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Abstract In this paper we study the general non-homogeneous Backward Cau-

chy problem
ut þ Au ¼ f; 0 < t < T;
uðTÞ ¼ g;

�
for positive selfadjoint unbounded oper-

ator A on the Hilbert space H. The problem is known to be severely ill-posed.

We give extensions of the quasi-boundary methods to the non-homogeneous

case. We prove several sharp results on regularizations and error-estimates.

Other results, including some explicit convergence rates are proved. Finally

applications to the non-homogeneous backward heat equation with Bessel oper-

ator are given.
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1. Introduction

Motivated by many physical problems, e.g., inverse problems of heat equations,
backward Cauchy problems have received much attention since 1960s (see
[7,8,10,11,14,19]). Since this type of problems are not stable, an usual method to
deal with such problems is to find corresponding well-posed problems such that
their solutions can approximate the solutions of corresponding ill-posed problems.
In this context, many approaches have been tried. The method of quasi-values of
Ivanov [9], the method of regularization of Tikhonov [19], the method of quasi-
reversibility of Lattes and Lions [10], the Gajewski and Zacharia’s method based
on eigenfunction expansion [6], the method of auxiliary boundary conditions
[9,14], the quasi-boundary value method [2,5,18], the method of reduction to a
Dirichlet problem called Carasso’s method [3,4] and the C-regularized semigroups
method [14].

In this paper we consider the following non-homogeneous backward Cauchy
problem
ut þ Au ¼ f; 0 < t < T;

uðTÞ ¼ g;

�
ðBCPÞ
where A is an unbounded positive selfadjoint operator on the Hilbert space H,
admitting an orthonormal basis of eigenfunctions fukgk2N� in H, corresponding
respectively to the positive unbounded increasing sequence of eigenvalues
fkkgk2N� : The given data g is in H and the element f belongs to the space
L2ðð0;TÞ;HÞ. The (BCP) problem is known to be severely ill-posed, solutions
do not always exist, they depend on strong conditions of convergence. We shall
see below that these conditions may not be satisfied. Even in this restricted class
of conditions, the solutions obtained do not depend continuously upon the given
data and the (BCP) problem remains highly intable.

We note that this type of problems has been considered by many authors, using
different approaches. Such authors as Lattes and Lions [10], Miller [15] and Show-
alter [17] have approximated the homogeneous (BCP) by perturbing the operator
A. In their work Clark and Oppenheimer [2], Denche and Bessila [5] followed what
Showalter [18] did in a more general context, and approximate the homogeneous
(BCP) by perturbing the final value condition; they approximate the homogeneous
(BCP) problem respectively with
ut þ Au ¼ 0; 0 < t < T;

uðTÞ þ auð0Þ ¼ g;

�

and
ut þ Au ¼ 0; 0 < t < T;

uðTÞ � au0ð0Þ ¼ g:

�
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This method is called quasi-boundary value method. A similar approach known as
the method of auxiliary boundary conditions was given in [9,14].

Through many studies around the backward Cauchy problem, the general set-
ting of the non-homogeneous case is scarcely considered. The general case where A
is the infinitesimal generator of a holomorphic semigroup is studied in [1] where
the approximate problem is given by
ut þ hðAÞu ¼ f; 0 < t < T;

uðTÞ ¼ g;

�

for a suitable function h. The particular case when A is generated by a second or-
der differential operator with periodic boundary conditions, was recently treated
by Trong and Tuan in [20]. This paper is generalized to the non linear cases in
[21]. The same non linear case was recently treated by a truncation method in [16].

In the present paper, we shall regularize the non-homogeneous backward Cau-
chy problem by the sequence of problems:
ut þ Au ¼ fa; 0 < t < T;

uðTÞ ¼ ga;

�
ðABCPÞ
where
fa ¼
P
kP1

e�kkT

akp
k þ e�kkT

fkuk and ga ¼
P
kP1

e�kkT

akp
k þ e�kkT

gkuk; 0 < a < 1:
We construct a regularized solution and give error estimates. We obtain several
other results, including some explicit convergence rates. Finally applications to
the non-homogeneous backward heat equation with Bessel operator are given.

For the homogeneous case where f= 0 and p = 1, this method coincides with
the modified quasi-boundary value method proposed in [5]. In the particular case
of an operator A generated by a second order differential operator with periodic
boundary conditions, and p = 1, we obtain the method used in [20].

