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On the equation Vn = wx2 ∓ 1
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Abstract. Let P ≥ 3 be an integer and (Vn) denote Lucas sequence of the second kind
defined by V0 = 2, V1 = P , and Vn+1 = PVn − Vn−1 for n ≥ 1. In this study, when P is
odd and w ∈ {10, 14, 15, 21, 30, 35, 42, 70, 210}, we solved the equation Vn = wx2 ∓ 1.
We showed that only V1 can be of the form wx2 + 1 and only V1 or V2 can be of the form
wx2 − 1.
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1. INTRODUCTION

Let P ≥ 3 be an integer and (Vn) denote Lucas sequence of the second kind defined by
V0 = 2, V1 = P , and Vn+1 = PVn − Vn−1 for n ≥ 1.

In [1], the authors showed that when a ≠ 0 and b ≠ ±2, the equation Vn = ax2 + b has
only a finite number of solutions n. In [5], Keskin solved the equations Vn = wx2 + 1 and
Vn = wx2 − 1 for w = 1, 2, 3, 6 when P is odd. In [4], when P is odd, Karaatlı and Keskin
solved the equations Vn = 5x2 ± 1 and Vn = 7x2 ± 1. In the present paper, when P is odd,
we solve the equations Vn = wx2 ± 1 for w = 10, 14, 15, 21, 35, 42, 70, 210. We show that
only V1 can be of the form wx2 + 1 and only V1 or V2 can be of the form wx2 − 1.

We will use the Jacobi symbol throughout this study. Our method of proof is similar to
that used by Cohn, Ribenboim and McDaniel in [3] and [6,7], respectively.
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2. PRELIMINARIES

The following theorem is given in [8].

Theorem 2.1. Let n ∈ N ∪ {0} and m, r ∈ Z. Then

V2mn+r ≡ (−1)n
Vr (modVm) . (2.1)

If n = 2 · 2ka + r with a odd, then we get

Vn = V2·2ka+r ≡ −Vr(modV2k) (2.2)

by (2.1).
When P is odd, an induction method shows that

V2k ≡ 7(mod 8)

and thus
2

V2k


= 1 (2.3)

and


−1
V2k


= −1 (2.4)

for all k ≥ 1.
Moreover, if P is odd and 3 - P , then V2k ≡ −1(mod 3) and therefore

3
V2k


= 1 (2.5)

for all k ≥ 1.
If P is odd and 3|P , then V2k ≡ −1(mod 3) and therefore

3
V2k


= 1 (2.6)

for all k ≥ 2.
Thus (2.5) and (2.6) shows that


3

V2k


= 1 (2.7)

for all k ≥ 2.
When P is odd, we have

P − 1
V2k


=


P + 1
V2k


= 1 (2.8)

for k ≥ 1.
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If P is odd, then V2k ≡ −1(modP 2 − 3) and therefore
P 2 − 3

V2k


= 1 (2.9)

for all k ≥ 2.
When P is odd, we have

5
V2k


=


−1, if 5|P
1, if P 2 ≡ 1(mod 5)
−1, if P 2 ≡ −1(mod 5),

(2.10)

and 
7

V2k


=


−1, if P 2 ≡ 4(mod 7)
1, if P 2 ≡ 1(mod 7)

(2.11)

for all k ≥ 1.
Now we give some identities concerning the terms of the Lucas sequence:

V−n = Vn,

V2n = V 2
n − 2. (2.12)

When P 2 ≡ −1(mod 5), we have

Vn ≡


2(mod 5), if n is even,
P (mod 5), if n is odd.

(2.13)

When P 2 ≡ 4(mod 7), by using induction, it can be seen that

Vn ≡


2(mod 7), if n is even,
P (mod 7), if n is odd.

(2.14)

If P 2 ≡ 2(mod 7), then we have 7|V2 and V8q+r ≡ Vr (modV2) by (2.1). Therefore we get,

Vn ≡


0, ±2(mod 7), if n is even,
±P (mod 7), if n is odd.

(2.15)

The following lemma can be given from Theorem 2.1.

