On connections on principal bundles

IndRanil Biswas ${ }^{1}$
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

Received 12 July 2016; accepted 5 August 2016
Available online 24 August 2016

Abstract

A new construction of a universal connection was given in Biswas, Hurtubise and Stasheff (2012). The main aim here is to explain this construction. A theorem of Atiyah and Weil says that a holomorphic vector bundle E over a compact Riemann surface admits a holomorphic connection if and only if the degree of every direct summand of E is zero. In Azad and Biswas (2002), this criterion was generalized to principal bundles on compact Riemann surfaces. This criterion for principal bundles is also explained.

Keywords: Principal bundle; Universal connection; Holomorphic connection; Real Higgs bundle

2010 Mathematics Subject Classification: 53C05; 53C07; 32L05

1. INTRODUCTION

A connection ∇^{0} on a C^{∞} principal G-bundle $\mathcal{E}_{G} \longrightarrow \mathcal{X}$ is called universal if given any C^{∞} principal G-bundle E_{G} on a finite dimensional C^{∞} manifold M, and any connection ∇ on E_{G}, there is a C^{∞} map

$$
\xi: M \longrightarrow \mathcal{X}
$$

such that

- the pulled back principal G-bundle $\xi^{*} \mathcal{E}_{G}$ is isomorphic to E_{G}, and
- the isomorphism between $\xi^{*} \mathcal{E}_{G}$ and E_{G} can be so chosen that it takes the pulled back connection $\xi^{*} \nabla^{0}$ on $\xi^{*} \mathcal{E}_{G}$ to the connection ∇ on E_{G}.
In [8] and [9] universal connections were constructed. In [4] a very simple, in fact quite tautological, universal connection was constructed.

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2016.08.002
1319-5166 © 2016 The Author. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. AtiYah bundle

All manifolds considered here will be C^{∞}, second countable and Hausdorff. Later we will impose further conditions such as complex structure.

Let G be a finite dimensional Lie group. Take a connected C^{∞} manifold M. A principal G-bundle over M is a triple of the form

$$
\begin{equation*}
\left(E_{G}, p, \psi\right) \tag{2.1}
\end{equation*}
$$

where
(1) E_{G} is a C^{∞} manifold,
(2)

$$
\begin{equation*}
p: E_{G} \longrightarrow M \tag{2.2}
\end{equation*}
$$

is a C^{∞} surjective submersion, and
(3)

$$
\begin{equation*}
\psi: E_{G} \times G \longrightarrow E_{G} \tag{2.3}
\end{equation*}
$$

is a C^{∞} map defining a right action of G on E_{G}, such that the following two conditions hold:

- the two maps $p \circ \psi$ and $p \circ p_{1}$ from $E_{G} \times G$ to M coincide, where p_{1} is the natural projection of $E_{G} \times G$ to E_{G}, and
- the map to the fiber product

$$
\operatorname{Id}_{E_{G}} \times \psi: E_{G} \times G \longrightarrow E_{G} \times{ }_{M} E_{G}
$$

is a diffeomorphism; note that the first condition $p \circ \psi=p \circ p_{1}$ implies that the image of $\operatorname{Id}_{E_{G}} \times \psi$ is contained in the submanifold $E_{G} \times{ }_{M} E_{G} \subset E_{G} \times E_{G}$ consisting of all points $\left(z_{1}, z_{2}\right) \in E_{G} \times E_{G}$ such that $p\left(z_{1}\right)=p\left(z_{2}\right)$.
Therefore, the first condition implies that G acts on E_{G} along the fibers of p, while the second condition implies that the action of G on each fiber of p is both free and transitive.

Take a C^{∞} principal G-bundle $\left(E_{G}, p, \psi\right)$ over M. The tangent bundle of the manifold E_{G} will be denoted by $T E_{G}$. Take a point $x \in M$. Let

$$
\left(T E_{G}\right)^{x}:=\left.\left(T E_{G}\right)\right|_{p^{-1}(x)} \longrightarrow p^{-1}(x)
$$

be the restriction of the vector bundle $T E_{G}$ to the fiber $p^{-1}(x)$ of p over the point x. As noted above, the action ψ of G on E_{G} preserves $p^{-1}(x)$, and the resulting action of G on $p^{-1}(x)$ is free and transitive. Therefore, the action of G on $T E_{G}$ given by ψ restricts to an action of G on $\left(T E_{G}\right)^{x}$. Let $\operatorname{At}\left(E_{G}\right)_{x}$ be the space of all G-invariant sections of $\left(T E_{G}\right)^{x}$. Since the action of G on the fiber $p^{-1}(x)$ is transitive, it follows that any G-invariant section of $\left(T E_{G}\right)^{x}$ is automatically smooth. More precisely, any G-invariant sections of $\left(T E_{G}\right)^{x}$ is uniquely determined by its evaluation of some fixed point of $p^{-1}(x)$. $\operatorname{Therefore,~} \operatorname{At}\left(E_{G}\right)_{x}$ is a real vector space whose dimension coincides with the dimension of E_{G}.

