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Abstract. In this paper, we define and study subspace-diskcyclic operators. We show
that subspace-diskcyclicity does not imply diskcyclicity. We establish a subspace-diskcyclic
criterion and use it to find a subspace-diskcyclic operator that is not subspace-hypercyclic for
any subspaces. Also, we show that the inverses of invertible subspace-diskcyclic operators
do not need to be subspace-diskcyclic for any subspaces. Finally, we prove that every finite-
dimensional Banach space over the complex field supports a subspace-diskcyclic operator.
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1. INTRODUCTION

A bounded linear operator T on a separable Banach space X is hypercyclic if there is a
vector x ∈ X such that its orbit Orb(T, x) = {Tnx : n ≥ 0} is dense in X ; such a vector x is
called hypercyclic for T . The first example of a hypercyclic operator on a Banach space was
constructed by Rolewicz in 1969 [11]. He showed that if B is the backward shift on ℓp(N)
then λB is hypercyclic if and only if |λ| > 1.

The study of the scaled orbit and disk orbit is motivated by the Rolewicz example [11].
In 1974, Hilden and Wallen [7] defined the notion of supercyclicity. An operator T is called
supercyclic if there is a vector x such that its scaled orbit COrb(T, x) is dense in X . The
notion of a diskcyclic operator was introduced by Zeana [13]. An operator T is called
diskcyclic if there is a vector x ∈ X such that its disk orbit DOrb(T, x) is dense in X ;
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such a vector x is called diskcyclic for T . For more information about these operators, the
reader may refer to [2,4,5].

In 2011, Madore and Martı́nez-Avendaño [9] considered the density of the orbit in a
non-trivial subspace instead of the whole space, this phenomenon is called the subspace-
hypercyclicity. An operator is called M-hypercyclic or subspace-hypercyclic for a subspace
M of X if there exists a vector such that the intersection of its orbit and M is dense in M.
They proved that subspace-hypercyclicity is an infinite dimensional phenomenon. Also, they
asked whether the inverse of an invertible subspace-hypercyclic operator is again subspace-
hypercyclic. This problem is still open. For more information on subspace-hypercyclicity,
one may refer to [1,8,10].

In 2012, Xian-Feng et al. [12] defined the subspace-supercyclic operator as follows: An
operator is called M-supercyclic or subspace-supercyclic for a subspace M of X if there
exists a vector such that the intersection of its scaled orbit and M is dense in M.

Since both subspace-hypercyclicity and subspace-supercyclicity were studied, it is natural
to define and study subspace-diskcyclicity. In the second section of this paper, we introduce
the concept of subspace-diskcyclicity and subspace-disk transitivity. We show that not every
subspace-diskcyclic operator is diskcyclic. We give the relation between different kinds of
subspace-cyclicity. In particular, we give a set of sufficient conditions for an operator to be
subspace-diskcyclic. We use these conditions to give an example of a subspace-diskcyclic
operator which is not subspace-hypercyclic. Also, we give an example of a subspace-
supercyclic operator that is not subspace-diskcyclic. Moreover, we give a simple example to
show that the inverses of subspace-diskcyclic operators do not need to be subspace-diskcyclic
which answers the corresponding question in [12, Question 1] for subspace-diskcyclicity.
As a consequence, we show that every finite dimensional Banach space supports subspace-
diskcyclic operators, which is not true for subspace-hypercyclicity.

2. MAIN RESULTS

In this paper, all Banach spaces X are infinite dimensional (unless stated otherwise) and
separable over the field C of complex numbers. All subspaces of X are assumed to be non-
trivial linear subspaces and topologically closed, and all relatively open sets are assumed to
be non-empty. We will denote the closed unit disk by D, the open unit disk by U and the set
of all bounded linear operators on X by B(X ).

Definition 2.1. Let T ∈ B(X ), and let M be a subspace of X . Then T is called a subspace-
diskcyclic operator for M (or M-diskcyclic, for short) if there exists a vector x such
that DOrb(T, x) ∩ M is dense in M; such a vector x is called a subspace-diskcyclic (or
M-diskcyclic, for short) vector for T .

Let DC(T, M) be the set of all M-diskcyclic vectors for T , that is

DC(T, M) = {x ∈ X : DOrb(T, x) ∩ M is dense in M}.

Let DC(M, X ) be the set of all M-diskcyclic operators on X , that is

DC(M, X ) = {T ∈ B(X ) : DOrb(T, x) ∩ M is dense in M for some x ∈ X }.