2. The approximated problem

We approximate the above (BCP) problem by the following sequence of problems:
ut þ Au ¼ fa; 0 < t < T;

uðTÞ ¼ ga;

�
ðABCPÞ
where we define for any 0 < a < 1:
fa ¼
P
kP1

e�kkT

akp
k þ e�kkT

fkuk and ga ¼
P
kP1

e�kkT

akp
k þ e�kkT

gkuk:
The families ffkgk2N� and fgkgk2N� are the sequences of generalized Fourier–Bessel
coefficients of f and g in H. The power p 2 Rþ is an arbitrary real number.
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Definition 1. A solution of the (BCP) problem in the classical sense is a function
u : ½0;T� ! H, such that uðtÞ 2 DðAÞ, for any t 2 ð0;TÞ; u 2 C1ðð0;TÞ;HÞ and
satisfies the equation and the final value condition.

Lemma 1. For g 2 H and f 2 L2ðð0;TÞ;HÞ, the (BCP) problem admits a solution
in the classical sense if and only f:
P
kP1

gke
kkT �

Z T

0

ekksfkðsÞds
� �2

< þ1: ð1Þ
Proof. Assume that the (BCP) problem admits a solution in the classical sense.
This implies:
uðtÞ ¼
P
kP1

ukðtÞuk; uðtÞ 2 D Að Þ; for any t 2 0;Tð Þ and u 2 C1 0;Tð Þ;Hð Þ:
From the equation and the final value condition in the (BCP) problem, we deduce
that
uðtÞ ¼
P
kP1

gke
kkðT�tÞ �

Z T

t

ekkðs�tÞfkðsÞds
� �

uk; ð2Þ
where fk and gk are the generalized Fourier–Bessel coefficients of f and g in H:
Since uðtÞ 2 H for all t 2 [0,T], therefore:
kuðtÞk2 ¼
P
kP1

gke
kkðT�tÞ �

Z T

t

ekkðs�tÞfkðsÞds
� �2

< þ1;
in particular for t = 0, we get
kuð0Þk2 ¼
P
kP1

gke
kkT �

Z T

t

ekksfkðsÞds
� �2

< þ1:
Conversely assume that the condition (1) is satisfied. Then we define the function
u(t) by the expression in (2); using a Cauchy–Schwarz and elementary inequalities,
we get
kuðtÞk2 6 2
P
kP1

gke
kkT �

Z T

0

ekksfkðsÞds
� �2

þ 2Tkfk2L2ðð0;TÞ;HÞ:
Similarly, we have for Au(t)
kAuðtÞk2 ¼
P
kP1

k2
ke
�2kkt gke

kkT �
Z T

t

ekksfkðsÞds
� �2

;

whereupon
kAuðtÞk2 6 2
P
kP1

gke
kkT �

Z T

0

ekksfkðsÞds
� �2

þ 2Tkfk2L2ðð0;TÞ;HÞ;
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therefore, uðtÞ 2 DðAÞ, for any t 2 (0,T). In a similar manner, since we have:
u0ðtÞ ¼
P
kP1

fkðtÞ � kke
�kktðgkekkT �

Z T

t

ekksfkðsÞdsÞ
� �

uk;
we verify that u 2 C1ðð0;TÞ;HÞ. Finally, we check directly that u(t)verifies well the
(BCP) problem and the proof is complete. h
3. Convergence rates and error-estimates

In this section, we establish several results related to stability and error-estimates.

Theorem 1. If g 2 H and f 2 L2ðð0;TÞ;HÞ, the approximate non-homogeneous
backward problem (ABCP) admits a unique classical solution ua(t), which depends
continuously upon the data g 2 H and f 2 L2ðð0;TÞ;HÞ. Moreover, we have for any
t 2 [0,T], any p 2 R�þ
kuaðtÞkH 6
1

a
T

log T
pa

 !p

ðkgkH þ
ffiffiffiffi
T
p
kfkL2ðð0;TÞ;HÞÞ: ð3Þ
Proof. For the approximate problem (ABCP), if g 2 H and f 2 L2ðð0;TÞ;HÞ, a
unique solution exists and is given by
uaðtÞ ¼
P
kP1

e�kkt

akp
k þ e�kkT

gk �
Z T

t

ekkðs�TÞfkðsÞds
� �

uk; ð4Þ
we have
kuaðtÞk 6
P
kP1

e�kkt

akp
k þ e�kkT

gkuk

����
����

þ
P
kP1

e�kkt

akp
k þ e�kkT

Z T

t

ekkðs�TÞfkðsÞdsuk

����
����: ð5Þ
If we consider the function
hðkÞ ¼ 1

akp þ e�kT
;

then hðk0Þ ¼ supkP0hðkÞ exists, the extremum k0 is the root of the equation
log
T

pa
¼ kT 1þ p� 1

T

log k
k

� �
:

For a small enough, we may take k0 approximately 1
T
log T

pa; in this case !

hðk0Þ ¼

1

akp
0 1þ p

Tk0

	 
 6 1

a
T

log T
pa

p

;
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therefore, substituting in the inequality (5) and using the Cauchy–Schwarz
inequality, we obtain for any p 2 Rþ:
kuaðtÞk 6
1

a
T

log T
pa

 !p

ðkgkH þ
ffiffiffiffi
T
p
kfkL2ðð0;TÞ;HÞÞ:
In particular we deduce that uaðtÞ 2 H, for any t 2 [0,T]. In an analogous manner
to the proof of Lemma 1, we show that uaðtÞ 2 DðAÞ, for any t 2 (0,T) and
ua 2 C1ðð0;TÞ;HÞ, this completes the proof. h

With respect to the given data g in H, stability may be written precisely in the
following corollary as:

Corollary 1. If g1 and g2 are given data in H corresponding respectively to the
solutions u1a(t) and u2a(t) then
ku1aðtÞ � u2aðtÞk 6
1

a
T

log T
pa

 !p

kg1 � g2k; for any p 2 R�þ:
Proof. Using the corresponding solutions ua(t) given by (4), and the supremum
estimate in Theorem 1, we get
ku1aðtÞ � u2aðtÞk2 ¼
X

kP1

e�2kkt

ðakp
k þ e�kkTÞ2

ðg1k � g2kÞ
2

6
1

a2

T

log T
pa

 !2p

kg1 � g2k
2
: �
Remark 1. In the backward Cauchy problem (BCP), according to Theorem 1 if we
choose f = 0 we obtain extensions of the quasi-boundary method in [2,5] with bet-

ter norm estimate and stability of order 1
a

T
logT

pa

	 
p
; p 2 R�þ. The papers [2,5] treat

respectively p = 0 and p = 1. For the particular p = 0, Theorem 1 remains valid,
this extends again [2] to the non-homogeneous case in which estimate (3) becomes:
kuaðtÞk 6
1

a
ðkgkH þ

ffiffiffiffi
T
p
kfkL2ðð0;TÞ;HÞÞ:
In the next theorem, we show that, with respect to the variable t 2 [0,T] the pre-
vious uniform norm estimate may be improved.

Theorem 2. Let g 2 H and f 2 L2ðð0;TÞ;HÞ, then for any p 2 R�þ; 0 < a < 1 and
t 2 [0,T], we have



On regularization and error estimates for non-homogeneous backward Cauchy problem 155
kuaðtÞk 6
1

a1� t
T

T

log T
pa

 !p 1� t
Tð Þ
ðkgkH þ

ffiffiffiffiffiffiffiffiffiffiffi
T� t
p

kfkL2ðð0;TÞ;HÞÞ:
Proof. Using
e�2kkt

akp
k þ e�kkTð Þ2

¼ e�2kkt

akp
k þ e�kkTð Þ

t
T akp

k þ e�kkTð Þ1�
t
T

h i2 6 1

akp
k þ e�kkTð Þ2 1� t

Tð Þ ;
and the supremum estimate as in Theorem 1, we get
P
kP1

e�kkt

akp
k þ e�kkT

gkuk

����
���� 6 1

a1� t
T

T

log T
na

� �n 1� t
Tð Þ
kgkH:
In a similar manner we obtain
P
kP1

e�kkt

akp
k þ e�kkT

Z T

t

ekkðs�TÞfkðsÞdsuk

����
���� 6 1

a 1� t
Tð Þ

T

log T
pa

 !p 1� t
Tð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT� tÞ

p
kfkL2ðð0;TÞ;HÞ;
going back to inequality (5) we get the desired result. h

Theorem 3. For any g 2 H, the sequence ua(T) converges to g in H as a tends to
zero.