Lemma 1. If n is a positive integer, then V2n ≡ ±2(modP ) and P |Vn if n is odd.

3. MAIN THEOREMS

From now on, we will assume that n is a positive integer and P is an odd positive integer.

Theorem 3.1. Let w ∈ S = {2a13a25a37a4 : ai ∈ {0, 1} and a3 ≠ 0 or a4 ≠ 0}. If
Vn = wx2 + 1 for some positive integer x, then n = 1.

Proof. Assume that n is even. Then Vn = V2m = V 2
m − 2 by (2.12) and thus V 2

m − 2 =
wx2 + 1. Therefore V 2

m = 3 (mod w). If a3 ≠ 0 or a4 ≠ 0, then V 2
m = 3 (mod 5) or

V 2
m = 3 (mod 7), respectively. These are impossible. And so n is odd and therefore P |Vn
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by Lemma 1. Thus it can be seen that (w, P ) = 1. Let 3|w. Then 3 - P since (w, P ) = 1.

Therefore


3
V2k


= 1 by (2.5). If 3 - w, then a2 = 0 and we conclude that


3a2

V2k


= 1. (3.1)

Now we divide the proof into three cases.
Case 1: Assume that a3 ≠ 0 and a4 = 0. Then 5|w and thus 5 - P since (w, P ) = 1.

Moreover we have Vn ≡ 1(mod 5) in this case. If P 2 ≡ −1(mod 5), then Vn ≡
P ≡ ±2(mod 5) by (2.13), which is impossible since Vn ≡ 1(mod 5). Assume that
P 2 ≡ 1(mod 5) and n > 1. Then n = 4q ± 1 for some positive integer q > 0. Thus
n = 2 · 2ka ± 1 with a odd and k ≥ 1. Therefore,

wx2 = −1 + Vn ≡ −1 − V±1(modV2k)

by (2.2). This shows that

wx2 ≡ −(P + 1)(mod V2k),

which implies that
w

V2k


=


−1
V2k

 
P + 1
V2k


,

i.e. 
w

V2k


= −1

by (2.4) and (2.8). But


w
V2k


= 1 since


2a1

V2k


= 1,


5

V2k


= 1 and


3a2

V2k


= 1 by (2.3),

(2.10), and (3.1), respectively. This contradicts the fact that


w
V2k


= −1.

Case 2: Assume that a3 = 0 and a4 ≠ 0. Then 7|w and so Vn ≡ 1(mod 7). Moreover,
7 - P since (w, P ) = 1. If P 2 ≡ 2, 4(mod 7) then Vn ≡ ±P ≡ ±2, ±3(mod 7) by (2.14)
and (2.15), which is impossible since Vn ≡ 1(mod 7). Now assume that P 2 ≡ 1(mod 7) and
n > 1. Then n = 4q ± 1 for some q > 0. Thus n = 2 · 2ka ± 1 with a odd and k ≥ 1.
Therefore,

wx2 = −1 + Vn ≡ −1 − V±1(modV2k)

by (2.2). This shows that

wx2 ≡ −(P + 1)(mod V2k),

which implies that
w

V2k


=


−1
V2k

 
P + 1
V2k


.
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Therefore,
w

V2k


= −1

by (2.4) and (2.8). But


w
V2k


= 1 since


2a1

V2k


= 1,


7

V2k


= 1, and


3a2

V2k


= 1 by (2.3),

(2.11), and (3.1), respectively. This contradicts the fact that


w
V2k


= −1.

Case 3: Assume that a3 ≠ 0 and a4 ≠ 0. Then 5|w and 7|w and so Vn ≡ 1(mod 35).
Moreover, 5 - P and 7 - P since (w, P ) = 1. If P 2 ≡ 2, 4(mod 7), then Vn ≡ ±P ≡
±2, ±3(mod 7) by (2.14) and (2.15), respectively. This is impossible since Vn ≡ 1(mod 7).
If P 2 ≡ −1(mod 5), then Vn ≡ P ≡ ±2(mod 5) by (2.13), which is impossible since
Vn ≡ 1(mod 5). Therefore P 2 ≡ 1(mod 5) and P 2 ≡ 1(mod 7). Let n > 1. Then
n = 4q ± 1 for some positive integer q > 0. Thus n = 2 · 2ka ± 1 with a odd and k ≥ 1.
Therefore,

wx2 = −1 + Vn ≡ −1 − V±1(modV2k)

by (2.2). This shows that

wx2 ≡ −(P + 1)(mod V2k),

which implies
w

V2k


=


−1
V2k

 
P + 1
V2k


.