There is a natural vector bundle over M, which was introduced in [1], whose fiber over any $x \in M$ is $\operatorname{At}\left(E_{G}\right)_{x}$. This vector bundle is known as the Atiyah bundle, and it is denoted by $\operatorname{At}\left(E_{G}\right)$. We now recall the construction of $\operatorname{At}\left(E_{G}\right)$.

As before, consider the action of G to $T E_{G}$ given by the action ψ of G on E_{G}. Since the action of G is free and transitive on each fiber of p, it follows that this action of G on $T E_{G}$ is free and proper. Therefore, we have a quotient manifold

$$
\begin{equation*}
\operatorname{At}\left(E_{G}\right):=\left(T E_{G}\right) / G \tag{2.4}
\end{equation*}
$$

for this action of G on $T E_{G}$. Since the natural projection $T E_{G} \longrightarrow E_{G}$ is G-equivariant, it produces a projection

$$
\begin{equation*}
\operatorname{At}\left(E_{G}\right):=\left(T E_{G}\right) / G \longrightarrow E_{G} / G=M \tag{2.5}
\end{equation*}
$$

This projection in (2.5) is clearly surjective. Furthermore, it is a submersion because the projection $T E_{G} \longrightarrow E_{G}$ is so. It is now straight-forward to check that the projection in (2.5) makes $\operatorname{At}\left(E_{G}\right)$ a C^{∞} vector bundle over M. Its rank coincides with the rank of the tangent bundle $T E_{G}$, so its rank is $\operatorname{dim} G+\operatorname{dim} M$. From (2.4) it follows immediately that we have a natural diffeomorphism

$$
\begin{equation*}
\mu: p^{*} \operatorname{At}\left(E_{G}\right) \longrightarrow T E_{G} \tag{2.6}
\end{equation*}
$$

It is straight-forward to check that μ is a C^{∞} isomorphism of vector bundles over E_{G}.
Let

$$
\begin{equation*}
d p: T E_{G} \longrightarrow p^{*} T M \tag{2.7}
\end{equation*}
$$

be the differential of the projection p in (2.2). Consider the surjective C^{∞} homomorphism of vector bundles

$$
\begin{equation*}
d p \circ \mu: p^{*} \operatorname{At}\left(E_{G}\right) \longrightarrow p^{*} T M \tag{2.8}
\end{equation*}
$$

where μ is constructed in (2.6). Since $p^{*} \operatorname{At}\left(E_{G}\right)$ and $p^{*} T M$ are pulled back to E_{G} from $M=E_{G} / G$, they are naturally equipped with an action of G. The homomorphism $d p \circ \mu$ in (2.8) is clearly G-equivariant. Therefore, it descends to a surjective C^{∞} homomorphism of vector bundles

$$
\begin{equation*}
\eta: \operatorname{At}\left(E_{G}\right) \longrightarrow T M \tag{2.9}
\end{equation*}
$$

The kernel of the differential $d p$ in (2.7) is clearly preserved by the action of G on $T E_{G}$. The quotient $\operatorname{kernel}(d p) / G$ will be denoted by $\operatorname{ad}\left(E_{G}\right)$. It is a C^{∞} vector bundle on M whose rank is $\operatorname{dim} G$. The inclusion of $\operatorname{kernel}(d p)$ in $T E_{G}$ produces a fiberwise injective C^{∞} homomorphism of vector bundles

$$
\iota_{0}: \operatorname{ad}\left(E_{G}\right) \longrightarrow \operatorname{At}\left(E_{G}\right) .
$$

The kernel of the homomorphism η in (2.9) coincides with the image of ι_{0}. Therefore, we have a short exact sequence of C^{∞} vector bundles over M

$$
\begin{equation*}
0 \longrightarrow \operatorname{ad}\left(E_{G}\right) \xrightarrow{\iota_{0}} \operatorname{At}\left(E_{G}\right) \xrightarrow{\eta} T M \longrightarrow 0, \tag{2.10}
\end{equation*}
$$

which is known as the Atiyah exact sequence for E_{G}. Using the Lie bracket operation of vector fields on E_{G}, the fibers of ad $\left(E_{G}\right)$ are Lie algebras; this will be elaborated below.

