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Abstract. In this article, Cauchy’s integral formula for nth q-derivative of analytic

functions is established and used to introduce a new proof to q-Taylor series by means

of using the residue calculus in the complex analysis. Some theorems related to this for-

mula are presented. A q-extension of a Laurent expansion is derived and proved by

means of using Cauchy’s integral formula for a function, which is analytic on a ring-

shaped region bounded by two concentric circles. Three illustrative examples are

presented to be as applications for a q-Laurent expansion.
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1. INTRODUCTION AND PRELIMINARIES

Two important problems in complex function theory are the problems of expanding a
function in a series of polynomials and the interpolation problem of finding an entire
function from its values. The Taylor series and the Laurent expansion play a very
important role to solve these problems. The Taylor series is a representation of a
function as an infinite sum of terms calculated from the values of its derivatives at a
single point and the Laurent series of a complex function f(z) is a representation of that
function as a power series which includes terms of negative degree. It may be used to
express complex functions in cases where a Taylor series expansion cannot be applied.
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The Laurent expansion has no real-variable counterpart and is a key in the discussion
of singularities and residues.

The problem of expanding a function with respect to a given polynomial basis has
many implications in the q-analysis. The simplest example of this kind is q-Taylor
expansion theorem. The q-Taylor series was introduced at the first time by Jackson
[8]. Al-Salam and Verma introduced the q-type interpolation series to deriving the
q-Leibniz rule for the q-fractional Riemann–Liouville operator [1]. Ismail and Stanton
established q-analogs of the Taylor series expansions in special polynomial bases for
analytic functions in bounded domains and for entire functions [9,10].

We believe that the q-Taylor series has drawn the attention of many authors, but it
seems so far that no one has developed a formula corresponding to the formula for the
Laurent expansion series in q-calculus. Therefore we give, in this paper, a q-extension
of the Laurent series expansion via using Cauchy’s integral formula. Also in the present
article, Cauchy’s integral formula for analytic function is used to derive a contour
integral representation for nth q-derivative of analytic function. This formula (contour
integral representation for nth q-derivative) is used to identify a bound for nth
q-derivative and to introduce a new proof to q-Taylor series.

Due to the difference of the definitions and notations used in the q-calculus, we devote
the rest of this section to list all the definitions and notations needed throughout this
work. These definitions will be taken from the well known books in this field [3,4,7].

For any complex number a, the basic number and the q-factorial are defined as
½a�q ¼
1� qa

1� q
; q–1; ½n�q! ¼ ½n�q½n� 1�q . . . ½1�q; n ¼ 1; 2; . . . ; ½0�q!

¼ 1 ð1:1Þ
and the scalar q-shifted factorials are defined as
ða; qÞ0 ¼ 1; ða; qÞn ¼
Yn�1
k¼0
ð1� aqkÞ; n ¼ 1; 2; . . . : ð1:2Þ
The limit, limnfi1(a;q)n, is denoted by (a;q)1 provided ŒqŒ < 1. This implies that
ða; qÞn ¼
ða; qÞ1
ðaqn; qÞ1

; n ¼ 0; 1; 2; . . . : ð1:3Þ
Recall the q-analog of Newtons’ binomial formula
ðz; qÞn ¼
Xn
k¼0
ð�1Þk

n

k

� �
q

qkðk�1Þ=2zk; n ¼ 0; 1; 2; . . . ð1:4Þ
and its dual
zn ¼
Xn
k¼0
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkðz; qÞk; n ¼ 0; 1; 2; . . . : ð1:5Þ
The q-binomial coefficients are defined for positive integer n,k as
n

k

� �
q

¼
½n�q

½k�q!½n� k�q!
¼ ðq; qÞn
ðq; qÞkðq; qÞn�k

¼
n

n� k

� �
q

: ð1:6Þ
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We shall make use of the (equivalent by symmetry) q-Pascal recurrences
nþ 1

kþ 1

� �
q

� qkþ1
n

kþ 1

� �
q

¼
n

k

� �
q

: ð1:7Þ
The q-analogs of the exponential functions are defined as
EqðzÞ ¼
X1
n¼0

q

n

2

� �
zn

ðq; qÞn
¼ ð�z; qÞ1; ð1:8Þ

eqðzÞ ¼
X1
n¼0

zn

ðq; qÞn
¼ 1

ðz; qÞ1
: ð1:9Þ
For the convergence of the second series, we need ŒzŒ < 1.
The q-derivative Dqf(z) of a function f is given as
ðDqfÞðzÞ ¼
fðzÞ � fðqzÞ
ð1� qÞz ; q–1; z–0; ðDqfÞð0Þ ¼ f0ð0Þ; ð1:10Þ
provided f0(0) exists. If f is differentiable then Dqf(z) tends to f0(z) as q fi 1. Further-
more, we define
D0
qfðzÞ ¼ fðzÞ and Dn

qfðzÞ ¼ DqðDn�1
q fðzÞÞ; n ¼ 1; 2; . . . :
Then, Dn
qfðzÞ can be expressed as
Dn
qfðzÞ ¼ ð1� qÞ�nz�n

