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Abstract. The notion of ideal immersions was introduced by the author in the 1990s.

Roughly speaking, an ideal immersion of a Riemannian manifold into a real space form

is a nice isometric immersion which produces the least possible amount of tension from

the ambient space at each point. In this paper, we classify all ideal hypersurfaces with

two distinct principal curvatures in the Euclidean 4-space E4. Moreover, we prove that

such ideal hypersurfaces are always rigid. Furthermore, we show that non-minimal

ideal hypersurfaces with three distinct principal curvatures in E4 are also rigid. On

the other hand, we provide explicit examples to illustrate that minimal ideal hypersur-

faces with three principal curvatures in E4 are not necessarily rigid.
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1. INTRODUCTION

For a Riemannian manifold M with n = dimM P 3, the author introduced in early
1990s a Riemannian invariant dM defined by [3]
dMðpÞ ¼ sðpÞ � infKðpÞ; ð1:1Þ

where s is the scalar curvature of M and infK(p) is the function assigning to the point p
the infimum of the sectional curvature K(p), running over all 2-planes in TpM.

For an isometric immersion of a Riemannian n-manifold M into an m-dimensional
Riemannian space form Rm(e) of constant sectional curvature e, the author proved in
[3] the following sharp inequality:
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dM 6
n2ðn� 2Þ
2ðn� 1Þ H

2 þ 1

2
ðnþ 1Þðn� 2Þ�; ð1:2Þ
involving the d-invariant dM and the squared mean curvature H2.
Inequality Eq. (1.2) has many important applications, for example, it provides a

Riemannian obstruction for a Riemannian manifold to admit a minimal isometric
immersion into a Euclidean space. It also gives rise to an obstruction to Lagrangian
isometric immersions from compact Riemannian manifolds with finite fundamental
group into complex space forms. The invariant dM and the inequality Eq. (1.2) were
later extended by the author to the general d-invariants d(n1,. . .,nk) (also known as
Chen invariants) and general inequalities involving d(n1,. . .,nk) (see [4–9,15] for more
details).

Since Eq. (1.2) is a very general and sharp inequality, it is very natural and interest-
ing to investigate submanifolds satisfying the equality case of inequality Eq. (1.2) iden-
tically. Following [5,9], we call a submanifold satisfying the equality case of Eq. (1.2)
identically a d(2)-ideal submanifold.

In this paper, we classify all ideal hypersurfaces with two distinct principal curva-
tures in the Euclidean 4-space E4. Moreover, we prove that such ideal hypersurfaces
in E4 are always rigid. Furthermore, we show that non-minimal ideal hypersurfaces
with three distinct principal curvatures are also rigid. On the other hand, we provide
explicit examples to show that minimal ideal hypersurfaces with three principal curva-
tures in E4 are not necessarily rigid.

2. PRELIMINARIES

2.1. Basic formulas

Let M be a Riemannian n-manifold equipped with an inner product Æ,æ. Denote by r
the Levi–Civita connection of M.

Assume that M is isometrically immersed in a Euclidean m-space Em. Then the for-
mulas of Gauss and Weingarten are given respectively by (cf. [2,9])
~rXY ¼ rXYþ hðX;YÞ; ð2:1Þ
~rXn ¼ �AnXþDXn; ð2:2Þ
for vector fields X and Y tangent to N and n normal to N, where ~r denotes the Levi–
Civita connection on Em, h is the second fundamental form, D is the normal connec-
tion, and A is the shape operator of N.

The second fundamental form h and the shape operator A are related by
hAnX;Yi ¼ hhðX;YÞ; ni; ð2:3Þ

where Æ,æ is the inner product on N as well as on fM. The mean curvature vector of N is
defined by
H
!¼ 1

n
trace h; n ¼ dimN: ð2:4Þ
The squared mean curvature H2 is given by H2 ¼ hH!;H!i.
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The equation of Gauss is given by
RðX;Y;Z;WÞ ¼ hhðX;WÞ; hðY;ZÞi � hhðX;ZÞ; hðY;WÞi ð2:5Þ

for vectors X,Y,Z,W tangent to M, where R denotes the Riemann curvature tensors of
M.

For the second fundamental form h, we define its covariant derivative �rh with re-
spect to the connection on TM ¯ T^M by
ð �rXhÞðY;ZÞ ¼ DXðhðY;ZÞÞ � hðrXY;ZÞ � hðY;rXZÞ: ð2:6Þ

The equation of Codazzi is
ð �rXrÞðY;ZÞ ¼ ð �rYrÞðX;ZÞ; ð2:7Þ

for vectors X,Y,Z tangent to M.