The Lie algebra of G will be denoted by \mathfrak{g}. Consider the action of G on itself defined by $\operatorname{Ad}(g)(h)=g^{-1} h g$. This action defines an action of G on \mathfrak{g}, which is known as the adjoint action; this adjoint action of G on \mathfrak{g} will also be denoted by Ad. Consider the quotient of
$E_{G} \times \mathfrak{g}$ where two points $(z, v),\left(z^{\prime}, v^{\prime}\right) \in E_{G} \times \mathfrak{g}$ are identified if there is some $g_{0} \in G$ such that $z^{\prime}=z g_{0}$ and $v^{\prime}=\operatorname{Ad}\left(g_{0}^{-1}\right)(v)$. This quotient space coincides with the total space of the adjoint vector bundle $\operatorname{ad}\left(E_{G}\right)$ in (2.10). Note that the projection

$$
\begin{equation*}
\operatorname{ad}\left(E_{G}\right) \longrightarrow M \tag{2.11}
\end{equation*}
$$

sends the equivalence class of any $(z, v) \in E_{G} \times \mathfrak{g}$ to $p(z)$ (it is clearly independent of the choice of the element in the equivalence class). The fibers of $\operatorname{ad}\left(E_{G}\right)$ are identified with \mathfrak{g} up to conjugation. Since the adjoint action of G on \mathfrak{g} preserves its Lie algebra structure, the fibers of $\operatorname{ad}\left(E_{G}\right)$ are in fact Lie algebras isomorphic to \mathfrak{g}. This Lie algebra structure of a fiber of $\operatorname{ad}\left(E_{G}\right)$ coincides with the one constructed earlier using the Lie bracket operation of vector fields. The pulled back vector bundle $p^{*} \operatorname{ad}\left(E_{G}\right)$ on E_{G} is identified with the trivial vector bundle $E_{G} \times \mathfrak{g}$ with fiber \mathfrak{g}. This identification sends any vector $(z, v) \in\left(p^{*} \operatorname{ad}\left(E_{G}\right)\right)_{z}$ in the fiber over z of the pulled back bundle to the element (z, v) of the trivial vector bundle $E_{G} \times \mathfrak{g}$.

A connection on E_{G} is a C^{∞} splitting of the Atiyah exact sequence for E_{G} [1]. In other words, a connection on E_{G} is a C^{∞} homomorphism of vector bundles

$$
\begin{equation*}
D: T M \longrightarrow \operatorname{At}\left(E_{G}\right) \tag{2.12}
\end{equation*}
$$

such that $\eta \circ D=\operatorname{Id}_{T M}$, where η is the projection in (2.9).
Let

$$
\begin{equation*}
D: T M \longrightarrow \operatorname{At}\left(E_{G}\right) \tag{2.13}
\end{equation*}
$$

be a homomorphism defining a connection on E_{G}. Consider the composition homomorphism

$$
p^{*} T M \xrightarrow{p^{*} D} p^{*} \operatorname{At}\left(E_{G}\right) \xrightarrow{\mu} T E_{G},
$$

where μ is the isomorphism in (2.6). Its image

$$
\begin{equation*}
\mathcal{H}(D):=\left(\mu \circ p^{*} D\right)\left(p^{*} T M\right) \subset T E_{G} \tag{2.14}
\end{equation*}
$$

is known as the horizontal subbundle of $T E_{G}$ for the connection D. Since μ is an isomorphism, and the splitting homomorphism D in (2.13) is uniquely determined by its image $D(T M) \subset \operatorname{At}\left(E_{G}\right)$, it follows immediately that the horizontal subbundle $\mathcal{H}(D)$ determines the connection D uniquely.

The composition

$$
\operatorname{kernel}(d p) \hookrightarrow T E_{G} \longrightarrow T E_{G} / \mathcal{H}(D)
$$

is an isomorphism. Hence we have

$$
T E_{G}=\mathcal{H}(D) \oplus\left(E_{G} \times \mathfrak{g}\right)
$$

it was noted earlier that $p^{*} \operatorname{ad}\left(E_{G}\right)$ is identified with the trivial vector bundle $E_{G} \times \mathfrak{g}$. The projection of $T E_{G}$ to the second factor of the above direct sum decomposition defines a \mathfrak{g}-valued smooth one-form on E_{G}. The connection D is clearly determined uniquely by this \mathfrak{g}-valued one-form on E_{G}.

See [4, p. 370, Lemma 2.2] for a proof of the following lemma:
Lemma 2.1. Any principal G-bundle $E_{G} \longrightarrow M$ admits a connection.
The space of all connections on a principal G-bundle E_{G} is an affine space for the vector space $C^{\infty}\left(M ; \operatorname{Hom}\left(T M, \operatorname{ad}\left(E_{G}\right)\right)\right)$.

