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Abstract. A new construction of a universal connection was given in Biswas, Hurtubise
and Stasheff (2012). The main aim here is to explain this construction. A theorem of Atiyah
and Weil says that a holomorphic vector bundle E over a compact Riemann surface admits
a holomorphic connection if and only if the degree of every direct summand of E is zero.
In Azad and Biswas (2002), this criterion was generalized to principal bundles on compact
Riemann surfaces. This criterion for principal bundles is also explained.
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1. INTRODUCTION

A connection ∇0 on a C∞ principal G-bundle EG −→ X is called universal if given any
C∞ principal G-bundle EG on a finite dimensional C∞ manifold M , and any connection ∇
on EG, there is a C∞ map

ξ : M −→ X

such that

• the pulled back principal G-bundle ξ∗ EG is isomorphic to EG, and
• the isomorphism between ξ∗ EG and EG can be so chosen that it takes the pulled back

connection ξ∗ ∇0 on ξ∗ EG to the connection ∇ on EG.

In [8] and [9] universal connections were constructed. In [4] a very simple, in fact quite
tautological, universal connection was constructed.
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2. ATIYAH BUNDLE

All manifolds considered here will be C∞, second countable and Hausdorff. Later we will
impose further conditions such as complex structure.

Let G be a finite dimensional Lie group. Take a connected C∞ manifold M . A principal
G-bundle over M is a triple of the form

(EG, p, ψ), (2.1)

where

(1) EG is a C∞ manifold,
(2)

p : EG −→ M (2.2)

is a C∞ surjective submersion, and
(3)

ψ : EG × G −→ EG (2.3)

is a C∞ map defining a right action of G on EG, such that the following two conditions
hold:

• the two maps p ◦ ψ and p ◦ p1 from EG × G to M coincide, where p1 is the natural
projection of EG × G to EG, and

• the map to the fiber product

IdEG
× ψ : EG × G −→ EG ×M EG

is a diffeomorphism; note that the first condition p ◦ ψ = p ◦ p1 implies that the image
of IdEG

× ψ is contained in the submanifold EG ×M EG ⊂ EG × EG consisting of all
points (z1, z2) ∈ EG × EG such that p(z1) = p(z2).

Therefore, the first condition implies thatG acts onEG along the fibers of p, while the second
condition implies that the action of G on each fiber of p is both free and transitive.

Take a C∞ principal G-bundle (EG, p, ψ) over M . The tangent bundle of the manifold
EG will be denoted by TEG. Take a point x ∈ M . Let

(TEG)x := (TEG)|p−1(x) −→ p−1(x)

be the restriction of the vector bundle TEG to the fiber p−1(x) of p over the point x. As
noted above, the action ψ of G on EG preserves p−1(x), and the resulting action of G on
p−1(x) is free and transitive. Therefore, the action of G on TEG given by ψ restricts to an
action of G on (TEG)x. Let At(EG)x be the space of all G-invariant sections of (TEG)x.
Since the action of G on the fiber p−1(x) is transitive, it follows that any G-invariant section
of (TEG)x is automatically smooth. More precisely, any G-invariant sections of (TEG)x is
uniquely determined by its evaluation of some fixed point of p−1(x). Therefore, At(EG)x is
a real vector space whose dimension coincides with the dimension of EG.

There is a natural vector bundle over M , which was introduced in [1], whose fiber over
any x ∈ M is At(EG)x. This vector bundle is known as the Atiyah bundle, and it is denoted
by At(EG). We now recall the construction of At(EG).
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As before, consider the action of G to TEG given by the action ψ of G on EG. Since the
action of G is free and transitive on each fiber of p, it follows that this action of G on TEG is
free and proper. Therefore, we have a quotient manifold

At(EG) := (TEG)/G (2.4)

for this action of G on TEG. Since the natural projection TEG −→ EG is G-equivariant, it
produces a projection

At(EG) := (TEG)/G −→ EG/G = M. (2.5)

