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Abstract. We prove two properties regarding the Fibonacci and Lucas Sequences modulo
a prime and use these to generalize the well-known property p | Fp−

( p
5
). We then discuss

these results in the context of primality testing.
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1. INTRODUCTION

The Fibonacci and Lucas sequences have been a topic of intensive investigation ever since
they were introduced. Despite the huge amount of results that have been proved, they still
present difficult and interesting problems which occupy the minds of mathematicians. In the
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thukair@ksu.edu.sa (F. Al-Thukair).
Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2017.06.002
1319-5166 c⃝ 2017 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajmsc.2017.06.002&domain=pdf
mailto:dandrica@math.ubbcluj.ro
mailto:vlad.crisan@mathematik.uni-goettingen.de
mailto:thukair@ksu.edu.sa
http://dx.doi.org/10.1016/j.ajmsc.2017.06.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 D. Andrica et al.

present article, we focus on discussing the properties of the two sequences when they are
reduced modulo a prime.

Recall that the Fibonacci sequence (Fn)n≥0 is defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1, for n ≥ 1,

while the Lucas sequence (Ln)n≥0 is defined by:

L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1, for n ≥ 1.

The main result of the paper is Theorem 1, which generalizes the well-known property
p | Fp−( p

5 ) to showing that p | Fkp−( p
5 ) − Fk−1, where

( p
5

)
denotes the Legendre symbol.

The equivalent result for the Lucas numbers is also derived as part of the same theorem.
Results of similar flavor were previously derived in [8], Lemma 6 and in [7].

As a consequence of our main result, we generalize the notion of a Fibonacci pseudoprime
and discuss its role in primality testing. This is achieved in Proposition 1 and in the remarks
following it.

2. A KEY LEMMA

In this section we prove by elementary means an auxiliary lemma from which we will
deduce our main result in the next section. Recall the Binet’s formulas for Fn and Ln:

Fn =
1

√
5

[(
1 +

√
5

2

)n

−

(
1 −

√
5

2

)n]
,

Ln =

(
1 +

√
5

2

)n

+

(
1 −

√
5

2

)n

.

These formulas can be extended to negative integers n in a natural way. We have F−n =

(−1)n−1 Fn and L−n = (−1)n Ln , for all n.
Our auxiliary result is the following:

Lemma 1. Let p be an odd prime, k a positive integer, and r an arbitrary integer. The
following relations hold:

2Fkp+r ≡

( p
5

)
Fk Lr + Fr Lk (mod p) (1)

and

2Lkp+r ≡ 5
( p

5

)
Fk Fr + Lk Lr (mod p), (2)

where ( p
5 ) is the Legendre’s symbol.

Proof. We shall prove (1) directly from the definition. Write (1 +
√

5)s
= as + bs

√
5, where

as and bs are positive integers, s = 0, 1, . . .. By Binet’s formula, we have

Fkp+r =
1

√
5

⎡⎣(1 +
√

5
2

)kp+r

−

(
1 −

√
5

2

)kp+r
⎤⎦

=
1

2kp+r
√

5
[(ak + bk

√
5)p(ar + br

√
5) − (ak − bk

√
5)p(ar − br

√
5)]
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=
1

2kp+r
√

5

⎡⎣(ar + br
√

5)
p∑

j=0

(
p
j

)
a p− j

k (bk
√

5) j

− (ar − br
√

5)
p∑

j=0

(
p
j

)
(−1) j a p− j

k (bk
√

5) j

⎤⎦
=

1

2kp+r
√

5

⎡⎣ar

p∑
j=0

(
p
j

)
(1 − (−1) j )a p− j

k (bk
√

5) j

+ br
√

5
p∑

j=0

(
p
j

)
(1 + (−1) j )a p− j

k (bk
√

5) j

⎤⎦ .

Since p divides
(

p
j

)
for j = 1, 2, . . . , p − 1, it follows that

2kp+r−1 Fkp+r ≡

(
ar bp

k 5
p−1

2 + br a p
k

)
(mod p).

Using Fermat’s Little Theorem and Euler’s Criterion, we have further that

2kp+r−1 Fkp+r ≡

( p
5

)
ar bk + br ak (mod p), (3)

where we have also used the Gauss’ Quadratic Reciprocity Law to deduce that ( 5
p ) = ( p

5 ).
On the other hand, from (1 +

√
5)s

= as + bs
√

5 we get (1 −
√

5)s
= as − bs

√
5, hence

we have as = 2s−1
· Ls and bs = 2s−1

· Fs for s = 0, 1, . . .. Substituting this back into (3),
we obtain

2kp−k+1 Fkp+r ≡

( p
5

)
Lr Fk + Fr Lk (mod p),

and the relation (1) follows via Fermat’s Little Theorem.
To deduce (2), we employ the following well-known formula:

Ln = Fn + 2Fn−1,

which can be proved either directly from the definition or by noting that the sequences
(Ln)n≥0 and (Fn + 2Fn−1)n≥0 satisfy the same initial conditions and the same recursion
formula. From this identity we can also immediately deduce that

Ln + 2Ln−1 = 5Fn.