3. A UNIVERSAL CONNECTION

3.1. A tautological connection

As before, let $p: E_{G} \longrightarrow M$ be a C^{∞} principal G-bundle. Consider the Atiyah exact sequence in (2.10). Tensoring it with the cotangent bundle $T^{*} M=(T M)^{*}$ we get the following short exact sequence of vector bundles on M

$$
\begin{align*}
0 & \longrightarrow \operatorname{ad}\left(E_{G}\right) \otimes T^{*} M \longrightarrow \operatorname{At}\left(E_{G}\right) \otimes T^{*} M \xrightarrow{\eta \otimes \mathbf{I d}_{T_{M} M}} T M \otimes T^{*} M \\
& =: \operatorname{End}(T M) \longrightarrow 0 \tag{3.1}
\end{align*}
$$

Let $\mathrm{Id}_{T M}$ denote the identity automorphism of $T M$. It defines a C^{∞} section of the endomorphism bundle $\operatorname{End}(T M)$. Let

$$
\begin{equation*}
\delta: \mathcal{C}\left(E_{G}\right):=\left(\eta \otimes \operatorname{Id}_{T^{*} M}\right)^{-1}\left(\operatorname{Id}_{T M}\right) \subset \operatorname{At}\left(E_{G}\right) \otimes T^{*} M \longrightarrow M \tag{3.2}
\end{equation*}
$$

be the fiber bundle over M, where $\eta \otimes \operatorname{Id}_{T^{*} M}$ is the surjective homomorphism in (3.1).
We recall that a connection on E_{G} is a C^{∞} splitting of the Atiyah exact sequence.
See [4, p. 371, Lemma 3.1] for a proof of the following:

Lemma 3.1. The space of all connections on E_{G} is in bijective correspondence with the space of all smooth sections of the fiber bundle

$$
\delta: \mathcal{C}\left(E_{G}\right) \longrightarrow M
$$

constructed in (3.2).
Combining Lemma 2.1 with Lemma 3.1, the following is obtained.

Corollary 3.2. The fiber bundle δ in (3.2) is an affine bundle over M for the vector bundle $\operatorname{Hom}\left(T M, \operatorname{ad}\left(E_{G}\right)\right)$. In particular, if we fix a connection on E_{G} (which exists by Lemma 2.1), then the fiber bundle in (3.2) gets identified with the total space of the vector bundle $\operatorname{Hom}\left(T M, \operatorname{ad}\left(E_{G}\right)\right)$.

See [4, p. 372, Proposition 3.3] for a proof of the following:

Proposition 3.3. There is a tautological connection on the principal G-bundle $\delta^{*} E_{G}$ over $\mathcal{C}\left(E_{G}\right)$.

The key observations in the construction of the tautological connection in Proposition 3.3 are the following:

There is a tautological homomorphism

$$
\beta: \delta^{*} \operatorname{At}\left(E_{G}\right) \longrightarrow \delta^{*} \operatorname{ad}\left(E_{G}\right)=\operatorname{ad}\left(\delta^{*} E_{G}\right) .
$$

On the other hand, there is a tautological projection

$$
\beta^{\prime}: \operatorname{At}\left(\delta^{*} E_{G}\right) \longrightarrow \delta^{*} \operatorname{At}\left(E_{G}\right)
$$

such that the diagram

where the projection $\operatorname{At}\left(\delta^{*} E_{G}\right) \longrightarrow T \mathcal{C}\left(E_{G}\right)$ is constructed as in (2.9) for the principal G-bundle $\delta^{*} E_{G}$. Finally, the composition

$$
\beta \circ \beta^{\prime}: \operatorname{At}\left(\delta^{*} E_{G}\right) \longrightarrow \operatorname{ad}\left(\delta^{*} E_{G}\right)
$$

gives a splitting of the Atiyah exact sequence for $\delta^{*} E_{G}$. This splitting $\beta \circ \beta^{\prime}$ defines the tautological connection on $\delta^{*} E_{G}$.

The above tautological connection on the principal G-bundle $\delta^{*} E_{G}$ will be denoted by \mathcal{D}_{0}.
In Lemma 3.1 we noted that the connections on E_{G} are in bijective correspondence with the smooth sections of $\mathcal{C}\left(E_{G}\right)$. Take any smooth section

$$
\begin{equation*}
\sigma: M \longrightarrow \mathcal{C}\left(E_{G}\right) \tag{3.3}
\end{equation*}
$$

of the fiber bundle $\mathcal{C}\left(E_{G}\right) \longrightarrow M$. Let $D(\sigma)$ be the corresponding connection on the principal G-bundle E_{G}. We note that $\sigma^{*} \delta^{*} E_{G}=E_{G}$ because $\delta \circ \sigma=\operatorname{Id}_{M}$.

The following lemma is a consequence of the construction of the tautological connection \mathcal{D}_{0}.

Lemma 3.4. The connection $D(\sigma)$ on E_{G} coincides with the pulled back connection $\sigma^{*} \mathcal{D}_{0}$ on the principal G-bundle $\sigma^{*} \delta^{*} E_{G}=E_{G}$.

3.2. Construction of universal connection

All infinite dimensional manifolds will be modeled on the direct limit \mathbb{R}^{∞} of the sequence of vector spaces $\left\{\mathbb{R}^{n}\right\}_{n>0}$ with natural inclusions $\mathbb{R}^{i} \hookrightarrow \mathbb{R}^{i+1}$.