Proof. For all 0 < a < 1 and p 2 R�þ, from (4) we have
kuaðTÞ � gk2 ¼
P
kP1

akp
k

akp
k þ e�kkT

� �2
g2k;
then, for �> 0, we choose N 2 N such that
P

kPNþ1g
2
k 6

�
2
, hence
kuaðTÞ � gk2 ¼
PN
k¼1

akp
k

akp
k þ e�kkT

� �2
g2k þ

P
kPNþ1

akp
k

akp
k þ e�kkT

� �2
g2k;
this implies
kuaðTÞ � gk2 6 a2
XN

k¼1
k2p
k e

2kkTg2k þ
�

2
;

therefore for the choice of a <
ffiffi
�
2

p PN
k¼1k

2p
k e

2kkTg2k
� ��1

2, we obtain
kuaðTÞ � gk2 6 �;

and the proof is complete. h
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Theorem 4. If there exists e 2 (0,2) such that the series
P

kP1k
�p
k e

�kkTg2k is conver-

gent for p 2 R�þ , then iua(T) � giconverges to zero with order ��1a
�
2.

Proof. From (4) we have
kuaðTÞ � gk2 ¼
P
kP1

akp
k

akp
k þ e�kkT

� �2
g2k

¼ a2�bP
kP1

k2p
k

ab

akp
k þ e�kkTð Þ2

g2k; b 2 ð0; 2Þ:
If we take
hkða; bÞ ¼
ab

akp
k þ e�kkTð Þ2

;

then we have an extremum–maximum at:
a0 ¼
b

2� b
1

kp
k

e�kkT; 8p 2 R�þ:
Hence
kuaðTÞ � gk2 ¼ b
2� b

� �b

a2�bP
kP1

k2p
k

kbp
k

e�bkkT

ða0k
p
k þ e�kkTÞ2

g2k

¼ b
2� b

� �b

a2�bP
kP1

kð2�bÞp
k

eð2�bÞkkT

a0k
p
k þ 1ð Þ2

g2k

6
b

2� b

� �b

a2�bP
kP1

kð2�bÞp
k eð2�bÞkkTg2k;
if we take e = (2 � b), therefore,
P
kP1

k�pk e
�kkTg2k < þ1) kuaðTÞ � gk 6 c

�
a
�
2: �
In the next two Theorems, we would like to show that much weaker functional
conditions on the given data g also give error-estimates on the convergence rate of
the elements ua(T) to g in the Hilbert space H.

Theorem 5. Let us assume that g 2 DðAsÞ; 8s 2�0; 1�, then there exists a constant
c> 0 depending upon g 2 H for which,
kuaðTÞ � gk 6 c

logs T
sa

� � :

Proof. We write
kuaðTÞ � gk2 ¼
P
kP1

akp
k

akp
k þ e�kkT

� �2
g2k ¼

P
kP1

a2k2p�2s
k

ðakp
k þ e�kkTÞ2

k2s
k g

2
k:
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Then, the function
hðkÞ ¼ kðp�sÞ

ðakp þ e�kTÞ ; ð6Þ
admits an extremum–maximum k0 root of the equation
log
T

sa
¼ kTþ ðp� 1Þ log kþ log 1þ p� s

kT

	 

;

for small enough a we may choose k0 � 1
T
log T

sa, in this case we get
sup
kP0

hðkÞ ¼ hðk0Þ ¼
1

a
k�s0

1þ s
k0Tþðp�sÞ

6
1

a
k�s0 ;
hence, we deduce that
kuaðTÞ � gk 6 c

logs T
sa

� � ;

where the constant c2 is

P
kP1k

2s
k g

2
k ¼ kAsgk2. h

Remark 2. If the parameter s= 1 we obtain estimates as in [5,20] with better sta-
bility, see Corollary 1. Theorems 4 and 5 show, how error-estimates depend upon
the convergence rates of the element g 2 H. This convergence rate is expressed in

how faster the series kgk2H ¼
P

kP1g
2
k is convergent. Faster convergence rates of

order a
�
2 need strong hyperbolic convergence rate on g 2 H asP

kP1k
�
ke
�kkTg2k < þ1 see experimental application in [12,13]. Weaker parabolic

conditions as
P

kP1k
2s
k g

2
k < þ1 induce slower error-estimates. However these lat-

ter are important, they show the differences between the hyperbolic models as in
[12,13] and the parabolic one as in [2,5,20]. And that the parabolic case admits a
larger class of given data g 2 H.

In the next theorem, we prove that weaker logarithmic conditions on the data g
also give error-estimates.