Then it follows that
w

V2k


= −1

by (2.4) and (2.8). But this is impossible since


2a1

V2k


= 1,


5

V2k


,


7
V2k


= 1, and


3a2

V2k


=

1 by (2.3), (2.10), (2.11), and (3.1), respectively. Therefore n = 1. �

Theorem 3.2. Let w ∈ S = {2a13a25a37a4 : ai ∈ {0, 1} and a3 ≠ 0 or a4 ≠ 0}. If
Vn = wx2 − 1 for some positive integer x, then n = 1 or n = 2.

Proof. If n = 4q for some q > 0. Then we get

wx2 − 1 = V4t = V 2
2t − 2 =


V 2

t − 2
2 − 2 = V 4

t − 4V 2
t + 2,

and then wx2 = V 4
t − 4V 2

t + 3. But the integer points on wX2 = Y 4 − 4Y 2 + 3 are easily
determined by using MAGMA [2] to be (X, Y ) = (0, ±1). This implies that Vt = 1, which
is impossible. Thus n ≠ 4q. Let n be odd and 3|w. Then 3 - P since P |Vn when n is odd by

Lemma 1. Therefore


3
V2k


= 1 by (2.5). If 3 - w, then a2 = 0 and we conclude that


3a2

V2k


= 1. (3.2)
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Now we divide the proof into three cases.
Case 1: Assume that a3 ≠ 0 and a4 = 0. Then 5|w and so Vn ≡ −1(mod 5). If 5|P ,

then Vn ≡ 0, ±2(mod 5) by Lemma 1, which is impossible since Vn ≡ −1(mod 5). If
P 2 ≡ −1(mod 5), then Vn ≡ 2, P ≡ ±2(mod 5) by (2.13), which is impossible since
Vn ≡ −1(mod 5). Assume that P 2 ≡ 1(mod 5). Let n > 1 be odd. Then P |Vn by Lemma 1.
Thus it can be seen that (w, P ) = 1. Since n is odd, n = 4q ± 1 for some positive integer q.
Thus n = 2 · 2ka ± 1 with a odd and k ≥ 1. Therefore,

wx2 = 1 + Vn ≡ 1 − V±1(modV2k)

by (2.2). This shows that

wx2 ≡ −(P − 1)(modV2k),

which implies
w

V2k


=


−1
V2k

 
P − 1
V2k


,

i.e. 
w

V2k


= −1

by (2.4) and (2.8). This is impossible since


2a1

V2k


= 1,


3a2

V2k


= 1, and


5

V2k


= 1 by (2.3),

(3.2), and (2.10), respectively. Now, let n > 2 be even. Then n = 4q or n = 8q ± 2 for some
q > 0. But n ≠ 4q, which was shown at the beginning of the proof. Then n = 8q ± 2. And
so n = 2 · 2ka ± 2 with a odd and k ≥ 2. Then,

wx2 = 1 + Vn ≡ 1 − V±2(modV2k)

by (2.2). This shows that

wx2 ≡ −(P 2 − 3)(modV2k),

which implies
w

V2k


=


−1
V2k

 
P 2 − 3

V2k


,

i.e., 
w

V2k


= −1

by (2.4) and (2.9). This is impossible since


2a1

V2k


= 1,


5

V2k


= 1, and


3a2

V2k


= 1 by (2.3),

(2.10), and (2.7), respectively.
Case 2: Assume that a3 = 0 and a4 ≠ 0. Then 7|w and so Vn ≡ −1(mod 7). If 7|P ,