Let

$$
\begin{equation*}
p_{0}: E_{G} \longrightarrow B_{G} \tag{3.4}
\end{equation*}
$$

be a universal principal G-bundle in the C^{∞} category; see [7] for the construction of a universal principal G-bundle. So, B_{G} is a C^{∞} manifold, the projection p_{0} is smooth, and E_{G} is contractible. Define

$$
\mathcal{B}_{G}:=B_{G} \times \mathbb{R}^{\infty} .
$$

Define

$$
\mathcal{E}_{G}:=p_{B_{G}}^{*} E_{G}=E_{G} \times \mathbb{R}^{\infty}
$$

where $p_{B_{G}}: B_{G} \times \mathbb{R}^{\infty} \longrightarrow B_{G}$ is the natural projection.
See [4, p. 374, Lemma 4.1] for a proof of the following:

Lemma 3.5. The principal G-bundle

$$
p:=p_{0} \times \operatorname{Id}_{\mathbb{R}^{\infty}}: \mathcal{E}_{G} \longrightarrow \mathcal{B}_{G}
$$

is universal.

Set the principal G-bundle $E_{G} \longrightarrow M$ in Section 3.1 to be $\mathcal{E}_{G} \longrightarrow \mathcal{B}_{G}$. Construct $\mathcal{C}\left(\mathcal{E}_{G}\right)$ as in (3.2). Let

$$
\begin{equation*}
\delta: \mathcal{C}\left(\mathcal{E}_{G}\right) \longrightarrow \mathcal{B}_{G} \tag{3.5}
\end{equation*}
$$

be the natural projection (see Lemma 3.1). Let \mathcal{D}_{0} be the tautological connection on $\delta^{*} \mathcal{E}_{G}$ constructed in Proposition 3.3.

The following theorem is proved in [4, p. 375, Lemma 4.2].
Theorem 3.6. The connection \mathcal{D}_{0} on the principal G-bundle $\delta^{*} \mathcal{E}_{G}$ is universal.
In Theorem 3.6, we took a special type of universal G-bundle, namely we took the Cartesian product of a universal G-bundle with \mathbb{R}^{∞}. It should be mentioned that Theorem 3.6 is not valid if we do not take this Cartesian product. For example, take G to be the additive group \mathbb{R}^{n}. Since \mathbb{R}^{n} is contractible, the projection $\mathbb{R}^{n} \longrightarrow\{$ point $\}$ is a universal \mathbb{R}^{n}-bundle. Note that $\mathcal{C}\left(\mathbb{R}^{n}\right)$ is a point. But the trivial principal \mathbb{R}^{n} bundle on any manifold X of dimension at least two admits connections with nonzero curvature.

4. Holomorphic connections

Assume that M is a complex manifold and G is a complex Lie group. A holomorphic principal G-bundle on M is a triple $\left(E_{G}, p, \psi\right)$ as in (2.1) such that E_{G} is a complex manifold, and both the maps p and ψ are holomorphic.

Let $\left(E_{G}, p, \psi\right)$ be a holomorphic principal G-bundle on M. Consider the holomorphic tangent bundle $T^{1,0} E_{G}$, which is a holomorphic vector bundle on E_{G}. The real tangent bundle $T E_{G}$ gets identified with $T^{1,0} E_{G}$ in the obvious way. More precisely, the isomorphism $T^{1,0} E_{G} \longrightarrow T E_{G}$ sends a tangent vector to its real part. Using this identification between $T^{1,0} E_{G}$ and $T E_{G}$, the complex structure on the total space of $T^{1,0} E_{G}$ produces a complex structure on the total space of $T E_{G}$. This complex structure on $T E_{G}$ produces a complex structure on the quotient $\operatorname{At}\left(E_{G}\right)$ in (2.4), because the action of G on $T E_{G}$ is holomorphic.

The differential $d p$ in (2.7) is holomorphic, which makes the projection η in (2.9) holomorphic. The exact sequence in (2.10) becomes an exact sequence of holomorphic vector bundles. The holomorphic structure on E_{G} produces a holomorphic structure on any fiber bundle associated to E_{G} for a holomorphic action of G. In particular, the adjoint vector bundle $\operatorname{ad}\left(E_{G}\right)$ has a holomorphic structure, because the adjoint action of G on \mathfrak{g} is holomorphic. The homomorphism ι_{0} in (2.10) is holomorphic with respect to this holomorphic structure on $\operatorname{ad}\left(E_{G}\right)$.

A connection

$$
D: T M \longrightarrow \operatorname{At}\left(E_{G}\right)
$$

on E_{G} as in (2.12) is called holomorphic if the homomorphism D is holomorphic.