Xn
k¼0
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkfðzqkÞ: ð1:11Þ
As tool to provide some of results in our paper, we need the following lemma

Lemma 1. For all complex variables z, and q and positive integer n, we have
Xn
k¼1
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkðz; qÞk�1 ¼ �q1�n
zn � qn

z� q
; z–q: ð1:12Þ
In particular, when z tends to q, we have
Xn
k¼1
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkðq; qÞk�1 ¼ �n: ð1:13Þ
Proof. Let the function
fðnÞ ¼
Xn
k¼1
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkðz; qÞk�1 ¼ �
Xn�1
k¼0
ð�1Þk

n

kþ 1

� �
q

qkðkþ1Þ=2�ðn�1Þðkþ1Þðz; qÞk
to establish the recursive equation
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fðnÞ � fðnþ 1Þ ¼
Xn�1
k¼0
ð�1Þk

nþ 1

kþ 1

� �
q

� qkþ1
n

k

� �
q

( )
qkðkþ1Þ=2�ðkþ1Þnðz; qÞk

þ ð�1Þnqnðnþ1Þ=2�nðnþ1Þðz; qÞn

¼
Xn�1
k¼0
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�ðkþ1Þnðz; qÞk þ ð�1Þ
n
qnðnþ1Þ=2�nðnþ1Þðz; qÞn

¼ q�n
Xn
k¼0
ð�1Þk

n

k

� �
q

qkðkþ1Þ=2�nkðz; qÞk ¼ q�nzn:
Here, we used the formulas (1.5) and (1.7). The previous equation can be solved with
the initial condition f(1) = �1 by using iterative method and geometric sequence rule
to complete the proof. h
2. CAUCHY’S INTEGRAL FORMULA FOR NTH q-DERIVATIVE

Let f(z) be an analytic function everywhere on and inside a closed contour C containing
the point a. Then the Cauchy’s integral formula states [12]
fðaÞ ¼ 1

2pi

Z
C

fðzÞ
z� a

dz: ð2:1Þ
For a non-negative integer n and a closed contour C surrounding the points aqk,
k= 0,1,2,. . .,n, where a is any point in the complex plane apart from the origin and
q is a complex number apart from 1, and situated entirely within the region in which
f(z) is analytic, the following result can be established.

Theorem 2.1 (Cauchy’s integral formula for nth q-derivative). Let f(z) be analytic
function on a simply connected subset U of the complex z-plane. Let C be a closed contour
completely contained in U. Let the points aqk, k = 0,1,2,. . .,n lie inside the contour C for
all non-negative integers n where a „ 0 and q „ 1 are complex. Then the Cauchy’s integral
formula for nth q-derivative can be derived as
Dn
qfðaÞ ¼

½n�q!
2pi

Z
C

fðzÞ
znþ1ða=z; qÞnþ1

dz; n ¼ 0; 1; 2; . . . ; ð2:2Þ
where the contour integral is taken counter-clockwise. In particular, when a fi 0
lim
a!0

Dn
qfðaÞ ¼

½n�q!
n!

fðnÞð0Þ: ð2:3Þ
Proof. The proof of theorem has been provided in [4]. h

Theorem 2.2. Let C be the positively oriented circle of center at the origin and radius
r > 0. If f is analytic function everywhere on and inside C and n is a non-negative integer,
then the Cauchy’s integral formula (2.2) can be expressed as
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Dn
qfðzÞ ¼ ½n�q!

X1
k¼0

n

k

� �
q

fðnþkÞð0Þ
ðnþ kÞ! z

k; jqj < 1: ð2:4Þ
Proof. It is obvious that if z is inside C and ŒqŒ < 1, then zqk, k= 0,1,2,. . .,n are also
inside C.

By using the relation (1.3) and the q-binomial theorem
X1
k¼0

ða; qÞk
ðq; qÞk

zk ¼ ðaz; qÞ1ðz; qÞ1
; jzj < 1; ð2:5Þ
the relation (2.2) can be rewritten in the form
Dn
qfðzÞ ¼

½n�q!
2pi

Z
C

fðtÞ
tnþ1
ðzqnþ1=t; qÞ1
ðz=t; qÞ1

dt

¼
½n�q!
2pi

Z
C

X1
k¼0

fðtÞðqnþ1; qÞk
tnþ1ðq; qÞk

z

t

� �k
dt:
Now we are interested in the permutation of the sum and the integral in the last expres-
sion. To legitimate this process, note from the q-binomial theorem that the previous
summation is absolutely convergent for Œz/tŒ < 1 which is true inside the circle C.
By the dominated convergence theorem [6, p. 83], the series and the integral can be per-
muted and we can write
Dn
qfðzÞ ¼ ½n�q!