2.2. d-Invariants

LetM be a Riemannian n-manifold. Let K(p) denote the sectional curvature ofM asso-
ciated with a plane section p � TpM, p 2M. For a given orthonormal basis e1,. . .,en of
the tangent space TpM, the scalar curvature s at p is defined as
sðpÞ ¼
X
i<j

Kðei ^ ejÞ:
Let L be a subspace of TpM of dimension r P 2 and let {e1,. . .,er} be an orthonormal
basis of L. We define the scalar curvature s(L) of L by
sðLÞ ¼
X
a<b

Kðea ^ ebÞ; 1 6 a; b 6 r:
Given an integer k P 1, we denote by Sðn; kÞ the finite set consisting of unordered
k-tuples (n1,. . .,nk) of integers P2 satisfying n1 < n and n1 +� � �+ nk 6 n. We put
SðnÞ ¼ [kP1Sðn; kÞ.

For each k-tuple ðn1; . . . ; nkÞ 2 SðnÞ, the author introduced the d-invariant
d(n1,. . .,nk) as (cf. [4,5,9])
dðn1; . . . ; nkÞðpÞ ¼ sðpÞ � inffsðL1Þ þ � � � þ sðLkÞg;

where L1,. . .,Lk run over all k mutually orthogonal subspaces of TpM such that
dimLj = nj, j= 1,. . .,k.

The d-curvatures are very different in nature from the ‘‘classical’’ scalar and Ricci
curvatures; simply due to the fact that both scalar and Ricci curvatures are the ‘‘total
sum’’ of sectional curvatures on a Riemannian manifold. In contrast, the d-curvature
invariants are obtained from the scalar curvature by throwing away a certain amount
of sectional curvatures. (For the history and motivation on d-invariants, see author’s
most recent survey article [10].)

2.3. Fundamental inequalities

The author proved the following fundamental inequalities in [4,5].
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Theorem A. Let Mn be an n-dimensional submanifold in a real space form Rm(e) of
constant curvature e. Then, for each k-tuple ðn1; . . . ; nkÞ 2 SðnÞ, we have
dðn1; . . . ; nkÞ 6
n2ðnþ k� 1�

P
njÞ

2ðnþ k�
P

njÞ
H2 þ 1

2
nðn� 1Þ �

Xk
j¼1

njðnj � 1Þ
 !

�: ð2:8Þ
The equality case of inequality (2.8) holds at a point p 2M if and only if, there exists an
orthonormal basis {e1,. . .,em} at p, such that the shape operators of M in Rm(e) at p with
respect to {e1,. . .,em} take the form:
Ar ¼

Ar
1 . . . 0

..

. . .
. ..

.
0

0 . . . Ar
k

0 lrI

0BBBB@
1CCCCA; r ¼ nþ 1; . . . ;m; ð2:9Þ
where I is an identity matrix and Ar
j is a symmetric nj · nj submatrix satisfying
trace ðAr
1Þ ¼ � � � ¼ trace Ar

k

� �
¼ lr:
In particular, for hypersurfaces in a Euclidean 4-space, Theorem A implies the
following.

Theorem 2.1. Let M be an 3-dimensional submanifold of a Riemannian 4-manifold R4(e)
of constant sectional curvature e. Then
dM 6
9

4
H2 þ 2�: ð2:10Þ
Equality case of Eq. (2.10) hold if and only if, with respect to a suitable orthonormal
frame {e1,e2,e3,e4}, the shape operator A ¼ Ae4 of M in R4(e) takes the following form:
A ¼
k 0 0

0 l 0

0 0 kþ l

0B@
1CA ð2:11Þ
for some functions k and l.

A submanifold of a Euclidean space is called d(n1,. . .,nk)-ideal if it satisfies the equal-
ity case of Eq. (2.8) identically. Roughly speaking, an ideal immersion is a very nice
immersion which produces the least possible amount of tension from the ambient
space. Such submanifolds have many interesting properties and have been studied by
many geometers during the last two decades (see [8,9] for details).

Since the invariant dM defined in Eq. (1.1) is the only non-trivial d-invariant for Rie-
mannian 3-manifolds, an isometric immersion of a 3-manifold M is ideal if and only if
it is d(2)-ideal, i.e., it satisfied the equality case of Eq. (2.10) identically.
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3. BRIEF REVIEWS OF JACOBI’S ELLIPTIC FUNCTIONS

We review briefly some known facts on Jacobi’s elliptic functions for later use (for de-
tails, see, for instance, [1]).

Put
u ¼
Z x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� k2t2Þ

q ; ð3:1Þ

K ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� k2t2Þ

q ; ð3:2Þ
where we first suppose that x and k satisfy 0 < k < 1 and �1 6 x 6 1.
Eq. (3.1) defines u as an odd function of x which is positive, increasing from 0 to K

as x increases from 0 to 1. Inversely, the same equation defines x as an odd function of
u which increases from 0 to 1 as u increase from 0 to K; this function is known as a
Jacobi’s elliptic function, denoted by sn(u,k) (or simply by sn(u)), so that we can put
u ¼ sn�1ðxÞ; x ¼ snðuÞ: ð3:3Þ

The other two main Jacobi’s functions sn(u,k) and dn(u,k) (or simply denoted respec-
tively by sn(u) and dn(u)) are defined by
cnðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2ðuÞ

p
; dnðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sn2ðuÞ

q
; ð3:4Þ
the square roots are positive so long as u is confined to �K< u < K, so that cn(u) and

dn(u) are even functions of u. Let k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

be the complementary modulus. Then
dn(u) P k0 > 0. Jacobi’s elliptic functions depend on the variable u as well as on the
parameter k, which is called the modulus.