4.1. Holomorphic connection on principal bundles over a compact Riemann surface

Now take M to be a compact connected Riemann surface. It is natural to ask the question when a holomorphic vector bundle on M admits a holomorphic connection. Note that any holomorphic connection on a Riemann surface is automatically flat because there are no nonzero $(2,0)$ forms on a Riemann surface. A well-known theorem of Atiyah and Weil says
that a holomorphic vector bundle E over M admits a holomorphic connection if and only if each direct summand of E is of degree zero (see [1,11]). We will describe a generalization of it to principal bundles.

Let G be a complex connected reductive affine algebraic group. A parabolic subgroup of G is a Zariski closed connected subgroup $P \subset G$ such that the quotient G / P is compact. A Levi subgroup of G is a Zariski closed connected subgroup

$$
L \subset G
$$

such that there is a parabolic subgroup $P \subset G$ containing L that satisfies the following condition: L contains a maximal torus of P, and moreover L is a maximal reductive subgroup of P. Given a holomorphic principal G-bundle E_{G} on M and a complex Lie subgroup $H \subset G$, a holomorphic reduction of E_{G} to H is given by a holomorphic section of the holomorphic fiber bundle E_{G} / H over M. Let

$$
q_{H}: E_{G} \longrightarrow E_{G} / H
$$

be the quotient map. If $\nu: M \longrightarrow E_{G} / H$ is a holomorphic section of the fiber bundle E_{G} / H, then note that $q_{H}^{-1}(\nu(M)) \subset E_{G}$ is a holomorphic principal H-bundle on M. If E_{H} is a holomorphic principal H-bundle on M, and χ is a holomorphic character of H, then the associated holomorphic line bundle $E_{H}(\lambda)=\left(E_{H} \times \mathbb{C}\right) / H$ is the quotient of $E_{H} \times \mathbb{C}$, where $\left(z_{1}, c_{1}\right),\left(z_{2}, c_{2}\right) \in E_{H} \times \mathbb{C}$ are identified if there is an element $g \in H$ such that

- $z_{2}=z_{1} g$, and
- $c_{2}=\frac{c_{1}}{\lambda(g)}$.

The following theorem is proved in [2] (see [2, Theorem 4.1]).
Theorem 4.1. A holomorphic G-bundle E_{G} over M admits a holomorphic connection if and only if for every triple of the form $\left(H, E_{H}, \lambda\right)$, where
(1) H is a Levi subgroup of G,
(2) $E_{H} \subset E_{G}$ is a holomorphic reduction of structure group to H, and
(3) λ is a holomorphic character of H,
the associated line bundle $E_{H}(\lambda)=\left(E_{H} \times \mathbb{C}\right) / H$ over M is of degree zero.
Note that setting $G=\mathrm{GL}(n, \mathbb{C})$ in Theorem 4.1 the above mentioned criterion of Atiyah and Weil is recovered.

We will describe a sketch of the proof of Theorem 4.1.
Let E_{G} be a holomorphic G-bundle over M equipped with a holomorphic connection ∇. Take any triple $\left(H, E_{H}, \lambda\right)$ as in Theorem 4.1. We will first show that the connection ∇ produces a holomorphic connection on the principal H-bundle E_{H}.

Let \mathfrak{g} and \mathfrak{h} denote the Lie algebras of G and H respectively. The group H has adjoint actions on both \mathfrak{h} and \mathfrak{g}. To construct the connection on E_{H}, fix a splitting of the injective homomorphism of H-modules

$$
0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g}
$$

Since a holomorphic connection on E_{G} is given by a holomorphic splitting of the Atiyah exact sequence for E_{G}, a holomorphic connection ∇ on E_{G} produces a \mathfrak{g}-valued holomorphic 1-form ω on E_{G} satisfying the following two conditions:

- ω is G-equivariant (G acts on \mathfrak{g} by inner automorphism), and
- the restriction of ω to any fiber of E_{G} is the Maurer-Cartan form on the fiber.

Using the chosen splitting homomorphism

$$
\mathfrak{g} \longrightarrow \mathfrak{h} \longrightarrow 0,
$$

the connection form ω on E_{G} defines a \mathfrak{h}-valued holomorphic one-form ω^{\prime} on E_{G}. The restriction of ω^{\prime} to the complex submanifold $E_{H} \subset E_{G}$ satisfies the two conditions needed for a holomorphic \mathfrak{h}-valued 1-form on E_{H} to define a holomorphic connection on E_{H}.

Therefore, E_{H} admits a holomorphic connection. A holomorphic connection on E_{H} induces a holomorphic connection on the associated line bundle $E_{H}(\lambda)$. Any line bundle admitting a holomorphic connection must be of degree zero [1]. Therefore, if E_{G} admits a holomorphic connection then we know that the degree of $E_{H}(\lambda)$ is zero.

To prove the converse, let E_{G} be a holomorphic G-bundle over M such that

$$
\operatorname{degree}\left(E_{H}(\lambda)\right)=0
$$

for all triples $\left(H, E_{H}, \lambda\right)$ of the above type. We need to show that the Atiyah exact sequence for E_{G} in (2.10) splits holomorphically.