The next example shows that subspace-diskcyclicity does not imply diskcyclicity.
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Example 2.2. Suppose that T is a diskcyclic operator on X , and x is a diskcyclic vector for
T . Suppose that N = X ⊕ {0}, and I is the identity operator on C2. Then, the operator
S = T ⊕ I ∈ B(X ⊕ C2) is not diskcyclic on X ⊕ X ; otherwise, we get I is a diskcyclic
operator on C2 (see [4, Proposition 2.2]) which contradicts [4, Proposition 2.1]. However, it
is clear that S is N -diskcyclic, and (x, 0) is an N -diskcyclic vector for S.

From Example 2.2 above, it is clear that [4, Proposition 2.2] cannot be extended to subspace-
diskcyclic operators, since I cannot be subspace-diskcyclic for any non-trivial subspace.

Definition 2.3. Let T ∈ B(X ) and M be a subspace of X . Then T is called subspace-disk
transitive for M (or M-disk transitive, for short) if for any two relatively open sets U and
V in M, there exist n ∈ N and α ∈ Uc such that T −n(αU) ∩ V contains a relatively open
subset G of M.

The next lemma gives some equivalent assertions to subspace-disk transitivity, which will be
the tool to prove several facts in this paper.

Lemma 2.4. Let T ∈ B(X ) and M be a subspace of X . Then the following assertions are
equivalent:
1. T is M-disk transitive,
2. For any two relatively open sets U and V in M, there exist α ∈ Uc and n ∈ N such that

T −n(αU) ∩ V is non-empty and Tn(M) ⊂ M.
3. For any two relatively open sets U and V in M, there exist α ∈ Uc and n ∈ N such that

T −n(αU) ∩ V is non-empty and relatively open in M.

Proof. (1) ⇒ (2): Let U and V be two relatively open sets in M. By condition (1), there exist
α ∈ Uc, n ∈ N and a relatively open set G in M such that G ⊂ T −n(αU) ∩ V . It follows
that

T −n(αU) ∩ V is non-empty. (1)

Since G ⊂ T −n(αU) it follows that 1
αTnG ⊂ U ⊂ M. Let x ∈ M and x0 ∈ G. Then,

there exists r ∈ N such that (x0 + rx) ∈ G. Then, we get

1
α

Tnx0 +
1
α

Tnrx =
1
α

Tn(x0 + rx) ∈ 1
α

TnG ⊂ M.

Since x0 ∈ G then 1
αTnx0 ∈ 1

αTnG ⊂ M, it follows that r
αTnx ∈ M and so

Tnx ∈ M. (2)

The proof follows from (1) and (2).
(2) ⇒ (3): Since Tn|M ∈ B(M), then T −n(αU) is relatively open in M for any relatively
open set U in M. It follows that T −n(αU) ∩ V is also relatively open in M.
(3) ⇒ (1) is trivial. �

The next theorem shows that every subspace-disk transitive operator is subspace-diskcyclic
for the same subspace. First, we need the following lemma.

We will suppose that {Bk : k ∈ N} is a countable open basis for the relative topology of
a subspace M.
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Lemma 2.5. Let T be an M-diskcyclic operator. Then

DC(T, M) =

k∈N

 
α∈Uc

n∈N

T −n(αBk)).

Proof. We have x ∈ DC(T, M) if and only if {αTnx : n ∈ N, α ∈ D\ {0}} ∩ M is dense
in M if and only if for each k > 0, there are α ∈ D\ {0} and n ∈ N such that αTnx ∈ Bk

if and only if x ∈


k∈N


α∈Uc

n∈N
T −n(αBk)). �

Theorem 2.6. Let T ∈ B(X ) and M be a subspace of X . Suppose that T is M-disk
transitive, then


k


α∈Uc

n∈N
T −n(αBk)) is dense in M.

Proof. Since T is M-disk transitive, then by Lemma 2.4, for each i, j ∈ N, there exist
ni,j ∈ N and αi,j ∈ Uc such that

T −ni,j (αi,jBi) ∩ Bj

is non-empty relatively open in M. Suppose that

Ai =
∞

j=1


T −ni,j (αi,jBi) ∩ Bj


for all i ∈ N. Then Ai is non-empty and relatively open in M since it is a countable union
of relatively open sets in M. Furthermore, each Ai is dense in M since it intersects each Bj .
By the Baire category theorem, we get

∞
i=1

Ai =
∞

i=1

∞
j=1


T −ni,j (αi,jBi) ∩ Bj


is a dense set in M. Clearly,

i∈N


j∈N

T −ni,j (αi,jBi) ∩ Bj ⊂

i


α∈Uc

n∈N

T −n(αBi) ∩ M.

It follows that


i∈N


α∈Uc

n∈N
T −n(αBi) ∩ M is dense in M. The proof is completed. �

Corollary 2.7. If T is an M-disk transitive operator, then T is M-diskcyclic.

Proof. The proof follows from Lemma 2.5 and Theorem 2.6. �

It is clear from Definition 2.1, that every M-hypercyclic operator is M-diskcyclic which in
turn is M-supercyclic. On the other hand, the following two examples show that the reversed
directions are not true in general. First we need the following lemmas.