X1
k¼0

nþ k

k

� �
q

zk
1

2pi

Z
C

fðtÞ
tnþkþ1

dt:
Since the circle C centered at the origin point,
fðtÞ
tnþkþ1
is a function of t, which is analytic at all points within the circle C except the point
t = 0 and so the Cauchy’s differentiation formula would yield
1

2pi

Z
C

fðtÞ
tnþkþ1

dt ¼ fðnþkÞð0Þ
ðnþ kÞ! :
This ends the proof. h

Theorem 2.3 (Cauchy’s inequality for nth q-derivative). Let C be the positively oriented
circle of center a and radius r > 0 such that ŒaŒ 6 r. If f is analytic function everywhere
on and inside the circle C, then for 0 < q < 1, we have
jDn
qfðaÞj 6

½n�q!M
rnqnðnþ1Þ=2

; n ¼ 0; 1; 2; . . . ; ð2:6Þ
where M is the upper bound of f(z) on the circle C.
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Proof. Since the circle C centered at a with radius r P ŒaŒ and 0 < q < 1, then the
points aqk,k= 0,1,2,. . .,n are inside the circle C. Using the triangle inequality with not-
ing that ŒaŒ 6 r, would yield
jz� aqkjP r� ja� aqkj ¼ r� jajð1� qkÞP rqk; k ¼ 0; 1; 2; . . . ; n:
It follows from Cauchy’s integral formula (2.2) for nth q-derivative for 0 < q < 1, that
jDn
qfðaÞj 6

½n�q!M
2p

Z
C

1Yn
k¼0
jðz� aqkÞj

jdzj

6

½n�q!MrYn
k¼0
ðr� jajð1� qkÞÞ

6

½n�q!M

rn
Yn
k¼1

qk
¼
½n�q!M

rnqnðnþ1Þ=2
:

This completes the proof. h
3. q-TAYLOR SERIES

Jackson [8] introduced the following q-counterpart of Taylor series
fðzÞ ¼
X1
k¼0

zkða=z; qÞk
½k�q!

Dk
qfðaÞ: ð3:1Þ
Also Al-Salam and Verma [1] introduced the q-type interpolation series
fðzÞ ¼
X1
k¼0
ð�1Þkq

�
k

2

� �
akðz=a; qÞk
½k�q!

Dk
qfðaq�kÞ:

ð3:2Þ
Neither Jackson nor Al-Salam and Verma gave proofs of their q-analogs. However Al-
Salam and Verma verified the validity of (3.2) under the condition of the expandability
of f in the from (see [5])
fðzÞ ¼
X1
k¼0

cka
kðz=a; qÞk: ð3:3Þ
Annaby and Mansour [5] gave analytic proof of Jackson and Al-Salam–Verma q-Tay-
lor series based on the q-Cauchy integral formula of Al-Salam [2]. They proved the
convergence of the q-Taylor series to the original functions if these latter ones are ana-
lytic in some complex domain. In the following theorem, we will give analytic proof of
Jackson q-Taylor series based on the Cauchy’s integral formula (2.2) for nth q-deriva-
tive of analytic functions.

Theorem 3.1 (q-Taylor series). Let C be the positively oriented circle containing the
point a apart from the origin. If f is analytic function everywhere inside C, then the q-
Taylor series (3.1) holds for ŒqŒ < 1.
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Proof. It is easy to prove by mathematical induction that
1

t� z
¼
Xn�1
k¼0

ða=z; qÞkzk
ða=t; qÞkþ1tkþ1

þ ða=z; qÞnzn
ðt� zÞða=t; qÞntn

; n ¼ 1; 2; . . . : ð3:4Þ
Substituting into Cauchy’s integral formula (2.1) with using (2.2) would yield
fðzÞ ¼
Xn�1
k¼0

zkða=z; qÞk
½k�q!

Dk
qfðaÞ þ RnðzÞ; n ¼ 1; 2; . . . ;
where
RnðzÞ ¼
ða=z; qÞnzn

2pi

Z
C

fðtÞ
ðt� zÞða=t; qÞntn

dt; n ¼ 1; 2; . . . : ð3:5Þ
Now we are interested in proving that ŒRn(z)Œ fi 0 as n fi1. Notice that the function
gðtÞ ¼ fðtÞ
t� z

ð3:6Þ
is a function of t, which is a bounded function on the circle C (as it is continuous) and
so will not exceed a finite number M. Therefore
jRnðzÞj 6
2prM
2p