It is well-known that Jacobi’s elliptic functions satisfy the following identities:
sn2ðuÞ þ cn2ðuÞ ¼ 1; dn2ðuÞ þ k2sn2ðuÞ ¼ 1;

k2cn2ðuÞ þ k0
2 ¼ dn2ðuÞ; cn2ðuÞ þ k0

2
sn2ðuÞ ¼ dn2ðuÞ:

ð3:5Þ
It is also known that Jacobi’s elliptic functions satisfy
d

du
snðuÞ ¼ cnðuÞdnðuÞ; d

du
cnðuÞ ¼ �snðuÞdnðuÞ;

d

du
dnðuÞ ¼ �k2snðuÞcnðuÞ:

ð3:6Þ
Using cn(u), dn(u) and sn(u), one may define minor Jacobi elliptic functions as follows:
cdðuÞ ¼ cnðuÞ
dnðuÞ ; sdðuÞ ¼ snðuÞ

dnðuÞ ; nsðuÞ ¼ 1

snðuÞ ; � � � ; etc: ð3:7Þ
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4. IDEAL HYPERSURFACES WITH TWO DISTINCT PRINCIPAL CURVATURES

In this section, we completely classify all ideal hypersurfaces with two distinct principal
curvatures in E4.

Theorem 4.1. Let M be an ideal hypersurface of the Euclidean 4-space E4. Then M has
two distinct principal curvatures at each point if and only if M is congruent to one of the
following hypersurfaces:

(a) A spherical cylinder given by
ðt; a sin u; a cos u sin v; a cos u cos vÞ ð4:1Þ

for some positive number a;
(b) A cone given by
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

t; at sin u; at cos u sin v; at cos u cos v
� �

ð4:2Þ
for some real number a satisfying 0 6 a 6 1;
(c) A hypersurface given by
1

a
sd at;

1ffiffiffi
2
p

� �
sin u;

1

a
sd at;

1ffiffiffi
2
p

� �
cos u sin v;

1

a
sd at;

1ffiffiffi
2
p

� �
cos u cos v;

1

2

Z t

0

sd2 at;
1ffiffiffi
2
p

� �
dt

� �
ð4:3Þ
for some positive real number a.

Proof. Assume that M is an ideal hypersurface of the Euclidean 4-space. Then Theo-
rem 2.1 implies that there exists an orthonormal frame {e1,e2,e3,e4} such that the shape
operator of M with respect to this frame takes the following simple form:
A ¼
k 0 0

0 l 0

0 0 kþ l

0B@
1CA ð4:4Þ
for some functions k and l.
Let xj

i be the connection forms defined by
rXei ¼
X3
j¼1

xj
iðXÞej; i ¼ 1; 2; 3: ð4:5Þ
Then we have xj
i ¼ �xi

j for i,j = 1,2,3. In particular, we have xi
i ¼ 0.

Now, let us assume that M has two distinct principal curvatures at each point. Then
one of the following three cases must occur: (i) k = l, (ii) k = 0, or (iii) l = 0.

Case (i):
k = l: In this case, the second fundamental form satisfies
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hðe1; e1Þ ¼ hðe2; e2Þ ¼ ke4;

hðe3; e3Þ ¼ 2ke4;

hðei; ejÞ ¼ 0; otherwise:

ð4:6Þ
By straight-forward computation, we find the following equations from Eqs. (4.5), (4.6)
and the equation of Codazzi.
e1k ¼ e2k ¼ 0; e3k ¼ kx1
3ðe1Þ ¼ kx2

3ðe2Þ; ð4:7Þ
x1

3ðe3Þ ¼ x2
3ðe3Þ ¼ 0; ð4:8Þ

x3
2ðe1Þ ¼ x3

1ðe2Þ ¼ 0: ð4:9Þ
Let D denote the distribution spanned by e1 and e2. It follows from Eq. (4.9) that the
distribution D is an integrable distribution. Moreover, we know from Eqs. (4.7) and
(4.9) that every leaf of D is a totally umbilical surface in M with constant mean cur-
vature. Thus D is a spherical distribution. Furthermore, it follows from Eq. (4.8) that
the integral curves of e3 are geodesic in N. Therefore, the distribution spanned by e3 is a
totally geodesic distribution.