This projection in (2.5) is clearly surjective. Furthermore, it is a submersion because the
projection TEG −→ EG is so. It is now straight-forward to check that the projection in
(2.5) makes At(EG) a C∞ vector bundle over M . Its rank coincides with the rank of the
tangent bundle TEG, so its rank is dimG + dimM . From (2.4) it follows immediately that
we have a natural diffeomorphism

µ : p∗At(EG) −→ TEG. (2.6)

It is straight-forward to check that µ is a C∞ isomorphism of vector bundles over EG.
Let

dp : TEG −→ p∗TM (2.7)

be the differential of the projection p in (2.2). Consider the surjective C∞ homomorphism of
vector bundles

dp ◦ µ : p∗At(EG) −→ p∗TM, (2.8)

where µ is constructed in (2.6). Since p∗At(EG) and p∗TM are pulled back to EG from
M = EG/G, they are naturally equipped with an action of G. The homomorphism dp ◦ µ in
(2.8) is clearly G-equivariant. Therefore, it descends to a surjective C∞ homomorphism of
vector bundles

η : At(EG) −→ TM. (2.9)

The kernel of the differential dp in (2.7) is clearly preserved by the action of G on TEG.
The quotient kernel(dp)/G will be denoted by ad(EG). It is a C∞ vector bundle on M
whose rank is dimG. The inclusion of kernel(dp) in TEG produces a fiberwise injective C∞

homomorphism of vector bundles

ι0 : ad(EG) −→ At(EG).

The kernel of the homomorphism η in (2.9) coincides with the image of ι0. Therefore, we
have a short exact sequence of C∞ vector bundles over M

0 −→ ad(EG) ι0−→ At(EG)
η−→ TM −→ 0, (2.10)

which is known as the Atiyah exact sequence for EG. Using the Lie bracket operation of
vector fields on EG, the fibers of ad(EG) are Lie algebras; this will be elaborated below.

The Lie algebra of G will be denoted by g. Consider the action of G on itself defined by
Ad(g)(h) = g−1hg. This action defines an action of G on g, which is known as the adjoint
action; this adjoint action of G on g will also be denoted by Ad. Consider the quotient of
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EG × g where two points (z, v), (z′, v′) ∈ EG × g are identified if there is some g0 ∈ G
such that z′ = zg0 and v′ = Ad(g−1

0 )(v). This quotient space coincides with the total space
of the adjoint vector bundle ad(EG) in (2.10). Note that the projection

ad(EG) −→ M (2.11)

sends the equivalence class of any (z, v) ∈ EG × g to p(z) (it is clearly independent of the
choice of the element in the equivalence class). The fibers of ad(EG) are identified with g up
to conjugation. Since the adjoint action ofG on g preserves its Lie algebra structure, the fibers
of ad(EG) are in fact Lie algebras isomorphic to g. This Lie algebra structure of a fiber of
ad(EG) coincides with the one constructed earlier using the Lie bracket operation of vector
fields. The pulled back vector bundle p∗ad(EG) on EG is identified with the trivial vector
bundleEG × g with fiber g. This identification sends any vector (z, v) ∈ (p∗ad(EG))z in the
fiber over z of the pulled back bundle to the element (z, v) of the trivial vector bundleEG ×g.

A connection on EG is a C∞ splitting of the Atiyah exact sequence for EG [1]. In other
words, a connection on EG is a C∞ homomorphism of vector bundles

D : TM −→ At(EG) (2.12)

such that η ◦ D = IdTM , where η is the projection in (2.9).
Let

D : TM −→ At(EG) (2.13)

be a homomorphism defining a connection onEG. Consider the composition homomorphism

p∗TM
p∗D−→ p∗At(EG)

µ−→ TEG,

where µ is the isomorphism in (2.6). Its image

H(D) := (µ ◦ p∗D)(p∗TM) ⊂ TEG (2.14)

is known as the horizontal subbundle of TEG for the connection D. Since µ is an
isomorphism, and the splitting homomorphism D in (2.13) is uniquely determined by its
image D(TM) ⊂ At(EG), it follows immediately that the horizontal subbundle H(D)
determines the connection D uniquely.

