}{V_{2^{k}}}\right),\left(\frac{7}{V_{2^{k}}}\right)=1, \operatorname{and}\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=$ 1 by (2.3), (2.10), (2.11), and (3.1), respectively. Therefore $n=1$.

Theorem 3.2. Let $w \in S=\left\{2^{a_{1}} 3^{a_{2}} 5^{a_{3}} 7^{a_{4}}: a_{i} \in\{0,1\}\right.$ and $a_{3} \neq 0$ or $\left.a_{4} \neq 0\right\}$. If $V_{n}=w x^{2}-1$ for some positive integer x, then $n=1$ or $n=2$.

Proof. If $n=4 q$ for some $q>0$. Then we get

$$
w x^{2}-1=V_{4 t}=V_{2 t}^{2}-2=\left(V_{t}^{2}-2\right)^{2}-2=V_{t}^{4}-4 V_{t}^{2}+2
$$

and then $w x^{2}=V_{t}^{4}-4 V_{t}^{2}+3$. But the integer points on $w X^{2}=Y^{4}-4 Y^{2}+3$ are easily determined by using MAGMA [2] to be $(X, Y)=(0, \pm 1)$. This implies that $V_{t}=1$, which is impossible. Thus $n \neq 4 q$. Let n be odd and $3 \mid w$. Then $3 \nmid P$ since $P \mid V_{n}$ when n is odd by Lemma 1. Therefore $\left(\frac{3}{V_{2} k}\right)=1$ by (2.5). If $3 \nmid w$, then $a_{2}=0$ and we conclude that

$$
\begin{equation*}
\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1 \tag{3.2}
\end{equation*}
$$

Now we divide the proof into three cases.
Case 1: Assume that $a_{3} \neq 0$ and $a_{4}=0$. Then $5 \mid w$ and so $V_{n} \equiv-1(\bmod 5)$. If $5 \mid P$, then $V_{n} \equiv 0, \pm 2(\bmod 5)$ by Lemma 1 , which is impossible since $V_{n} \equiv-1(\bmod 5)$. If $P^{2} \equiv-1(\bmod 5)$, then $V_{n} \equiv 2, P \equiv \pm 2(\bmod 5)$ by (2.13), which is impossible since $V_{n} \equiv-1(\bmod 5)$. Assume that $P^{2} \equiv 1(\bmod 5)$. Let $n>1$ be odd. Then $P \mid V_{n}$ by Lemma 1 . Thus it can be seen that $(w, P)=1$. Since n is odd, $n=4 q \pm 1$ for some positive integer q. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P-1)\left(\bmod V_{2^{k}}\right),
$$

which implies

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P-1}{V_{2^{k}}}\right),
$$

i.e.

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8). This is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$, and $\left(\frac{5}{V_{2^{k}}}\right)=1$ by (2.3), (3.2), and (2.10), respectively. Now, let $n>2$ be even. Then $n=4 q$ or $n=8 q \pm 2$ for some $q>0$. But $n \neq 4 q$, which was shown at the beginning of the proof. Then $n=8 q \pm 2$. And so $n=2 \cdot 2^{k} a \pm 2$ with a odd and $k \geq 2$. Then,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 2}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2^{k}}\right)
$$

which implies

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P^{2}-3}{V_{2^{k}}}\right),
$$

i.e.,

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.9). This is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{5}{V_{2} k}\right)=1$, and $\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$ by (2.3), (2.10), and (2.7), respectively.

Case 2: Assume that $a_{3}=0$ and $a_{4} \neq 0$. Then $7 \mid w$ and so $V_{n} \equiv-1(\bmod 7)$. If $7 \mid P$, then $V_{n} \equiv 0, \pm 2(\bmod P)$, i.e., $V_{n} \equiv 0, \pm 2(\bmod 7)$ by Lemma 1 , which is impossible since $V_{n} \equiv-1(\bmod 7)$. Therefore $7 \nmid P$. If $P^{2} \equiv 2,4(\bmod 7)$, then $V_{n} \equiv 0, \pm P, \pm 2$
$\equiv 0, \pm 2, \pm 3(\bmod 7)$ by (2.14) and (2.15), which is impossible since $V_{n} \equiv-1(\bmod 7)$. Now assume that $P^{2} \equiv 1(\bmod 7)$. Let $n>1$ be odd. Then $n=4 q \pm 1$ for some $q>0$. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P-1)\left(\bmod V_{2^{k}}\right),
$$

which implies

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P-1}{V_{2^{k}}}\right),
$$

i.e.,

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8). This is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$, and $\left(\frac{7}{V_{2^{k}}}\right)=1$ by (2.3), (3.2), and (2.11), respectively. Now let $n>2$ be even. Then $n=8 q \pm 2$ for some $q>0$ since $n \neq 4 q$. Thus $n=2 \cdot 2^{k} a \pm 2$ with a odd and $k \geq 2$. Then,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 2}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2^{k}}\right),
$$

which implies that

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P^{2}-3}{V_{2^{k}}}\right)
$$

i.e.,

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.9) and (2.4). This is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{7}{V_{2^{k}}}\right)=1$, and $\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$ by (2.3), (2.11), and (2.7), respectively.