Lemma 2.8. Let T ∈ B(X ) and M be a subspace of X . Suppose that {nk }k∈N is an
increasing sequence of positive integers, {λnk

}k∈N ⊂ D\ {0} and D1, D2 ∈ M are two
dense sets in M such that
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(a) For every y ∈ D2, there is a sequence {xk }k∈N in M such that
λ−1

nk
xk

 → 0 and
Tnkxk → y as k → ∞,

(b) ∥λnk
Tnkx∥ → 0 for all x ∈ D1 as k → ∞,

(c) Tnk M ⊆ M for all k ∈ N.

Then T is M-diskcyclic.

Proof. Let U1 and U2 be two relatively open sets in M. Then we can find x ∈ D1 ∩ U1 and
y ∈ D2 ∩ U2. By hypothesis, there exist a sufficiently small positive ϵ and a large positive
integer J , such that

∥λnJ
TnJ x∥ <

ϵ

2
,

λ−1
nJ

xJ

 < ϵ and ∥TnJ xJ − y∥ <
ϵ

2
.

Let z = x+λ−1
nJ

xJ , then z ∈ M. Since ∥z − x∥ =
λ−1

nJ
xJ

 < ϵ, then z ∈ U1. By condition
(c), λnJ

TnJ z ∈ M. Now, since λnJ
TnJ z = λnJ

TnJ x + TnJ xJ , then

∥λnJ
TnJ z − y∥ = ∥λnJ

TnJ x + TnJ xJ − y∥ ≤ ∥λnJ
TnJ x∥ + ∥TnJ xJ − y∥ < ϵ.

Thus λnJ
TnJ z ∈ U2. By Lemma 2.4 and Corollary 2.7, T is M-diskcyclic. �

Lemma 2.9 (M-Diskcyclic Criterion). Let T ∈ B(X ) and M be a subspace of X . Suppose
that {nk }k∈N is an increasing sequence of positive integers and D1, D2 ∈ M are two dense
sets in M such that

(a) For every y ∈ D2, there is a sequence {xk }k∈N in M such that ∥xk ∥ → 0 and
Tnkxk → y as k → ∞,

(b) ∥Tnkx∥ ∥xk ∥ → 0 for all x ∈ D1 as k → ∞,
(c) Tnk M ⊆ M for all k ∈ N.

Then T is M-diskcyclic.

Proof. We verify the hypotheses of Lemma 2.8. Let {ϵk }k∈N be a sequence of positive
numbers decreasing to 0, and let {zn}n∈N ⊂ D1 and {yn}n∈N ⊂ D2 be two countable dense

subsets in M. By hypothesis, for each j = 1, . . . , k, there exists a sequence


x
(j)
k


k∈N

in

M such that
x(j)

k

 < ϵk, Tnkx
(j)
k → yj and

∥Tnkzi∥
x(j)

k

 < ϵ2k (3)

for all i = 1, . . . , k. Suppose that for each k ≥ 1,

λnk
=

1
ϵk

max
1≤j≤k

x(j)
k

 .

It follows that λnk
∈ D\ {0} for all k ≥ 1, and

1
λnk

x(j)
k

 ≤ 1
λnk

max
1≤j≤k

x(j)
k

 = ϵk for all j ≤ k. (4)
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By (3), we get

λnk
∥Tnkzi∥ =

1
ϵk

max
1≤j≤k

x(j)
k

 ∥Tnkzi∥ < ϵk for all i ≤ k. (5)

As k → ∞, the proof follows from (4) and (5) and from density of {zn} and {yn} in D1 and
D2, respectively. �

The next example shows that M-diskcyclicity does not imply M-hypercyclicity. First, we
need the following lemma.

Lemma 2.10. Let T be an invertible bilateral weighted shift on ℓp(Z) and {nk }k∈N be
an increasing sequence of positive integers. Suppose that M is a subspace of ℓp(Z) with
the canonical basis {emi } such that Tnk M ⊆ M. If there exists an i ∈ N such that
Tnkemi → 0, then Tnkemr → 0 for all r ∈ N.

Proof. Since Tnk M ⊆ M, the proof is similar to the proof of [6, Lemma 3.1]. �

Example 2.11. Let F : ℓp(Z) → ℓp(Z) be a bilateral weighted forward shift operator,
defined by F (en) = wnen+1 for all n ∈ Z, where

wn =


3 if n ≥ 0,

4 if n < 0.

Let M be the subspace of ℓp(Z) defined as follows:

M =


{an}∞
n=−∞ ∈ ℓp(Z) : a2n = 0


,

then F is an M-diskcyclic operator, not M-hypercyclic.