Let N be a leaf of D. Since N is totally umbilical in M, Eq. (4.6) implies that N is
also a totally umbilical surface in E4. Therefore N is an open portion of 2-sphere. Hence
we may apply a result of Hiepko to conclude that M is locally a warped product
R · fS

2(1) of a real line and the unit 2-sphere S2(1) with a warping function f on R (cf.
[11] or [9, page 90]). Consequently, we may assume that the metric tensor of M is given
by
g ¼ dt2 þ f2ðtÞðdu2 þ ðcos2 uÞdv2Þ ð4:10Þ

Obviously, e3 is tangent to the first factor and e1,e2 are tangent to the second factor of
the warped product. Thus we may assume that
e1 ¼
1

f

@

@u
; e2 ¼

sec u

f

@

@v
; e3 ¼

@

@t
: ð4:11Þ
By combining Eqs. (4.7) and (4.11) we see that k = k(t). Thus we find from Eq. (4.7)
that
x1
3ðe1Þ ¼ x2

3ðe2Þ ¼ ðln kÞ0: ð4:12Þ

From Eqs. (4.8), (4.9) and (4.12) we obtain
re1e3 ¼
k0

k
e1; re2e3 ¼

k0

k
e2; re3e3 ¼ 0; ð4:13Þ
which implies that the curvature tensor R of M satisfies
hRðe1; e3Þe3; e1i ¼ �ðln kÞ00 � ðln k0Þ2: ð4:14Þ

On the other hand, we find from Eq. (4.6) and the equation of Gauss that
hRðe1; e3Þe3; e1i ¼ 2k2: ð4:15Þ
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So, after combining Eqs. (4.14) and (4.15), we obtain the following differential
equation:
k00 þ 2k3 ¼ 0: ð4:16Þ

By solving this second order non-linear differential equation, we get
kðtÞ ¼ a

2
sd atþ b;

1ffiffiffi
2
p

� �

for some positive number a and a real number b. Therefore, after applying a suitable
translation in t, we have
kðtÞ ¼ a

2
sd at;

1ffiffiffi
2
p

� �
: ð4:17Þ
Now, by using Eqs. (4.6), (4.11) and (4.17) we derive that
h
@

@u
;
@

@u

� �
¼ a

2
f 2sd at;

1ffiffiffi
2
p

� �
e4;

h
@

@v
;
@

@v

� �
¼ a

2
f 2 cos2 usd at;

1ffiffiffi
2
p

� �
e4;

h
@

@t
;
@

@t

� �
¼ asd at;

1ffiffiffi
2
p

� �
e4;

h
@

@t
;
@

@u

� �
¼ h

@

@t
;
@

@v

� �
¼ g

@

@u
;
@

@v

� �
¼ 0:

ð4:18Þ
Moreover, after a straight-forward long computation, we know from Eq. (4.10) that
the Levi–Civita connection of M satisfies
r @
@t

@

@t
¼ 0; r @

@t

@

@u
¼ f 0

f

@

@u
; r @

@t

@

@v
¼ f 0

f

@

@v
;

r @
@u

@

@u
¼ �ff 0 @

@t
; r @

@u

@

@v
¼ � tan u

@

@v
;

r @
@v

@

@v
¼ �ff 0 cos2 u @

@t
þ sin u cos u

@

@u
:

ð4:19Þ
Now, by applying Eqs. (4.18), (4.19) the following equation
�r @
@t
h

� � @

@u
;
@

@u

� �
¼ �r @

@u
h

� � @

@t
;
@

@u

� �

of Codazzi, we find
f 0

f
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
: ð4:20Þ
After solving this differential equation, we get
fðtÞ ¼ csd at;
1ffiffiffi
2
p

� �
; ð4:21Þ
for some nonzero constant c.
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By applying Eqs. (4.6), (4.17), (4.19), we see that the sectional curvature K @
@u ^ @

@v

� �
of the plane section spanned by @

@u and
@
@v satisfies
k2 ¼ K
@

@t
^ @

@u

� �
¼ 1� f02

f2
: ð4:22Þ
Now, by substituting Eqs. (4.17) and (4.21) into Eq. (4.22) we find c2 = a�2. Thus,
without loss of generality, we may put c = a�1. Consequently, we have
fðtÞ ¼ 1

a
sd at;

1ffiffiffi
2
p

� �
: ð4:23Þ
By combining this with Eq. (4.10) we obtain
g ¼ dt2 þ
sd2 at; 1ffiffi

2
p

� �
a2

ðdu2 þ cos2 u dv2Þ; ð4:24Þ
which implies that
r @
@t

@

@t
¼ 0;

r @
@t

@

@u
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
@

@u
;

r @
@t

@

@v
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
@

@v
;

r @
@u

@

@u
¼�1

a
cd at;

1ffiffiffi
2
p

� �
sd at;

1ffiffiffi
2
p

� �
nd at;