The composition

kernel(dp) ↩→ TEG −→ TEG/H(D)

is an isomorphism. Hence we have

TEG = H(D) ⊕ (EG × g);

it was noted earlier that p∗ad(EG) is identified with the trivial vector bundle EG × g. The
projection of TEG to the second factor of the above direct sum decomposition defines a
g-valued smooth one-form on EG. The connection D is clearly determined uniquely by this
g-valued one-form on EG.

See [4, p. 370, Lemma 2.2] for a proof of the following lemma:

Lemma 2.1. Any principal G-bundle EG −→ M admits a connection.
The space of all connections on a principal G-bundle EG is an affine space for the vector

space C∞(M ; Hom(TM, ad(EG))).
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3. A UNIVERSAL CONNECTION

3.1. A tautological connection

As before, let p : EG −→ M be a C∞ principal G-bundle. Consider the Atiyah ex-
act sequence in (2.10). Tensoring it with the cotangent bundle T ∗M = (TM)∗ we get the
following short exact sequence of vector bundles on M

0 −→ ad(EG) ⊗ T ∗M −→ At(EG) ⊗ T ∗M
η⊗IdT ∗ M−→ TM ⊗ T ∗M

=: End(TM) −→ 0. (3.1)

Let IdTM denote the identity automorphism of TM . It defines a C∞ section of the endomor-
phism bundle End(TM). Let

δ : C(EG) := (η ⊗ IdT ∗M )−1(IdTM ) ⊂ At(EG) ⊗ T ∗M −→ M (3.2)

be the fiber bundle over M , where η ⊗ IdT ∗M is the surjective homomorphism in (3.1).
We recall that a connection on EG is a C∞ splitting of the Atiyah exact sequence.
See [4, p. 371, Lemma 3.1] for a proof of the following:

Lemma 3.1. The space of all connections on EG is in bijective correspondence with the
space of all smooth sections of the fiber bundle

δ : C(EG) −→ M

constructed in (3.2).

Combining Lemma 2.1 with Lemma 3.1, the following is obtained.

Corollary 3.2. The fiber bundle δ in (3.2) is an affine bundle over M for the vector bundle
Hom(TM, ad(EG)). In particular, if we fix a connection onEG (which exists by Lemma 2.1),
then the fiber bundle in (3.2) gets identified with the total space of the vector bundle
Hom(TM, ad(EG)).

See [4, p. 372, Proposition 3.3] for a proof of the following:

Proposition 3.3. There is a tautological connection on the principal G-bundle δ∗EG over
C(EG).

The key observations in the construction of the tautological connection in Proposition 3.3
are the following:

There is a tautological homomorphism

β : δ∗At(EG) −→ δ∗ad(EG) = ad(δ∗EG).

On the other hand, there is a tautological projection

β′ : At(δ∗EG) −→ δ∗At(EG)
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such that the diagram

At(δ∗EG)
β′

−→ δ∗At(EG) δ∗η

TC(EG) dδ−→ δ∗TM

where the projection At(δ∗EG) −→ TC(EG) is constructed as in (2.9) for the principal
G-bundle δ∗EG. Finally, the composition

β ◦ β′ : At(δ∗EG) −→ ad(δ∗EG)

gives a splitting of the Atiyah exact sequence for δ∗EG. This splitting β ◦ β′ defines the
tautological connection on δ∗EG.

The above tautological connection on the principalG-bundle δ∗EG will be denoted by D0.
In Lemma 3.1 we noted that the connections on EG are in bijective correspondence with

the smooth sections of C(EG). Take any smooth section

σ : M −→ C(EG) (3.3)

of the fiber bundle C(EG) −→ M . Let D(σ) be the corresponding connection on the
principal G-bundle EG. We note that σ∗δ∗EG = EG because δ ◦ σ = IdM .