By (1), we have

2Fkp+r ≡

( p
5

)
Fk Lr + Fr Lk (mod p)

and

4Fkp+r−1 ≡ 2
( p

5

)
Fk Lr−1 + 2Fr−1Lk (mod p).

Adding these two relations yields

2Fkp+r + 4Fkp+r−1 ≡

( p
5

)
Fk(Lr + Lr−1) + Lk(Fr + 2Fr−1).
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Then using the two identities which we mentioned above we deduce that

2Fkp+r + 4Fkp+r−1 = Lkp+r

and ( p
5

)
Fk(Lr + Lr−1) + Lk(Fr + 2Fr−1) = 5

( p
5

)
Fk Fr + Lk Lr ,

which gives the relation (2). □

3. THE MAIN RESULT AND PRIMALITY TESTING

We begin by showing some immediate consequences of Lemma 1 and then derive the
main result of this article, which generalizes the well-known property p | Fp−( p

5 ), which we
also deduce below.

Examples 1. Taking r = 0 in relation (1), we obtain that for any positive integer k one has

Fkp ≡

( p
5

)
Fk (mod p). (4)

In the special case k = 1 we get

Fp ≡

( p
5

)
(mod p).

Taking k = 1 and r = 1 in relation (1) we get

2Fp+1 ≡

( p
5

)
+ 1 (mod p). (5)

Taking k = 1 and r = −1 in relation (1) we get

2Fp−1 ≡ −

( p
5

)
+ 1 (mod p). (6)

If ( p
5 ) = −1, then from (5) we have p | Fp+1. In the case ( p

5 ) = 1, from (6) one obtains
p | Fp−1. We can summarize these consequences in the following known property:

p | Fp−( p
5 ). (7)

Remark 1. We say that a composite number n is a Fibonacci pseudoprime if n | Fn−( n
5 )

.
Lehmer proved in [5] that there exist infinitely many such pseudoprimes. The list of the odd
pseudoprimes is given in [1] A081264, while the list of the even ones is [1] A141137.

In contrast to (7), there is no prime p < 2.8 × 1016 such that p2
| Fp−( p

5 ). R. Crandall, K.
Dilcher and C. Pomerance called in [3] such a prime p satisfying p2

| Fp−( p
5 ) a Wall–Sun–

Sun prime. There is no known example of a Wall–Sun–Sun prime and there is also no known
way to check the congruence Fp−( p

5 ) ≡ 0 (mod p2), other than through explicit powering
computations. Further remarks on this topic can be found in [2] or [4].

Examples 2. From relation (4), it follows that for two positive integers k and s, p divides
Fkp − Fsp if and only if p divides Fk − Fs . In particular, since F2 = F1 = 1, we get

p | F2p − Fp.
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Taking k = 1 and r = 1 in relation (2), we get

2L p+1 ≡ 5
( p

5

)
+ 1 (mod p). (8)

Taking k = 1 and r = −1 in relation (2) we get

2L p−1 ≡ 5
( p

5

)
− 1 (mod p). (9)

If ( p
5 ) = −1, then from (8) we have p | L p+1 + 2. In the case ( p

5 ) = 1, from (9) one
obtains p | L p−1 − 2.

We can summarize these remarks in the following formula:

p | L p−( p
5 ) − 2

( p
5

)
. (10)

The relations (7) and (10) are just the first in a sequence of divisibility relations as we can
see from the following result.

Theorem 1. Let p be an odd prime and k a positive integer. The following relations hold :

1. Fkp−( p
5 ) ≡ Fk−1 (mod p).

2. Lkp−( p
5 ) ≡ ( p

5 )Lk−1 (mod p).

Proof. For the first part, let us consider in (1) r = 1 and r = −1 to get the relations
2Fkp+1 ≡ ( p

5 )Fk + Lk (mod p) and 2Fkp−1 ≡ −( p
5 )Fk + Lk (mod p), respectively. These

relations can be summarized as

2Fkp−( p
5 ) ≡ Lk − Fk (mod p).