Yn�1
k¼0

jzjzþ jajjqjk

r� jajjqjk
¼Mr

jzj
r

� �n ð�jaj=jzj; jqjÞn
ðjaj=r; jqjÞn

;

where r is the radius of the circle C, so that 2pr is the length of the path of integration in
the last integral, and r = ŒtŒ for point t on the circumference of C. As n fi 1, the two
products (�ŒaŒ/ŒzŒ;ŒqŒ)n and (ŒaŒ/r;ŒqŒ)n converge absolutely due to ŒqŒ < 1, and so the
right hand side of the last inequality tends to zero. This ends the proof. h

Remark 3.2. In the previous theorem, Rn(z) is a remainder term, denoting the differ-
ence between the q-Taylor polynomial of degree (n � 1) and the original function.
The remainder term Rn(z) depends on z and is small if z is closed enough to a. Note
that g(t) in (3.4) is analytic function within and on the circle C which allows us to esti-
mate the remainder term Rn(z) by using relation (2.2) as
RnðzÞ ¼
ða=z; qÞnzn
½n� 1�q!

Dn�1
q gðaÞ; gðaÞ ¼ fðaÞ

a� z
; n ¼ 1; 2; . . . :
4. q-LAURENT SERIES EXPANSION

The Laurent series of a complex function is a representation of that function as a
power series which includes terms of negative degree. The Laurent series for a complex
function f(z) about a point c is given as
fðzÞ ¼
X1
k¼�1

akðz� cÞk; ð4:1Þ
where the ak are constants defined by a line integral which is a generalization of Cau-
chy’s integral formula
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ak ¼
1

2pi

Z
c

fðzÞ
ðz� cÞkþ1

dz; ð4:2Þ
where the path of integration c is counterclockwise around a closed, rectifiable path con-
taining no self-intersections, enclosing the point c and lying in an annulus in which f(z) is
holomorphic. The expansion for f(z) will then be valid anywhere inside the annulus.

In this section, a q-analog of the Laurent expansion is derived and proved with iden-
tifying the domains in which this expansion is convergent. The q-Laurent expansion is
applied to expand a complex function as a power q-series to which q-Taylor series can-
not be applied.

Theorem 4.1 (q-Laurent expansion). Let X0 and X be closed and open subsets,
respectively, of the complex z-plane, and 0 2 X0 � X. Let f(z) be an analytic function
on X/X0 and z0 2 X0. Then, for any z 2 X/X0, f(z) admits the q-Laurent expansion
fðzÞ ¼
Xn�1
k¼0

akðz0=z; qÞkzk þ
Xn
k¼1

bkz
�k

ðz0=z; qÞk
þ Rnðz; z0Þ þ R0nðz; z0Þ ð4:3Þ
where the coefficients ak and bk of the expansion are given, respectively, by the Cauchy
integrals
ak ¼
1

2pi

Z
‘

fðwÞ
wkþ1ðz0=w; qÞkþ1

dw; ð4:4Þ

bk ¼
1

2pi

Z
‘0
wk�1ðz0=w; qÞk�1fðwÞdw: ð4:5Þ
The remainder terms Rnðz; z0Þ and R0nðz; z0Þ are given by the Cauchy integral formulas
Rnðz; z0Þ ¼
znðz0=z; qÞn

2pi

Z
‘

fðwÞ
wnðw� zÞðz0=w; qÞn

dw; ð4:6Þ

R0nðz; z0Þ ¼
1

znðz0=z; qÞn
1

2pi

Z
‘0

wnðz0=w; qÞnfðwÞ
z� w

dw; ð4:7Þ
where ‘ and ‘0 are simple closed loops contained in X/X0 which encircle the point z0 in the
counterclockwise direction. Moreover, ‘0 does not contain the point z inside, whereas
‘ encircles ‘0 and the point z. The q-Laurent expansion (4.3) is convergent on the annulus
O ¼ fz 2 X=X0; r2 < jzj < r1g; ð4:8Þ

where
r1 ¼ inffjwj : w 2 =Xg; r2 ¼ supfjwj : w 2 X0g ð4:9Þ

and Ç is the complex plane.

Proof. By Cauchy theorem [12]
fðzÞ ¼ 1

2pi

Z
‘

fðwÞ
w� z

dw� 1

2pi

Z
‘0

fðwÞ
w� z

dw: ð4:10Þ
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Inserting the expansion (3.4) after replacing t and a by w and z0, respectively, into the
Eq. (4.10) would yield (4.3)–(4.7) after straightforward calculations. Now we are inter-
ested in proving that both ŒRn(z,z0)Œ and ŒR0n(z,z0)Œ tend to 0 as n fi1. Notice that the
function g(w) (defined by (3.6)) is a function of w, which is a bounded function on the
contours ‘ and ‘0 (as it is continuous) and so will not exceed some finite numbers M
and M0 on them, respectively. Based upon the definitions (4.8) and (4.9), the annulus
O centered at the origin, ŒwŒ P r1 for any point w on the contour ‘ and ŒwŒ > Œz0Œ.
Thus
jw� z0q
kjP kwj � jz0kqjkj ¼ jwj � jz0kqjk P r1 � jz0kqjk; k ¼ 0; 1; 2; . . . ; n� 1:
Therefore
jRnðz; z0Þj 6
M � L
2p