As the first step, in [2] the following is proved: it is enough to prove that the Atiyah exact sequence for E_{G} splits holomorphically under the assumption that E_{G} does not admit any holomorphic reduction of structure group to any proper Levi subgroup of G. Therefore, we assume that E_{G} does not admit any holomorphic reduction of structure group to any proper Levi subgroup of G.

Let Ω_{M}^{1} denote the holomorphic cotangent bundle of M. The obstruction for splitting of the Atiyah exact sequence for E_{G} is an element

$$
\tau\left(E_{G}\right) \in H^{1}\left(M, \Omega_{M}^{1} \otimes \operatorname{ad}\left(E_{G}\right)\right)
$$

By Serre duality,

$$
H^{1}\left(M, \Omega_{M}^{1} \otimes \operatorname{ad}\left(E_{G}\right)\right)=H^{0}\left(M, \operatorname{ad}\left(E_{G}\right)\right)^{*}
$$

So we have

$$
\begin{equation*}
\tau\left(E_{G}\right) \in H^{1}\left(M, \operatorname{ad}\left(E_{G}\right)\right)^{*} \tag{4.1}
\end{equation*}
$$

Any homomorphic section f of $\operatorname{ad}\left(E_{G}\right)$ has a Jordan decomposition

$$
f=f_{s}+f_{n}
$$

where f_{s} is pointwise semisimple and f_{n} is pointwise nilpotent. From the assumption that E_{G} does not admit any holomorphic reduction of structure group to any proper Levi subgroup of G it follows that the semisimple section f_{s} is given by some element of the center of \mathfrak{g}. Using this, from the assumption on E_{G} it can be deduced that

$$
\tau\left(E_{G}\right)\left(f_{s}\right)=0
$$

where $\tau\left(E_{G}\right)$ is the element in (4.1).
The nilpotent section f_{n} of $\operatorname{ad}\left(E_{G}\right)$ gives a holomorphic reduction of structure group $E_{P} \subset E_{G}$ of E_{G} to a proper parabolic subgroup P of G. This reduction E_{P} has the property
that f_{n} lies in the image

$$
H^{0}\left(M, \operatorname{ad}\left(E_{P}\right)\right) \hookrightarrow H^{0}\left(M, \operatorname{ad}\left(E_{G}\right)\right)
$$

where $\operatorname{ad}\left(E_{P}\right)$ is the adjoint bundle of E_{P}. Using this reduction it can be shown that $\tau\left(E_{G}\right)\left(f_{n}\right)=0$.

Hence $\tau\left(E_{G}\right)(f)=0$ for all f, which implies that $\tau\left(E_{G}\right)=0$. Therefore, the Atiyah exact sequence for E_{G} splits holomorphically, implying that E_{G} admits a holomorphic connection.

5. Real HiggS bundles

As before, let M be a compact connected Riemann surface. Let

$$
\sigma: M \longrightarrow M
$$

be an anti-holomorphic automorphism of order two. Take a holomorphic vector bundle E on M of rank r. Let \bar{E} denote the $C^{\infty} \mathbb{C}$-vector bundle on M of rank r whose underlying $C^{\infty} \mathbb{R}$-vector bundle is the \mathbb{R}-vector bundle underlying E, while the multiplication by $\sqrt{-1}$ on the fibers of \bar{E} coincides with the multiplication by $-\sqrt{-1}$ on the fibers of E. We note that the pullback $\sigma^{*} \bar{E}$ has a natural structure of a holomorphic vector bundle. Indeed, a C^{∞} section s of $\sigma^{*} \bar{E}$ defined over an open subset $U \subset M$ is holomorphic if the section $\sigma^{*} s$ of E over $\sigma(U)$ is holomorphic; this condition uniquely defines the holomorphic structure on $\sigma^{*} \bar{E}$. We use the terminology " \mathbb{R}-vector bundles" because the terminology "real vector bundles" will be used for something else.

If $\alpha: A \longrightarrow B$ is a C^{∞} homomorphism of holomorphic vector bundles on M, then $\bar{\alpha}$ will denote the homomorphism $\bar{A} \longrightarrow \bar{B}$ defined by α using the identifications of A and B with \bar{A} and \bar{B} respectively. A real structure on E is a holomorphic isomorphism of vector bundles

$$
\phi: E \longrightarrow \sigma^{*} \bar{E}
$$

over the identity map of M such that the composition

$$
\begin{equation*}
E \xrightarrow{\phi} \sigma^{*} \bar{E} \xrightarrow{\sigma^{*} \bar{\phi}} \sigma^{*} \overline{\sigma^{*} \bar{E}}=E \tag{5.1}
\end{equation*}
$$

is the identity map of E.
A quaternionic structure on E is a holomorphic isomorphism of vector bundles

$$
\phi: E \longrightarrow \sigma^{*} \bar{E}
$$

over the identity map of M such that the composition $E \longrightarrow E$ in (5.1) is $-\operatorname{Id}_{E}$.
A real vector bundle on (M, σ) is a pair of the form (E, ϕ), where E is a holomorphic vector bundle on M and ϕ is a real structure on E.