Proof. We will apply the M-diskcyclic criterion to give the proof. Let D be a dense subset
of M, consisting of all sequences with finite support. Let nk = 2k for all k ∈ N. It is clear
that the set C = {em : m ∈ O} is the canonical basis for M, where O is the set of all odd
integer numbers. Let x, y ∈ D, then x =


i∈O xiei and y =


i∈O yiei, where xi, yi ∈ C

for all i ∈ O.
Let B be a bilateral weighted backward shift on ℓp(Z) defined by Ben = znen−1, n ∈ Z,

where

zn =


1
3

if n > 0,

1
4

if n ≤ 0.

Suppose that xk = B2ky for all k ∈ N. Since |wn| ≥ 4 and |zn| ≥ 1/4 for all n ∈ Z,
then F and B are invertible with F −1 = B. Since B and F are linear and invertible, then
it is sufficient by the triangle inequality, Lemma 2.10 and [3, Lemma 3.4] to assume that
x = y = e1. Since

B2ke1 =


1−2k
j=0

zj


e1−2k,
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then
B2ke1

 = 1
42k → 0 as k → ∞. Hence

∥xk ∥ → 0 as k → ∞. (6)

It is easy to show that for a large enough k,

F 2kxk = y. (7)

It follows from (6) and (7) that the condition (a) in Lemma 2.9 holds.
Moreover, we have

F 2ke1

B2ke1

 =


2k

j=1

wj




1−2k
j=0

zj

 =


3
4

2k

→ 0,

as k → ∞. Hence the condition (b) in Lemma 2.9 holds. It can be easily deduced from the
definition of M that for each x ∈ M and each k ∈ N, the sequence F 2kx will have a zero
entry on all even positions, that is

F 2kx ∈ M.

It follows that the condition (c) in Lemma 2.9 holds. Thus F is an M-diskcyclic operator.
Note that the operator F is clearly not M-hypercyclic since

∥Fnkei∥ =


i+nk −1

j=i

wj

 → ∞

for any increasing sequence {nk }k∈N of positive integers, and any i ∈ Z, that is, its orbit
cannot be dense in any subspace. �

The next simple example shows that M-supercyclicity does not imply M-diskcyclicity.

Example 2.12. Let I be the identity operator on the space Ck for some k ≥ 2, and let M
be a one dimensional subspace of Ck. Then it is clear that COrb(I, x) ∩ M is dense in M
for some non-zero vector x ∈ Ck, that is, I is M-supercyclic. However, DOrb(I, x) ∩ M
cannot be dense in M for any x ∈ Ck, that is, I is not M-diskcyclic.

The following example gives several useful consequences, some of them answering the
corresponding questions in [12, Question 3.3], [9, Question 1] and [10, Question 1] for
subspace-diskcyclicity.

Example 2.13. Let T = kx ∈ B(Cn), k ∈ Dc, n ≥ 2. Let M = {y : y = (a, 0,
0, . . . , 0), y ∈ Cn} be a one dimensional subspace of Cn. Then

1. T and T ∗ are M-diskcyclic operators,
2. T −1 is not a subspace-diskcyclic operator for any subspace,
3. There is some vector x ∈ Cn such that DOrb(T −1, x) is somewhere dense in M, but not

everywhere dense in M.
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Proof. For (1), let x = (1, 0, 0, . . . , 0), then

DOrb(T, x) ∩ M = {(αkn, 0, 0, . . . , 0) : α ∈ D, n ≥ 0} .

Let z = (b, 0, 0, . . . , 0) ∈ M, and let us choose an m ∈ N such that |km| ≥ |b|. Then
it is clear that z =


km


b
km


, 0, 0, . . . , 0


∈ DOrb(T, x) ∩ M. It follows that T is an

M-diskcyclic operator. By the same way, we can show that T ∗ = k̄x is M-diskcyclic.
For (2), since T −1x = 1

kx then DOrb(T −1, x) is bounded for all x ∈ Cn, and hence T −1

cannot be dense in any proper subspace of Cn. Thus, T −1 is not M-diskcyclic.

For (3), let x = (1, 0, 0, . . . , 0), then

DOrb(T −1, x) ∩ M

◦
= {(y, 0, 0, . . . , 0) : y ∈

C, |y| < 1} ≠ φ. Therefore, DOrb(T −1, x) is somewhere dense in M. However, by part (2),
DOrb(T −1, x) is not everywhere dense in M. �

It follows from the above example that compact and hyponormal subspace-diskcyclic
operators exist on C.

Since every two n-dimensional Banach spaces over the complex scalar field are isomor-
phic, then from Example 2.13 above, one may easily conclude the following proposition.

Proposition 2.14. There are subspace-diskcyclic operators on every finite dimensional
Banach space over the scalar field C.
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