Yn�1
k¼0

jzj þ jz0jjqjk

r1 � jz0kqjk
¼M � L

2p
jzj
r1

� �n ð�jz0j=jzj; jqjÞn
ð�jz0j=r1; jqjÞn

;

where L is the length of the path of integration in (4.6). As n fi1, the two infinite
products (�Œz0Œ/ŒzŒ;ŒqŒ)1 and (Œz0Œ/r1;ŒqŒ)1 converge absolutely due to ŒqŒ < 1, and
so the right hand side of the last inequality tends to zero. Similarly, one can easily
prove that jR0nðz; z0Þj ! 0 as n fi1. This finishes the proof. h

This result is q-Laurent theorem; changing the notations, it can be expressed in the
following form: If f(z) is analytic function on the annulus surrounded by two concen-
tric circles ‘ and ‘0 of center at the origin point with the point z0 lies inside ‘

0 where ‘0 is
completely contained in ‘, then at any point z of the annulus, f(z) can be expanded in
the form
fðzÞ ¼
X1
k¼0

akðz0=z; qÞkzk þ
X1
k¼1

bkz
�k

ðz0=z; qÞk
; ð4:11Þ
where the coefficients ak and bk are defined as in (4.4) and (4.5), respectively.

Theorem 4.2. Let f(z) be analytic function on X/X0 and z0 2 X0. Then the function f has
an expansion as a q-Laurent series at z0 on this region. This series expansion of f is
unique.

Proof. Suppose the function f(z) holomorphic on X/X0 has two q-Laurent series
fðzÞ ¼
X1
k¼0

akðz0=z; qÞkzk þ
X1
k¼1

bkz
�k

ðz0=z; qÞk
¼
X1
k¼0

a0kðz0=z; qÞkzk þ
X1
k¼1

b0kz
�k

ðz0=z; qÞk
:

Multiplying both sides with z�n�1ðz0=z; qÞ�1nþ1, where n is an arbitrary non-negative inte-
ger, followed by integrating on a path c inside the region X/X0 yield
Z

c

X1
k¼0

akðz0=z; qÞkzk�n�1ðz0=z; qÞnþ1dzþ
Z

c

X1
k¼1

bkz
�k�n�1

ðz0=z; qÞkðz0=z; qÞnþ1
dz

¼
Z

c

X1
k¼0

a0k
ðz0=z; qÞkzk�n�1
ðz0=z; qÞnþ1

dzþ
Z

c

X1
k¼1

bkz
�k�n�1

ðz0=z; qÞkðz0=z; qÞnþ1
dz:
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The series converge uniformly on X/X0 for c to be contained in the constricted closed
region, so the integrations and summations can be interchanged. Substituting the
identities
Z

c

ðz0=z; qÞkzk�n�1
ðz0=z; qÞnþ1

dz ¼ 2pidnk and

Z
c

bkz
�k�n�1

ðz0=z; qÞkðz0=z; qÞnþ1
dz ¼ 0
into the summations yields ak ¼ a0k. Again, multiplying both sides with zn�1(z0/z;q)n�1
followed by integrating on the path c inside the region X/X0, this yields bk ¼ b0k. Hence
the q-Laurent series is unique. h

Remark 4.3. The q-Laurent series (4.11) is equivalent to the classical Laurent series
(4.1) when z0 = 0
fðzÞ ¼
X1
k¼�1

akz
k: ð4:12Þ
This can be verified as
b�k ¼
Z

c

fðwÞ
wkþ1 dw ¼ ak; k ¼ �1;�2; . . . ;
where the path of integration c lies in the annulus X/X0.

Proposition 4.4. In Theorem 4.1, if f(z) is analytic function on X0, then the q-Laurent
expansion (4.11) tends to the q-Taylor series (3.1) with replacing a by z0.

Proof. Since f(z) is analytic function on X0, then f(z) is analytic function within and on
the contour ‘0 and by Cauchy’s integral theorem, we have bk = 0,k = 1,2,. . .. Also f(z)
is analytic function within and on the contour ‘ and the point z0q

i,i= 0,1,2,. . .,k are
inside ‘ due to finding the origin point inside ‘ and ŒqŒ < 1. Therefore, these points
are simple poles inside the path of integration ‘ of the coefficients ak. Theorem 2.1
can be used to compute the coefficient ak as ak ¼ 1=½k�q!Dk

qfðz0Þ. Therefore the q-Taylor
series (3.1) holds. h

Definition 4.5. Let n be a positive integer and ŒqŒ < 1, then the analytic function f(z) is
said to have a q-pole of order n at the point z0 if, in the q-Laurent expansion (4.11),
bk = 0 for k P n + 1 and bn „ 0. In the case of n = 1, the analytic function f(z) is said
to have a simple q-pole at a point z0. The analytic function f(z) is said to have a q-essen-
tial singularity if limnfi1bn „ 0.