A quaternionic vector bundle on (M, σ) is a pair of the form (E, ϕ), where E is a holomorphic vector bundle on M and ϕ is a quaternionic structure on E.

Consider the differential $d \sigma: T^{\mathbb{R}} M \longrightarrow \sigma^{*} T^{\mathbb{R}} M$ of the automorphism σ. Since σ is anti-holomorphic, it produces an isomorphism

$$
\sigma^{\prime \prime}: T^{1,0} M \longrightarrow \sigma^{*} T^{0,1} M=\sigma^{*} \overline{T^{1,0} M}
$$

It is easy to check that $\sigma^{\prime \prime}$ is holomorphic and it is a real structure on the holomorphic tangent bundle $T^{1,0} M$. Let

$$
\begin{equation*}
\sigma^{\prime}: K_{M}:=\left(T^{1,0} M\right)^{*} \longrightarrow \sigma^{*} \overline{K_{M}} \tag{5.2}
\end{equation*}
$$

be the real structure on the holomorphic cotangent bundle K_{M} obtained from $\sigma^{\prime \prime}$.
We recall that a Higgs field on E is a holomorphic section of $\operatorname{Hom}\left(E, E \otimes K_{M}\right)=$ $\operatorname{End}(E) \otimes K_{M}[6,10]$. A Higgs field θ on a real or quaternionic vector bundle (E, ϕ) is called real if the following diagram is commutative:

where σ^{\prime} is the isomorphism in (5.2). A real (respectively, quaternionic) Higgs bundle on (M, σ) is a triple of the form $((E, \phi), \theta)$, where (E, ϕ) is a real (respectively, quaternionic) vector bundle on (M, σ) and θ is a real Higgs field on (E, ϕ).

We recall that the slope of a holomorphic vector bundle W on M is the rational number degree $(W) / \operatorname{rank}(W):=\mu(W)$. A real or quaternionic Higgs bundle $((E, \phi), \theta)$ on (M, σ) is called semistable (respectively, stable) if for all nonzero holomorphic subbundles $F \subsetneq E$ with
(1) $\phi(F) \subset \sigma^{*} \bar{F} \subset \sigma^{*} \bar{E}$, and
(2) $\theta(F) \subset F \otimes K_{M}$,
we have $\mu(F) \leq \mu(E)$ (respectively, $\mu(F)<\mu(E)$). A semistable real (respectively, quaternionic) Higgs bundle is called polystable if it is a direct sum of stable real (respectively, quaternionic) Higgs bundles.

It is known that a real Higgs bundle $((E, \phi), \theta)$ is semistable (respectively, polystable) if and only if the Higgs bundle (E, θ) is semistable (respectively, polystable) [3, p. 2555, Lemma 5.3]. Similarly, a quaternionic Higgs bundle $((E, \phi), \theta)$ is semistable (respectively, polystable) if and only if the Higgs bundle (E, θ) is semistable (respectively, polystable).

A polystable Higgs vector bundle (E, θ) of degree zero on M admits a harmonic metric h that satisfies the Yang-Mills-Higgs equation [10,5,6]. If $((E, \phi), \theta)$ is real or quaternionic polystable of degree zero, then E admits a harmonic metric h because (E, θ) is polystable of degree zero. The harmonic metric h on E can be so chosen that the isomorphism ϕ is an isometry (note that h induces a Hermitian structure on \bar{E}) [3, p. 2557, Proposition 5.5].

References

[1] M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181-207.
[2] H. Azad, I. Biswas, On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, Math. Ann. 322 (2002) 333-346.
[3] I. Biswas, O. García-Prada, J. Hurtubise, Pseudo-real principal Higgs bundles on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) 64 (2014) 2527-2562.
[4] I. Biswas, J. Hurtubise, J. Stasheff, A construction of a universal connection, Forum Math. 24 (2012) 365-378.
[5] S.K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 55 (1987) 127-131.
[6] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59-126.
[7] J. Milnor, Construction of universal bundles, II, Ann. of Math. (2) 63 (1956) 430-436.
[8] M.S. Narasimhan, S.Ramanan S, Existence of universal connections, Amer. J. Math. 83 (1961) 563-572.
[9] R. Schlafly, Universal connections, Invent. Math. 59 (1980) 59-65.
[10] C.T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 5-95.
[11] A. Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938) 47-87.

[^0]: E-mail address: indranil@math.tifr.res.in.
 ${ }^{1}$ The author acknowledges the support of a J. C. Bose Fellowship. Peer review under responsibility of King Saud University.