Case 3: Assume that $a_{3} \neq 0$ and $a_{4} \neq 0$. Then $5 \mid w$ and $7 \mid w$ and so $V_{n} \equiv-1(\bmod 35)$. Since $V_{n} \equiv 0, \pm 2(\bmod P)$ by Lemma 1 , it follows that $5 \nmid P$ and $7 \nmid P$. If $P^{2} \equiv$ $2,4(\bmod 7)$, then $V_{n} \equiv 0, \pm P, \pm 2 \equiv 0, \pm 2, \pm 3(\bmod 7)$ by (2.14) and (2.15), which is impossible since $V_{n} \equiv-1(\bmod 7)$. If $P^{2} \equiv-1(\bmod 5)$, then $V_{n} \equiv 2, P \equiv \pm 2(\bmod 5)$ by (2.13), which is impossible since $V_{n} \equiv-1(\bmod 5)$. Therefore $P^{2} \equiv 1(\bmod 5)$ and $P^{2} \equiv 1(\bmod 7)$. Let n be odd and $n>1$. Then $n=4 q \pm 1$ for some $q>0$. Thus $n=2 \cdot 2^{k} a \pm 1$ with a odd and $k \geq 1$. Therefore,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 1}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-(P-1)\left(\bmod V_{2^{k}}\right)
$$

which implies

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P-1}{V_{2^{k}}}\right) .
$$

Then we get

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1
$$

by (2.4) and (2.8), which is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1,\left(\frac{5}{V_{2^{k}}}\right)=1$ and $\left(\frac{7}{V_{2^{k}}}\right)=1$ by (2.3), (3.2), (2.10), and (2.11), respectively. Now let $n>2$ be even. Thus $n=8 q \pm 2$ for some $q>0$. And so $n=2 \cdot 2^{k} a \pm 2$ with a odd and $k \geq 2$. Therefore,

$$
w x^{2}=1+V_{n} \equiv 1-V_{ \pm 2}\left(\bmod V_{2^{k}}\right)
$$

by (2.2). This shows that

$$
w x^{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2^{k}}\right)
$$

which implies that

$$
\left(\frac{w}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{P^{2}-3}{V_{2^{k}}}\right),
$$

i.e.,

$$
\left(\frac{w}{V_{2^{k}}}\right)=-1,
$$

by (2.4) and (2.9). This is impossible since $\left(\frac{2^{a_{1}}}{V_{2^{k}}}\right)=1,\left(\frac{7}{V_{2^{k}}}\right)=1,\left(\frac{5}{V_{2^{k}}}\right)=1$ and $\left(\frac{3^{a_{2}}}{V_{2^{k}}}\right)=1$ by (2.3), (2.11), (2.10), and (2.7), respectively. Consequently, we have $n=1$ or $n=2$.

References

[1] M.A. Alekseyev, S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17 (6) (2014) Article 14.6.6.
[2] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I: The user language, J. Symbolic Comput. 24 (3-4) (1997) 235-265.
[3] J.H.E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972) 631-646.
[4] O. Karaatlı, R. Keskin, Generalized Lucas numbers of the form $5 k x^{2}$ and $7 k x^{2}$, Bull. Korean Math. Soc. 52 (5) (2015) 1467-1480.
[5] R. Keskin, Generalized Fibonacci and Lucas numbers of the form $w x^{2}$ and $w x^{2} \pm 1$, Bulletin of the Korean Mathematical Society 51 (2014) 1041-1054.
[6] P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences, Journal of Number Theory 58 (1996) 104-123.
[7] P. Ribenboim, W.L. McDaniel, On Lucas sequence terms of the form $k x^{2}$, in: Number Theory: Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, pp. 293-303.
[8] Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (3) (2013) 211-222.

[^0]: * Corresponding author.

 E-mail addresses: uogut@sakarya.edu.tr (Ü. Öğüt), rkeskin@ sakarya.edu.tr (R. Keskin).