Equivalently, f(z) is said to have a q-pole of order n at a point z0 if n is the smallest
positive integer for which zn(z0/z;q)nf(z) is analytic function at the points
z0q

k,k= 0,1,2,. . .,n � 1.

Theorem 4.6. Let n be a positive integer and the analytic function f(z) has just a q-pole of
order n at the point z0, then we have
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Z
c
fðzÞdz ¼ 2pib1; ð4:13Þ
where the path of integration c is a simple closed curve surrounding the points
z0q

i,i = 0,1,2,. . .,n � 1 and is taken counter-clockwise.

Proof. According to the Definition 4.5 and the q-Laurent series (4.11), we have
Z
c0
fðzÞdz ¼

Z
c0

X1
k¼0

akðz0=z; qÞkzkdzþ
Z

c0

b1
z� z0

dzþ
Z

c0

X1
k¼2

bkz
�k

ðz0=z; qÞk
dz;
where the path of integration c0 is a circle centered at the origin with radius greater than
Œz0Œ and is taken counter-clockwise. Due to the convergence of the q-Laurent expan-
sion (4.11) on the region {z:ŒzŒ > Œz0Œ}, the integral and summation can be permuted
to obtain
Z

c0
fðzÞdz ¼ 0þ 2pib1 þ 2pi

Xn
k¼2

bk

zk�10

Xk�1
i¼0

ð�1Þiqiðiþ1Þ=2�iðk�1Þ
ðq; qÞiðq; qÞk�i�1

¼ 2pib1 þ 2pi
Xn
k¼2

bk

zk�10

ðq2�k; qÞk�1
½k� 1�q!

¼ 2pib1 þ 0 ¼ 2pib1:
The function f(z) is analytic except at the points z0q
k,k= 0,1,2,. . .,n � 1 and so the cir-

cle c0 can be deformed to any contour c surrounds these points. h

Remark 4.7. In the previous theorem, if n fi1, the point z0 converts to q-essential sin-
gularity and the Eq. (4.13) is also identified.

Definition 4.8. Let U be a simply connected open subset of the complex z-plane sur-
rounding by c and z0q

i 2 U,i= 0,1,2,. . .,n � 1;n = 1,2,. . .. Let f(z) be an analytic func-
tion on U/{z0q

i:i= 0,1,2,. . .,n � 1}. Define the q-residue of f at z0 (q-pole of order n) as
Resðf; z0; qÞ ¼
1

2pi

Z
c
fðzÞdz ¼ b1; ð4:14Þ
where b1 is the first coefficient of the second series in q-Laurent series (4.11) for f(z).

Theorem 4.9. Under the notations in the Definition 4.8, we have
Resðf; z0; qÞ ¼
1

½n� 1�q!
lim
z!z0

Dn�1
q ½znðz0=z; qÞnfðzÞ�; n ¼ 1; 2; . . . : ð4:15Þ
Proof. We can choose g(z) = zn(z0/z;q)nf(z) which is analytic function in U, conse-
quently within and on the contour c. Substituting into the Eq. (4.5) with using
Theorem 2.1 would yield
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bk ¼
1

½n�k�q!
lim

z!z0qk�1
Dn�k

q ½znðz0=z; qÞnfðzÞ�; k ¼ 1; 2; . . . ; n

0 k P nþ 1

(
; ð4:16Þ
when k = 1, we obtain (4.15) and thus the proof is completed.
5. ILLUSTRATIVE EXAMPLES

The Laurent expansion has no real-variable counterpart and is a key in the discussion
of singularities and residues. Laurent series with complex coefficients is an important
tool in complex analysis, especially to investigate the behavior of functions near singu-
larities. The residue theorem, sometimes called Cauchy’s residue theorem, in complex
analysis is a powerful tool to evaluate line integrals of analytic functions over closed
curves and can often be used to compute real integrals as well.

In the present section, we apply our results to expand some functions in q-series on
various domains and to evaluate line integral of these function over closed curves that
surrounds its singular points.