1ffiffiffi
2
p

� �
@

@t
;

r @
@u

@

@v
¼� tanu

@

@v
;

r @
@v

@

@v
¼�1

a
cd at;

1ffiffiffi
2
p

� �
sd at;

1ffiffiffi
2
p

� �
nd at;

1ffiffiffi
2
p

� �
cos2 u

@

@t
þ sinucosu

@

@u
:

ð4:25Þ
Moreover, it follows from Eqs. (4.6), (4.11) and (4.17) that
h
@

@u
;
@

@u

� �
¼ 1

2a
sd3 at;

1ffiffiffi
2
p

� �
e4;

h
@

@v
;
@

@v

� �
¼ 1

2a
cos2 usd3 at;

1ffiffiffi
2
p

� �
e4;

h
@

@t
;
@

@t

� �
¼ asd at;

1ffiffiffi
2
p

� �
e4;

h
@

@t
;
@

@u

� �
¼ h

@

@t
;
@

@v

� �
¼ g

@

@u
;
@

@v

� �
¼ 0:

ð4:26Þ
Therefore, by using the formula of Gauss, Eqs. (4.25) and (4.26), we may conclude that
the immersion L : M! E4 of the ideal hypersurface satisfies
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@2L

@t2
¼ a sd at;

1ffiffiffi
2
p

� �
e4; ð4:27Þ

@2L

@t@u
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
@L

@u
; ð4:28Þ

@2L

@t@v
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
@L

@v
; ð4:29Þ

@2L

@u@u
¼ � 1

a
cd at;

1ffiffiffi
2
p

� �
sd at;

1ffiffiffi
2
p

� �
nd at;

1ffiffiffi
2
p

� �
@L

@t
þ 1

2a
sd3 at;

1ffiffiffi
2
p

� �
e4; ð4:30Þ

@2L

@u@v
¼ � tan u

@L

@v
; ð4:31Þ

@2L

@v@v
¼ � 1

a
cd at;

1ffiffiffi
2
p

� �
sd at;

1ffiffiffi
2
p

� �
nd at;

1ffiffiffi
2
p

� �
cos2 u

@L

@t
þ sin u cos u

@L

@u

þ 1

2a
cos2 u sd3 at;

1ffiffiffi
2
p

� �
e4: ð4:32Þ
After solving Eq. (4.31) we get
Lðt; u; vÞ ¼ Aðt; vÞ cos uþ Bðt; uÞ ð4:33Þ

for some vector-valued functions A(t,v) and B(t,u). Now, by substituting Eq. (4.33) into
Eq. (4.29) we find
@2A

@t@v
¼ a cd at;

1ffiffiffi
2
p

� �
ns at;

1ffiffiffi
2
p

� �
@A

@v
; ð4:34Þ
which implies
Aðt; vÞ ¼ PðtÞ þQðvÞsd at;
1ffiffiffi
2
p

� �
ð4:35Þ
for some vector functions P,Q. Combining Eq. (4.35) with Eq. (4.33) gives
Lðt; u; vÞ ¼ ðcos uÞ PðtÞ þQðvÞsd at;
1ffiffiffi
2
p

� �� �
þ Bðt; uÞ: ð4:36Þ
Also, after substituting Eq. (4.36) into Eq. (4.28) we obtain
sn at;
1ffiffiffi
2
p

� �
P0ðtÞ ¼ a cd at;

1ffiffiffi
2
p

� �
PðtÞ; ð4:37Þ

sn at;
1ffiffiffi
2
p

� �
@2B

@t@u
¼ a cd at;

1ffiffiffi
2
p

� �
@B

@u
: ð4:38Þ
By solving the differential equations Eqs. (4.37) and (4.38) we find
PðtÞ ¼ c0sd at;
1ffiffiffi
2
p

� �
; ð4:39Þ

Bðt; uÞ ¼ RðuÞsd at;
1ffiffiffi
2
p

� �
þ SðtÞ; ð4:40Þ
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for some vector c0 and vector functions R(u),S(t). After combining Eqs. (4.39) and
(4.40) with Eq. (4.36) we get � �
Lðt; u; vÞ ¼ SðtÞ þ ðRðuÞ þ TðvÞ cos uÞsd at;
1ffiffiffi
2
p ; ð4:41Þ
where T(v) = c0 + Q(v). Now, by substituting Eq. (4.41) into Eq. (4.27) we get
e4 ¼
1

a
S00ðtÞds at;

1ffiffiffi
2
p

� �
� aðRðuÞ þ TðvÞ cos uÞsd2 at;

1ffiffiffi
2
p

� �
: ð4:42Þ
So, after substituting Eqs. (4.41) and (4.42) into Eq. (4.30), we obtain
2a2ðR00ðuÞþRðuÞÞdn4 at;
1ffiffiffi
2
p

� �
¼dn2 at;

1ffiffiffi
2
p

� �
S00ðtÞdn at;

1ffiffiffi
2
p

� �
sn at;