then Vn ≡ 0, ±2(modP ), i.e., Vn ≡ 0, ±2(mod 7) by Lemma 1, which is impossible
since Vn ≡ −1(mod 7). Therefore 7 - P . If P 2 ≡ 2, 4(mod 7), then Vn ≡ 0, ±P, ±2
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≡ 0, ±2, ±3(mod 7) by (2.14) and (2.15), which is impossible since Vn ≡ −1(mod 7). Now
assume that P 2 ≡ 1(mod 7). Let n > 1 be odd. Then n = 4q ± 1 for some q > 0. Thus
n = 2 · 2ka ± 1 with a odd and k ≥ 1. Therefore,

wx2 = 1 + Vn ≡ 1 − V±1(modV2k)

by (2.2). This shows that

wx2 ≡ −(P − 1)(modV2k),

which implies
w

V2k


=


−1
V2k

 
P − 1
V2k


,

i.e., 
w

V2k


= −1,

by (2.4) and (2.8). This is impossible since


2a1

V2k


= 1,


3a2

V2k


= 1, and


7

V2k


= 1 by (2.3),

(3.2), and (2.11), respectively. Now let n > 2 be even. Then n = 8q ± 2 for some q > 0 since
n ≠ 4q. Thus n = 2 · 2ka ± 2 with a odd and k ≥ 2. Then,

wx2 = 1 + Vn ≡ 1 − V±2(modV2k)

by (2.2). This shows that

wx2 ≡ −(P 2 − 3)(modV2k),

which implies that
w

V2k


=


−1
V2k

 
P 2 − 3

V2k


,

i.e., 
w

V2k


= −1

by (2.9) and (2.4). This is impossible since


2a1

V2k


= 1,


7

V2k


= 1, and


3a2

V2k


= 1 by (2.3),

(2.11), and (2.7), respectively.
Case 3: Assume that a3 ≠ 0 and a4 ≠ 0. Then 5|w and 7|w and so Vn ≡ −1(mod 35).

Since Vn ≡ 0, ±2(mod P ) by Lemma 1, it follows that 5 - P and 7 - P . If P 2 ≡
2, 4(mod 7), then Vn ≡ 0, ±P, ±2 ≡ 0, ±2, ±3(mod 7) by (2.14) and (2.15), which is
impossible since Vn ≡ −1(mod 7). If P 2 ≡ −1(mod 5), then Vn ≡ 2, P ≡ ±2(mod 5)
by (2.13), which is impossible since Vn ≡ −1(mod 5). Therefore P 2 ≡ 1(mod 5) and
P 2 ≡ 1(mod 7). Let n be odd and n > 1. Then n = 4q ± 1 for some q > 0. Thus
n = 2 · 2ka ± 1 with a odd and k ≥ 1. Therefore,

wx2 = 1 + Vn ≡ 1 − V±1(modV2k)
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by (2.2). This shows that

wx2 ≡ −(P − 1)(modV2k),

which implies
w

V2k


=


−1
V2k

 
P − 1
V2k


.

Then we get
w

V2k


= −1

by (2.4) and (2.8), which is impossible since


2a1

V2k


= 1,


3a2

V2k


= 1,


5

V2k


= 1 and

7
V2k


= 1 by (2.3), (3.2), (2.10), and (2.11), respectively. Now let n > 2 be even. Thus

n = 8q ± 2 for some q > 0. And so n = 2 · 2ka ± 2 with a odd and k ≥ 2. Therefore,

wx2 = 1 + Vn ≡ 1 − V±2(modV2k)

by (2.2). This shows that

wx2 ≡ −(P 2 − 3)(modV2k),

which implies that
w

V2k


=


−1
V2k

 
P 2 − 3

V2k


,

i.e., 
w

V2k


= −1,

by (2.4) and (2.9). This is impossible since


2a1

V2k


= 1,


7

V2k


= 1,


5

V2k


= 1 and

3a2

V2k


= 1 by (2.3), (2.11), (2.10), and (2.7), respectively. Consequently, we have n = 1 or

n = 2. �
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