Example 5.1. Consider the functions Eq(1/z) and eq(1/z) defined as in (1.8) and (1.9),
respectively. As complex functions, they have a singularity at z = 0 which do not allow
to expand them in a q-Taylor series. Nevertheless, by replacing z by 1/z in the power
series for the q-exponential functions, we obtain the q-Laurent series which converge
and are equal to them for all complex numbers z for Eq(1/z) except at the singularity
z = 0 and for eq(1/z) we have to choose ŒzŒ > 1
Eqð1=zÞ ¼ 1þ
X1
k¼1

qkðk�1Þ=2

ðq; qÞkzk
; jzj > 0; ð5:1Þ

eqð1=zÞ ¼ 1þ
X1
k¼1

1

ðq; qÞkzk
; jzj > 1: ð5:2Þ
Since q-Laurent series expansions are unique, and so these must be the q-Laurent series
representations for Eq(1/z) and eq(1/z). In particular, we know that if c and c0 are simple
closed contours centered at the origin and radius greater than 1 for c0, with positive ori-
entation, then the coefficient of 1/z is
b1 ¼
1

2pi

Z
c
Eqð1=zÞdz ¼

1

2pi

Z
c0
eqð1=zÞdz ¼

1

1� q
: ð5:3Þ
Example 5.2. Let the function
fðzÞ ¼ 1

z2 � 1
: ð5:4Þ
This function has singularities at z = ±1, where the denominator of the expression
is zero and the expression is therefore undefined. A Taylor series (or q-Taylor series)
about z = 0 (which yields a power series) will only converge in an open disk of radius
1, since it ‘‘hits’’ the singularities at ±1. However, there are many possible Laurent
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expansions (q-Laurent expansions) about z = 0, depending on the region z is in, since
the Laurent expansion and q-Laurent expansion are equivalent about the origin. Here,
we will show how this function can be expanded at z0 = ± 1 in q-Laurent expansion.
The Eq. (3.4) can be used to give the following expressions
1

z� 1
¼
X1
k¼0

ð�q; qÞk
zkþ1ð�q=z; qÞkþ1

and
1

zþ 1
¼
X1
k¼0

ð�1Þkð�q; qÞk
zkþ1ðq=z; qÞkþ1

; jzj > 1 ð5:5Þ
which can be used to obtain a q-Laurent expansions for this function at z0 = �1 as
1

z2 � 1
¼ 1

zþ 1

X1
k¼0

ð�q; qÞk
zkþ1ð�q=z; qÞkþ1

¼
X1
k¼0

ð�q; qÞk
zkþ2ð�1=z; qÞkþ2

¼
X1
k¼2

ð�q; qÞk�2
zkð�1=z; qÞk

; jzj > 1 ð5:6Þ
and at z0 = 1 as
1

z2 � 1
¼ 1

z� 1

X1
k¼0

ð�1Þkð�q; qÞk
zkþ1ðq=z; qÞkþ1

¼
X1
k¼0

ð�1Þkð�q; qÞk
zkþ2ð1=z; qÞkþ2

¼
X1
k¼2

ð�1Þkð�q; qÞk�2
zkð1=z; qÞk

; jzj > 1: ð5:7Þ
Since there always exists a unique q-Laurent series represents the function f(z) at the
point z0 inside the circle c = {z:ŒzŒ = 1 + e,e > 0} and converges on and outside
the circle c, so these must be the q-Laurent series representations for f(z). Therefore,
with using Eqs. (4.4) and (4.5), we find that
Z

c

1

wkþ1ð�1=w; qÞkþ1ðw2 � 1Þ dw ¼ 0; k ¼ 0; 1; 2; . . .
and
Z
c

wk�1ðz0=w; qÞk�1
w2 � 1

dw ¼
0 if z0 ¼ �1; k ¼ 1

ð�q; qÞk�2 if z0 ¼ �1; k ¼ 2; 3; . . .

ð�1Þkð�q; qÞk�2 if z0 ¼ 1; k ¼ 2; 3; . . . :

8><
>:
Although the singular points for the function f(z) in this example are simple poles in the
classical case but in this case are not simple q-pole, due to the domain of convergence of q-
Laurent expansionwhere required to be centered at the origin point which does not allow
to establish a separate domain for each point. Thismeans that each simple q-pole is a sim-
ple pole andnot vice versa. This example also shows thatwe are in need to establish (in the
future) a new version corresponding to Laurent expansions in two points [11].

Example 5.3. Suppose the function
fðzÞ ¼ eqðzÞ ¼
1

ðz; qÞ1
¼
X1
k¼0

zk

ðq; qÞk
; jzj < 1: ð5:8Þ
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This function is an analytic function on the open unit disk ŒzŒ < 1 and has a q-Tay-
lor series as the previous series. We are trying here to expand f(z) outside this disk. It
obvious that the function f(z) has singular points at q1�n,n = 1,2,. . . and so it can be
expanded in q-Laurent expansion (4.11) on the annuli
An ¼ fz : jqj1�n < jzj < jqj�n; 0 < jqj < 1g; n ¼ 1; 2; . . . : ð5:9Þ

In this case, the function f(z) has a q-pole of order n at z = q1�n and according to our
results obtained in the previous section, the q-Laurent expansion for f(z) has the form
fðzÞ ¼
X1
k¼0

akðq1�n=z; qÞkzk þ
Xn
k¼1

bkz
�k

ðq1�n=z; qÞk
; z 2 An; n ¼ 1; 2; . . . ; ð5:10Þ
where the coefficients ak and bk of the expansion are given, respectively, by the Cauchy
integrals
ak ¼
1