Theorem 6. Let us assume that
P

kP1log
2skkg2k < þ1, for s > 0, then there exists

a constant c > 0 depending upon the data g in DðlogsAÞ for which,
kuaðTÞ � gk 6 c

logs 1
T
log T

sa

� �� � :

Proof. Write
kuaðTÞ � gk2 ¼
P
kP1

a2k2p
k

akp
k þ e�kkTð Þ2

g2k ¼
P
kP1

a2k2p
k

log2skk akp
k þ e�kkTð Þ2

log2skkg
2
k:
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The function
hðkÞ ¼ kp

logskðakp þ e�kTÞ ; k P e; s > 0;
verifies
hðkÞ 6 h1ðkÞ; where h1ðkÞ ¼
kp

akplogskþ e�kT
;

h1(k) admits an extremum–maximum at k0 root of the equation
log
T

sa
¼ kT 1þ ðp� 1Þ

T

log k
k
þ ðs� 1Þ

T

1

k
log log kþ 1

k
log 1þ p

kT

	 
� �
:

For a small enough we may choose k0 � 1
T
log T

sa , in this case we get
sup
kPe

h1ðkÞ ¼ h1ðk0Þ 6
1

a
1

logsk0

;

therefore
kuaðTÞ � gk2 6 1

log2sk0

P
kP1

log2skkg
2
k;
which implies the existence of c2 ¼
P

kP1log
2skkg

2
k such that
kuaðTÞ � gk 6 c

log 1
T
log T

sa

� �� �� �s ;

and the proof is complete. h
4. Extensions to the uniform case

After studying in the previous section the close relationship between different con-
ditions on g 2 H, stability and error-estimates on the final data t = T, we give in
the following section the general framework depending upon the uniform varia-
tion of variable t in [0,T]. Extending in this way most of the results in [2,5,20]
to more general settings.

Theorem 7. Let us assume that g 2 H and f 2 L2ðð0;TÞ;HÞ. Then, the non-
homogeneous (BCP) problem admits a solution u(t) if and only if the sequence
ua(0) is convergent in H. Furthermore, we have that ua(t) converges to u(t)
uniformly in t.

Proof. Assume that limafi0ua(0) = u0 exists and belongs to H set
uðtÞ ¼
P
kP1

u0k þ
Z t

0

ekksfkðsÞds
� �

e�kktuk;
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where
u0 ¼
P
kP1

u0kuk:
Let t 2 [0,T], from (4) we have
kuaðtÞ � uðtÞk2 ¼
P
kP1

ðuakðtÞ � ukðtÞÞ2

¼
P
kP1

e�kkt

akp
k þ e�kkT

ðgk �
Z T

t

ekkðs�TÞfkðsÞdsÞ � u0ke
�kkt

�

� e�kkt

Z t

0

ekksfkðsÞds
�2
;

gathering terms together, we get
kuaðtÞ � uðtÞk2 ¼
P
kP1

e�kkt
1

akp
k þ e�kkT

gk �
Z T

0

ekkðs�TÞfkðsÞds
� �

� u0k

� ��

� akp
k

akp
k þ e�kkT

Z t

0

ekkðs�tÞfkðsÞds
�2
:

Therefore we obtain
kuaðtÞ � uðtÞk2 6 2kuað0Þ � uð0Þk2

þ 2
P
kP1

akp
k

akp
k þ e�kkT

� �2 Z t

0

ekkðs�tÞfkðsÞds
� �2

:

In view of
Z t

0

ekkðs�tÞfkðsÞds
� �2

6

Z t

0

e2kkðs�tÞds

Z t

0

f 2
k ðsÞds ¼

1

2kk

½1� e�2kkt�
Z t

0

f2kðsÞds

6
1

2kk

kfk2L2ð0;TÞ;
we get
P
kP1

akp
k

akp
k þ e�kkT

� �2 Z t

0

ekkðs�tÞfkðsÞds
� �2

6
P
kP1

a2k2p�1
k

akp
k þ e�kkTð Þ2

kfk2L2ð0;TÞ:
Using (6) for s ¼ 1
2
, we obtain
kuaðtÞ � uðtÞk2 6 2kuað0Þ � uð0Þk2 þ T

log 2T
a

� �
kfk2L2ðð0;TÞ;HÞ:
This implies that ua(t) converges uniformly to u(t) in H. Moreover if t = T, then
limafi0ua(T) = u(T), using Theorem 3 we have that u(T) = g. Conversely, let us
assume the non-homogeneous (BCP)-problem admits a solution u(t), in this case
from the Lemma 1, we have
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P
kP1

gk �
Z T

0

ekkðs�TÞfkðsÞds
� �2

e2kkT < þ1:
Then we write
kuað0Þ�ucð0Þk2¼
P
kP1

ða�cÞ2k2p
k

ack2p
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kPNþ1
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ðaþcÞ2
e2kkT gk�

Z T

0

ekkðs�TÞfkðsÞds
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;

therefore a�c
aþc

	 

< 1 and

P
kP1 gk �

R T

0
ekkðs�TÞfkðsÞds

	 
2
e2kkT < þ1, implies that

{ua(0)} is a Cauchy sequence, hence convergent in H this ends the proof. h

Theorem 8. Let us assume that g 2 H and f 2 L2ðð0;TÞ;HÞ; a 2 ð0; eTÞ. Suppose
the non-homogeneous (BCP) problem admits a solution u(t) in the classical sense
satisfying kAuðtÞkH < þ1, then
kuaðtÞ � uðtÞk 6 c

log T
a

;

"t 2 [0,T], where c ¼ Tsupt2½0;T�kAuðtÞkH.

Proof. Let the (BCP) problem admit a unique solution in the classical sense, from
the expressions (2), (4) of u(t) and ua(t) we have
kuaðtÞ � uðtÞk2 ¼
P
kP1

a2k2ðp�1Þ
k

akp
k þ e�kkTð Þ2

k2
k gke

kkðT�tÞ �
Z T

t

ekkðs�tÞfkðsÞds
� �2

:

From the supremum estimate (6), with s = 1 we obtain
kuaðtÞ � uðtÞk 6 c

log T
a

; 8t 2 ½0;T�;
where the constant c is Tsupt2½0;T�kAuðtÞk. Which finishes the proof. h

In an analogous manner to Theorems 5 and 6, weaker conditions on the given
data g in H also induce error-estimates. From the supremum estimates used in
their proofs, we have the following results.

Theorem 9. Let us assume that g 2 H and f 2 L2ðð0;TÞ;HÞ; a 2 ð0; eTÞ. Assume
that uðtÞ 2 DðAsÞ; s > 0, then
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kuaðtÞ � uðtÞk 6 c

log T
a

� �s ; for any t 2 ½0;T�;
where c depends on T and supt2½0;T�kAsuðtÞkH.

Theorem 10. Under the same setting as in Theorem 9, if uðtÞ 2 DðlogsAÞ for s > 0,
then
kuaðtÞ � uðtÞk 6 c

logs 1
T
log T

sa

� � ; for t 2 ½0;T�;

the constant c depends upon s,T and supt2½0;T�klogsAuðtÞkH.

Finally, for non-exact data we establish the following result.

Theorem 11. Let f 2 L2ðð0;TÞ;HÞ; g 2 H. Assume that the (BCP) problem admits
a unique solution u(t). Let ga be a measured data satisfying
kga � gk 6 a;
then there exists a solution va(t) associated with this data satisfying
kvaðtÞ � uðtÞk 6 c

log T
a

þ T

log T
pa

 !p

;

that is for any t 2 [0,T], where c is a constant depends upon T and
supt2½0;T�kAuðtÞkH.

Proof. Let ua(t) and va(t) be the solutions of the (ABCP) problem corresponding
respectively to g and ga , then
kvaðtÞ � uðtÞk 6 kvaðtÞ � uaðtÞk þ kuaðtÞ � uðtÞk;

from the stability in Theorems 1 and 8 we deduce
kvaðtÞ � uðtÞk 6 c

log T
a

þ T

log T
pa

 !p

;

where p 2 R�þ; t 2 ½0;T�. This finishes the proof. h

Remark 3. The parameter p in R�þ improves the estimate of Theorem 4 in [5],
given for the homogeneous case and p = 1, and Theorem 2.10 in [20], where also
p = 1 and A is the periodic heat operator.
5. On the backward heat equation with Bessel operator

In this section, we apply the obtained results to the study of the inverse problem of
the non-homogeneous heat equation involving the Bessel operator of the form:
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uð1; tÞ ¼ 0 and limx!0xu
0ðx; tÞ ¼ 0; 0 < t < T; ð8Þ

uðx;TÞ ¼ gðxÞ; x 2�0; 1½: ð9Þ

The corresponding homogeneous case to (7) and (8) was first studied in [12,13],
using a hyperbolic regularization method based upon a perturbation of the Eq.