1ffiffiffi
2
p

� �
�2aS0ðtÞcn at;

1ffiffiffi
2
p

� �� �
:

ð4:43Þ

It follows from Eq. (4.43) that
R00ðuÞ þ RðuÞ ¼ d1 ð4:44Þ

for some vector d1. By solving Eq. (4.44) we get
RðuÞ ¼ d1 þ d2 cos uþ c1 sin u
for some vectors d2,c1. Combining this with Eq. (4.41) yields
Lðt; u; vÞ ¼ GðtÞ þ ðc1 sin uþHðvÞ cos uÞsd at;
1ffiffiffi
2
p

� �
ð4:45Þ
with GðtÞ ¼ SðtÞ þ d1sdðat; 1ffiffi
2
p Þ and H(v) = d2 + T(v).

Substituting Eq. (4.45) into Eq. (4.27) gives
e4 ¼
1

a
G00ðtÞds at;

1ffiffiffi
2
p

� �
� aðc1 sin uþHðvÞ cos uÞsd2 at;

1ffiffiffi
2
p

� �
: ð4:46Þ
Finally, by substituting Eqs. (4.45) and (4.46) into Eqs. (4.30) and (4.32), we obtain
after a long computation that � � � �
L ¼ ðc1 sin uþ ðc2 cos vþ c3 sin vÞÞ cos uÞsd at;
1ffiffiffi
2
p þ c4

Z t

0

sd2 as;
1ffiffiffi
2
p ds
for some vectors c1; . . . ; c4 2 E4. Consequently, by choosing a suitable coordinate sys-
tem of E4, we obtain case (c) of the theorem.
Case (ii):
k = 0. In this case, the second fundamental form satisfies
hðe2; e2Þ ¼ le4; hðe3; e3Þ ¼ le4;

hðei; ejÞ ¼ 0; otherwise:
ð4:47Þ
From Eqs. (4.5), (4.47) and Codazzi’s equation we obtain
e2l ¼ e3l ¼ 0; e1l ¼ lx1
2ðe2Þ ¼ lx1

3ðe3Þ; ð4:48Þ
x1

2ðe3Þ ¼ x1
3ðe2Þ ¼ 0; ð4:49Þ

x2
1ðe1Þ ¼ x3

1ðe1Þ ¼ 0: ð4:50Þ
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Let H be the distribution spanned by e2 and e3. It follows from Eqs. (4.48), (4.49),
and (4.50) that H is an integrable distribution whose leaves are totally umbilical in M
with constant mean curvature. Thus,H is a spherical distribution. Also, it follows from
Eq. (4.50) that the integral curves of e1 are geodesic in N. Therefore, Hiepko’s theorem
in [11] implies that M is locally a warped product R · fS

2(1) of a real line and a unit
2-sphere S2(1). Consequently, we may assume that the metric tensor of M is given by
g ¼ dt2 þ f2ðtÞðdu2 þ cos2 u dv2Þ: ð4:51Þ

Obviously, e1 is tangent to the first factor and e2,e3 are tangent to the second factor of
the warped product. Thus we have
e1 ¼
@

@t
; e2 ¼

1

f

@

@u
; e2 ¼

sec u

f

@

@v
: ð4:52Þ
From Eq. (4.51) we conclude that the Levi–Civita connection of M satisfies Eq. (4.19).
Moreover, Eq. (4.48) shows that l = l(t).

It follows from Eq. (4.19) that the sectional curvature K(p) of the plane section p
spanned by @

@t ;
@
@u is equal to �f00/f. On the other hand, it follows from Eq. (4.47) and

Gauss’ equation that K(p) = 0. Therefore we get f00= 0, which implies that f= at + b
for some real numbers a,b, not both zero.

If a „ 0, then after applying a suitable translation in t we obtain f = at.
Consequently, either (a) f = b with b „ 0 or (b) f = at with a „ 0.

Case (ii.a): f= b,b „ 0. In this case, Eq. (4.51) becomes
g ¼ dt2 þ b2ðdu2 þ cos2 u dv2Þ: ð4:53Þ

Thus M is an open portion of the Riemannian product of a line and a 2-sphere S2(b)
with radius b. Hence, in view of Eq. (4.47), we conclude that the immersion

L : M � R� S2 1
b

� �
! E4 is the product immersion of a line and an ordinary 2-sphere

S2 1
b

� �
in E3 (cf. [14]). Clearly, in this case the second fundamental form of M in E4 de-

pends only the metric tensor of M.
Case (ii.b): f= at. In this case, Eq. (4.51) becomes
g ¼ dt2 þ a2t2ðdu2 þ cos2 u dv2Þ: ð4:54Þ

Without loss of generality, we may assume that a is positive. Thus the Levi–Civita con-
nection of g satisfies
r @
@t