2pi

Z
‘n

1

zkþ1ðq1�n=z; qÞkþ1ðz; qÞ1
dz; k ¼ 0; 1; 2; . . . ; ð5:11Þ

bk ¼
1

2pi

Z
‘n

zk�1ðq1�n=z; qÞk�1
ðz; qÞ1

dz; k ¼ 1; 2; . . . ; n ð5:12Þ
where the contour ‘n is a simple closed curve lies inside the annulus An. The coefficients
bk can be evaluated explicitly by using (4.16) as
bk ¼
1

½n� k�q!
lim

z!qk�n
Dn�k

q

znðq1�n=z; qÞn
ðz; qÞ1

� �
; k ¼ 1; 2; . . . ; n: ð5:13Þ
The above coefficients can be computed more explicitly by using the Eqs. (1.11) and
(1.5) after some calculations to be
bk ¼
ð�1Þnqnðnþ1Þ=2�nk
ðqk; qÞ1ðq; qÞn�k

; k ¼ 1; 2; . . . ; n: ð5:14Þ
In particular, when k= 1
b1 ¼
1

2pi

Z
‘n

1

ðz; qÞ1
dz ¼ ð�1Þ

n
qnðn�1Þ=2

ðq; qÞ1ðq; qÞn�1
; ‘n � An; n ¼ 1; 2; . . . : ð5:15Þ
Due to the difficult of the calculations in the general case, we will suffice to calculate the
coefficients ak when n = 1
a0 ¼ �lim
z!1

d

dz

1

ðzq; qÞ1

� 	
¼ 1

ðq; qÞ1

X1
r¼1

qr

1� qr
:

For k= 1,2,. . ., the coefficients ak can be evaluate by using the relation (1.13) as
ak ¼ �lim
z!1

d

dz

1

ðzq; qÞ1
Yk
r¼1
ðz� qrÞ

8>>>><
>>>>:

9>>>>=
>>>>;
þ
Xk
r¼1

limz!qr
z� qr

ðz; qÞ1
Yk
i¼0
ðz� qiÞ
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¼ 1

ðq; qÞ1ðq; qÞk

Xk
r¼1

1

1� qr
�
X1
r¼1

qr

1� qr
þ
Xk
r¼1
ð�1Þr

k

r

� �
q

qrðrþ1Þ=2�rkðq; qÞr�1

( )

¼ 1

ðq; qÞ1ðq; qÞk
k�

X1
r¼kþ1

qr

1� qr
� k

( )
¼ �1
ðq; qÞ1ðq; qÞk

X1
r¼kþ1

qr

1� qr
and so
ak ¼
�1

ðq; qÞ1ðq; qÞk

X1
r¼kþ1

qr

1� qr
; k ¼ 0; 1; 2; . . . : ð5:16Þ
Therefore, the q-Laurent expansion of the function f(z) about z = 1 has the form
1

ðz; qÞ1
¼ �1
ðq; qÞ1

1

z� 1
þ
X1
k¼0

zkð1=z; qÞk
ðq; qÞk

X1
r¼kþ1

qr

1� qr

( )
: ð5:17Þ
Note that the previous expansion converges absolutely on the annulus
{z:1 < ŒzŒ < ŒqŒ�1} where ŒqŒ < 1 and can be rewritten in the form
1

ðz; qÞ1
¼ �1
ðq; qÞ1

1

z� 1
þ q

1� zq

X1
r¼0

ðq; qÞrqr
ðzq2; qÞr

( )
:

This means that
X1
r¼0

ðq; qÞrqrþ1
ðzq2; qÞr

¼ 1

1� z
1� zqþ ðq; qÞ1

ðzq2; qÞ1

� 	
; 1 < jzj < jqj�1:
6. CONCLUSION

The Cauchy’s integral formula is used to establish a contour integral representation for
nth q-derivative which plays a principal role to arrive at the results of this paper. This
formula is used to identify a bound for nth q-derivative and to introduce a new analytic
proof for q-Taylor series. Also, we used it to establish q-extension of Laurent expan-
sion. Some illustrative examples are derived to be as applications of q-Laurent expan-
sion. In fact, our results tend to the classical case when q fi 1�. In Theorems 3.1 and
4.1 we consider the domains of convergence are centered at the origin point but in the
classical case are not and this perhaps confuses the readers. Nevertheless, we emphasize
that our results tend to the classical results when q fi 1� due to the fact that all singular
points will be merged and converted to just a pole of a certain order at the expansion
point. Moreover, the contours will be deformed to be as in the classical case due to the
convergence of the analytic functions except at its singularities.
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