The sequences (L j − F j ) j≥0 and (2F j−1) j≥0 satisfy the same initial conditions for j = 0, j =

1 and the same recursive relation, hence we have L j − F j = 2F j−1.
For the second part of the theorem, the argument is quite similar. Let us consider in

(2) r = 1 and r = −1 to get the relations 2Lkp+1 ≡ 5( p
5 )Fk + Lk (mod p) and

2Lkp−1 ≡ 5( p
5 )Fk − Lk (mod p), respectively. These relations can be summarized as

2Lkp−( p
5 ) ≡

( p
5

)
(5Fk − Lk) (mod p).

Now observe that the sequences (5F j − L j ) j≥0 and (2L j−1) j≥0 satisfy the same initial
conditions for j = 0, j = 1 and the same recursive relation, hence we have 5F j − L j =

2L j−1, and the property is proved. □

Remark 2. The first relation in Theorem 1 shows that for every odd prime p, there exists an
arithmetic progression a0, a1, . . . with ratio p, such that

(Fa0 , Fa1 , Fa2 , . . .) ≡ (F0, F1, F2, . . .) (mod p).

The second relation of the same theorem shows that for every odd prime p, there exists an
arithmetic progression a0, a1, . . . with ratio p, such that

(La0 , La1 , La2 , . . .) ≡ (L0, L1, L2, . . .) (mod p) if
( p

5

)
= 1

and

(La0 , La1 , La2 , . . .) ≡ −(L0, L1, L2, . . .) (mod p) if
( p

5

)
= −1.
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Following Theorem 1 we call a positive integer n a Fibonacci pseudoprimes of level k if
n is composite and satisfies

n | Fkn−( n
5 ) − Fk−1.

This should not be confused with the well-known definition of a Fibonacci pseudoprime of
kind k, which is connected to the generalized Lucas sequences.

For a fixed positive integer k, we denote by Fk the set of all Fibonacci pseudoprimes
of level k. It is natural to ask whether the generalization provided by Theorem 1 gives
better information about primality testing. Unfortunately, this is answered negatively by the
following result:

Proposition 1. Let n > 0 be an integer which is coprime to 10. Then n ∈ Fk for all k ≥ 1
if and only if n ∈ F1 and n | F2

n − 1. In particular, if n | Fn−( n
5 )

and n | Fn −
( n

5

)
, then

n ∈ Fk for all k ≥ 1.

Proof. Assume first that n ∈ F1 and n | F2
n − 1, i.e. n satisfies simultaneously n | Fn−( n

5 )
and n | F2

n − 1. We prove by induction on k ≥ 1 that n ∈ Fk . This is true for k = 1 by our
assumption. Recall Catalan’s identity:

F2
m − Fm+r Fm−r = (−1)m−r F2

r .

We first use this for m = n −
( n

5

)
and r = n. As 5 ∤ n, it follows that

F2
n−( n

5 )
+ (−1)(

n
5 )F2n−( n

5 )
= (−1)−( n

5 )F2
n .

Looking at this equality modulo n, we obtain that n | F2n−( n
5 )

− F1.
Assume now that the result holds for all positive integers less than some k ≥ 2. To prove

it for k + 1, we use Catalan’s identity with m = kn −
( n

5

)
, r = n and we obtain

F2
kn−( n

5 )
− F(k+1)n−( n

5 )
F(k−1)n−( n

5 )
= (−1)(k−1)n−( n

5 )F2
n .

Looking at this equality modulo n we obtain by the induction hypothesis that

F(k+1)n−( n
5 )

Fk−2 = F2
k−1 − (−1)(k−1)n−( n

5 ).

Since gcd(n, 10) = 1, we have that (−1)(k−1)n−( n
5 ) = (−1)k . On the other hand, applying

Catalan’s identity with m = k and r = 1 we obtain

Fk Fk−2 = F2
k−1 + (−1)k−1.

It follows that we must have n | F(k+1)n−( n
5 )

− Fk , which completes the first part of our proof.
Conversely, if n ∈ Fk for all k, we have in particular that n ∈ F1 and n ∈ F2. Then from

F2
n−( n

5 )
+ (−1)(

n
5 )F2n−( n

5 )
= (−1)−( n

5 )F2
n

we deduce that n | F2
n − 1. □

Remark 3. When 5 | n and n is odd, the above proof also shows that n ∈ Fk if and only if
n | Fk−1. As F5 = 5 and gcd(Fm, Fn) = Fgcd(m,n), we get that 5 | k − 1. As a particular case,
using the identity

F5(2m+1) = 5(F5
2m+1 − 5F3

2m+1 + F2m+1),
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one can easily prove by induction that 5r
| F5r . Hence we obtain that 5r

∈ Fk−1 whenever
5r

| k − 1.

Remark 4. Pseudoprimes n which satisfy the conditions n | Fn−( n
5 )

and n | Fn −
( n

5

)
are

discussed in [6], pages 126–129.
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