@

@t
¼ 0; r @

@t

@

@u
¼ 1

t

@

@u
; r @

@t

@

@v
¼ 1

t

@

@v
;

r @
@u

@

@u
¼ �a2t @

@t
; r @

@u

@

@v
¼ � tan u

@

@v
;

r @
@v

@

@v
¼ �a2t cos2 u @

@t
þ sin u cos u

@

@u
:

ð4:55Þ
It follows from Eq. (4.55) that the sectional curvature Kðp̂Þ of the plane section p̂
spanned by @

@u
; @
@v
is equal to (1 � a2)/(a2t2).
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On the other hand, the equation of Gauss gives Kðp̂Þ ¼ l2. Therefore, we may put
l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

at
ð4:56Þ
for some positive number 0 < a < 1. Consequently, Eq. (4.47) becomes
h
@

@t
;
@

@t

� �
¼ 0; h

@

@u
;
@

@u

� �
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

te4;

h
@

@v
;
@

@v

� �
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

t cos2 ue4;

h
@

@t
;
@

@u

� �
¼ h

@

@t
;
@

@v

� �
¼ h

@

@u
;
@

@v

� �
¼ 0:

ð4:57Þ
Gauss’ formula, Eqs. (4.55) and (4.57) imply that the immersion L : M! E4 of the
ideal hypersurface satisfies
@2L

@t2
¼ 0;

@2L

@t@u
¼ 1

t

@L

@u
;

@2L

@t@v
¼ 1

t

@L

@v
; ð4:58Þ

@2L

@u@u
¼ �a2t @L

@t
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

te4; ð4:59Þ

@2L

@u@v
¼ � tan u

@L

@v
; ð4:60Þ

@2L

@v@v
¼ �a2t cos2 u @L

@t
þ sin u cos u

@L

@u
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

t cos2 ue4: ð4:61Þ
Moreover, Eqs. (4.54), (4.56), and Weingarten’s formula imply
@e4
@t
¼ 0;

@e4
@u
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

at

@L

@u
;

@e4
@v
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

at

@L

@v
: ð4:62Þ
Solving Eq. (4.58) gives
Lðt; u; vÞ ¼ tAðu; vÞ ð4:63Þ

for some vector function A(u,v). So, after substituting Eq. (4.63) into Eq. (4.60) we find
@2A
@u@v
¼ � tan u @A

@v
, which implies that
Aðu; vÞ ¼ PðuÞ þQðvÞ cos u;

for some vector functions P(u),Q(v). Combining this with Eq. (4.63) gives
Lðt; u; vÞ ¼ tðPðuÞ þQðvÞ cos uÞ: ð4:64Þ

Now, by substituting Eq. (4.64) into Eqs. (4.60) and (4.61), we find
ðcos uÞP00ðuÞ þ ðsin uÞP0ðuÞ ¼ �c0; ð4:65Þ
Q00ðvÞ þQðvÞ ¼ �c0; ð4:66Þ
for some vector c0 2 E4. After solving Eqs. (4.65) and (4.66) we get
PðuÞ ¼ c0 cos uþ c2 sin uþ c1; ð4:67Þ
QðvÞ ¼ c3 cos vþ c4 sin v� c0; ð4:68Þ
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for some vectors c1,c2,c3,c4. Now, by combining Eqs. (4.64), (4.67) and (4.68), we
obtain
Lðt; u; vÞ ¼ tðc1 þ c2 sin uþ ðc3 cos vþ c4 sin vÞ cos uÞ: ð4:69Þ

Consequently, by applying Eq. (4.54), we obtain case (b) of the theorem after choosing
a suitable coordinate system of E4.

Case (iii):
l = 0. This case reduces to case (ii).

The converse can be verified by straight-forward computation. h

Recall that an isometric immersion of a Riemannian n-manifold into a Euclidean
m-space is called rigid if the isometric immersion is unique up to isometries of Em.

For ideal hypersurfaces with two distinct principal curvatures in E4, we have the fol-
lowing rigidity theorem.

Theorem 4.2. Every ideal hypersurface with two distinct principal curvatures in E4 is
rigid.

Proof. From the proof of Theorem 4.1, we know that the second fundamental form of
each ideal hypersurface in E4 with two distinct principal curvatures depends only on the
metric tensor of the ideal hypersurface. Consequently, the fundamental theorem of
submanifolds implies that the ideal immersion is rigid (cf. [2,9,12]). h
5. RIGIDITY AND NON-RIGIDITY OF IDEAL HYPERSURFACES WITH THREE DISTINCT PRINCIPAL

CURVATURES

First, we give the following rigidity result.

Proposition 5.1. Every non-minimal ideal hypersurface in E4 with three distinct principal
curvatures is rigid.

Proof. Assume thatM is a non-minimal ideal hypersurface with three distinct principal
curvatures. Then it follows from Theorem 2.1 that the three principal curvatures are
k,l,k + l for some functions k and l satisfying k + l „ 0.