(7) by adding a term � @
2uðx;tÞ
@t2

. In these papers convergence rates and error-estimates

are not treated.
To apply our parabolic model, we regularize the non-homogeneous problem (7)

by the following approximate problem:
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� �
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where fk(t) and gk are respectively the Fourier–Bessel coefficients of f(x,t) and g(x)
in the space Hx[0,1] = L2([0,1],xdx); J0(x) is the well known Bessel function of the
first kind.

For f 2 L2((0,T),Hx[0,1]) and g 2 Hx[0,1], we have:
fðx; tÞ ¼
P
kP1

fkðtÞUkðxÞ and gðxÞ ¼
P
kP1

gkUkðxÞ;
where
fkðtÞ ¼
Z 1

0

xfðx; tÞUkðxÞdx and gk ¼
Z 1

0

xgðxÞUkðxÞdx:
We denote the Bessel operator by
A ¼ � 1

x

@

@x
x
@

@x

� �
;

defined on
DðAÞ ¼ fu 2 Hx½0; 1�; uð1Þ ¼ 0; lim
x!0

xu0ðxÞ ¼ 0g:
It is well known that A is a selfadjoint singular operator with a complete orthonor-
mal set of eigenfunctions fUkgk2N� in the Hilbert space Hx[0,1], given by:
UkðxÞ ¼
ffiffiffi
2
p

J00ð
ffiffiffiffiffi
kk

p
Þ
J0ð

ffiffiffiffiffi
kk

p
xÞ; k ¼ 1;1; 0 < x < 1;
corresponding respectively to the unbounded increasing positive sequence fkkgk2N�
of eigenvalues, which are the squares of the zeros of the Bessel function of the first
kind J0(x).
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Under these assumptions, the problem (7) may be written under the abstract
backward Cauchy problem (BCP) form. Hence, applying the results of the preced-
ing sections, we obtain the following results.

Theorem 12. The approximate non-homogeneous Backward problem (10)–(12)
admits a unique classical solution ua(x,t) which depends continuously upon the data
g in Hx[0,1]. Moreover, we have for any a 2 (0,1),t 2 [0,T]:
Z 1

0

xu2aðx; tÞdx 6
2

a log T
a

� �2
Z 1

0

xg2ðxÞdxþ T

Z T

0

Z 1

0

xf2ðx; tÞdxdt
� �

:

Proof. We apply Theorem 1 with parameter p = 1 in the Hilbert space
H ¼ Hx½0; 1�. h

Theorem 13. Let us assume that g 2 Hx[0,1] and f 2 L2((0,T), Hx[0,1]). Then,
the non-homogeneous backward problem (7) admits a solution u(x,t) if and only
if the sequence
uaðx; 0Þ ¼
P
kP1

ffiffiffi
2
p

J00ð
ffiffiffiffiffi
kk

p
Þðakk þ e�kkTÞ

gk �
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J0ðx
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kk

p
Þ;
is convergent in Hx[0,1]. Furthermore, ua(x,t) converges to u(x,t) uniformly in t.
Furthermore, if g satisfies:
Z 1

0

1

x

d

dx
x
d

dx

� �
g

� �2

dx < þ1;
then:
Z 1

0

xðuaðx;TÞ � gðxÞÞ2dx 6 c

log T
a

� �2 ;

where the constant c depends uniquely upon T and

R 1

0
1
x

d
dx

x d
dx

� �
g

� �2
dx.

Proof. Results from Theorems 7 and 5 for s = 1 and p = 1. h

Theorem 14. Let assume that g 2 Hx[0,1] and f 2 L2((0,T), Hx[0,1]), a 2 (0,eT).
Suppose the non-homogeneous problem (7) admits a solution u(x,t)in the classical
sense satisfying
Z 1

0

1

x

@

@x
x
@

@x

� �
uðx; tÞ
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dx < þ1;
then
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log T
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for any t 2 [0,T], where c ¼ Tsupt2½0;T�
R 1

0
1
x

@
@x

x @
@x

� �
uðx; tÞ

� �2
dx , and ua(x,t) is the

unique solution of (10)–(12).

Proof. Results directly by applying Theorem 8. h
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