Since k,l,k + l are mutually distinct, both principal curvatures k and l are nonzero.
Therefore, all of the three principal curvatures must be nonzero. Hence, M has type
number three. Consequently, the ideal hypersurface M must be rigid (cf. for instance,
[12, page 46]). h

In view of Theorem 4.2 and Proposition 5.1, we provide the following explicit exam-
ples which illustrate that minimal ideal hypersurface with three distinct principal cur-
vatures in E4 are not rigid in general.
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Example 5.1. Let M1 be the catenoid in a Euclidean 3-space E3 defined by
w1ðs; tÞ ¼ ðcosh s cos t; cosh s sin t; sÞ ð5:1Þ

for �sinh�1(1) < s < sinh�1(1) and 0 < t < 2p. Let M2 be the helicoid given by
w2ðu; vÞ ¼ ðu cos v; u sin v; vÞ ð5:2Þ

for �1 < u < 1 and 0 < v < 2p. It is well-known that both the catenoid and the heli-
coid are minimal in E3.

Consider the map /:M1 fi M2 defined by
/ððcosh s cos t; cosh s sin t; sÞÞ ¼ ðsinh s cos t; sinh s sin t; tÞ: ð5:3Þ

It is direct to show that / is a one-to-one isometry (cf. [13, pages 146–147]). Thus, w1

and /�w1 are two non-congruent isometric immersions of a Riemannian 2-manifold,
say N, into the Euclidean 3-space E3.

If we put
L1 : N� R! E4; ðs; t; xÞ#ðcosh s cos t; cosh s sin t; s; xÞ; ð5:4Þ
L2 : N� R! E4; ðs; t; xÞ#ðsinh s cos t; sinh s sin t; t; xÞ; ð5:5Þ
then L1 and L2 are two non-congruent ideal immersions of the Riemannian 3-manifold
N · R into E4. Clearly, both L1 and L2 have three distinct principal curvatures.

The following result is an immediate consequence of Example 5.1.

Proposition 5.2. There exist minimal ideal hypersurfaces in E4 with three distinct
principal curvatures which are non-rigid.

Now, we give the following non-rigidity result.

Proposition 5.3. For any integer n P 3, there exist ideal hypersurfaces in a Euclidean
space Enþ1 which are not rigid.

Proof. The simplest examples of such ideal hypersurfaces in Enþ1 are the following two
isometric immersions of M ¼ N� En�2 into Enþ1:
L1 : N� En�2 3 ðs; t; xÞ#ðcosh s cos t; cosh s sin t; s; xÞ 2 Enþ1; ð5:6Þ
L2 : N� En�2 3 ðs; t; xÞ#ðsinh s cos t; sinh s sin t; t; xÞ 2 Enþ1; ð5:7Þ
where N is defined in Example 5.1. h

An immediate consquence of Proposition 5.3 is as follows.

Corollary 5.1. For each integer n P 3, there exist Riemannian n-manifolds which admit
more than one ideal immersion in Enþ1.
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Geometry, Ed. Acad. Române, Bucharest, 2008, pp. 29–155.

[9] B.-Y. Chen, Pseudo-Riemannian Geometry, d-invariants and Applications, World Scientific Publ.,

Hackensack, New Jersey, 2011.

[10] B.-Y. Chen, A tour through d-invariants: from Nash embedding theorem to ideal immersions, best ways

of living and beyond, to appear in Publ. Inst. Math. (Beograd) (N.S.), in: Proc. XVII Geom. Sem.,

Zlatibor, 2012.

[11] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979) 209–215.

[12] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. II, John Wiley & Sons, Inc., New

York–London–Sydney, 1969.

[13] R.S. Millman, G.D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs,

NJ, 1977.

[14] B. Segre, Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di

dimensoni, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat. 27 (1938) 203–207.

[15] G.-E.Vilcu, OnChen invariant and inequalities in quaternionic geometry, J. Inequal. Appl. 2013 (2013) 66.

http://refhub.elsevier.com/S1319-5166(13)00012-1/h0005
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0005
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0005
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0010
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0010
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0015
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0015
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0020
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0020
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0020
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0020
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0025
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0025
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0030
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0030
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0030
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0030
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0030
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0035
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0035
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0040
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0040
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0040
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0045
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0045
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0045
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0050
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0055
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0055
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0055
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0060
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0060
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0060
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0065
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0065
http://refhub.elsevier.com/S1319-5166(13)00012-1/h0070

	On ideal hypersurfaces of Euclidean 4-space
	1 Introduction
	2 Preliminaries
	2.1 Basic formulas
	2.2 δ-Invariants
	2.3 Fundamental inequalities

	3 Brief reviews of Jacobi’s elliptic functions
	4 Ideal hypersurfaces with two distinct principal curvatures
	5 Rigidity and non-rigidity of ideal hypersurfaces with three distinct principal curvatures
	References