The following lemma is a consequence of the construction of the tautological connec-
tion D0.

Lemma 3.4. The connection D(σ) on EG coincides with the pulled back connection σ∗ D0

on the principal G-bundle σ∗δ∗EG = EG.

3.2. Construction of universal connection

All infinite dimensional manifolds will be modeled on the direct limit R∞ of the sequence
of vector spaces {Rn}n>0 with natural inclusions Ri ↩→ Ri+1.

Let

p0 : EG −→ BG (3.4)

be a universal principal G-bundle in the C∞ category; see [7] for the construction of a
universal principal G-bundle. So, BG is a C∞ manifold, the projection p0 is smooth, and
EG is contractible. Define

BG := BG × R∞.

Define

EG := p∗
BG
EG = EG × R∞,

where pBG
: BG × R∞ −→ BG is the natural projection.

See [4, p. 374, Lemma 4.1] for a proof of the following:

Lemma 3.5. The principal G-bundle

p := p0 × IdR∞ : EG −→ BG

is universal.
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Set the principalG-bundleEG −→ M in Section 3.1 to be EG −→ BG. Construct C(EG)
as in (3.2). Let

δ : C(EG) −→ BG (3.5)

be the natural projection (see Lemma 3.1). Let D0 be the tautological connection on δ∗ EG

constructed in Proposition 3.3.
The following theorem is proved in [4, p. 375, Lemma 4.2].

Theorem 3.6. The connection D0 on the principal G-bundle δ∗ EG is universal.

In Theorem 3.6, we took a special type of universal G-bundle, namely we took the
Cartesian product of a universalG-bundle with R∞. It should be mentioned that Theorem 3.6
is not valid if we do not take this Cartesian product. For example, take G to be the
additive group Rn. Since Rn is contractible, the projection Rn −→ {point} is a universal
Rn-bundle. Note that C(Rn) is a point. But the trivial principal Rn bundle on any manifold
X of dimension at least two admits connections with nonzero curvature.

4. HOLOMORPHIC CONNECTIONS

Assume that M is a complex manifold and G is a complex Lie group. A holomorphic
principal G-bundle on M is a triple (EG, p, ψ) as in (2.1) such that EG is a complex
manifold, and both the maps p and ψ are holomorphic.

Let (EG, p, ψ) be a holomorphic principal G-bundle on M . Consider the holomorphic
tangent bundle T 1,0EG, which is a holomorphic vector bundle onEG. The real tangent bundle
TEG gets identified with T 1,0EG in the obvious way. More precisely, the isomorphism
T 1,0EG −→ TEG sends a tangent vector to its real part. Using this identification between
T 1,0EG and TEG, the complex structure on the total space of T 1,0EG produces a complex
structure on the total space of TEG. This complex structure on TEG produces a complex
structure on the quotient At(EG) in (2.4), because the action of G on TEG is holomorphic.

The differential dp in (2.7) is holomorphic, which makes the projection η in (2.9)
holomorphic. The exact sequence in (2.10) becomes an exact sequence of holomorphic vector
bundles. The holomorphic structure on EG produces a holomorphic structure on any fiber
bundle associated toEG for a holomorphic action ofG. In particular, the adjoint vector bundle
ad(EG) has a holomorphic structure, because the adjoint action of G on g is holomorphic.
The homomorphism ι0 in (2.10) is holomorphic with respect to this holomorphic structure on
ad(EG).

A connection

D : TM −→ At(EG)

on EG as in (2.12) is called holomorphic if the homomorphism D is holomorphic.

4.1. Holomorphic connection on principal bundles over a compact Riemann surface

Now take M to be a compact connected Riemann surface. It is natural to ask the question
when a holomorphic vector bundle on M admits a holomorphic connection. Note that any
holomorphic connection on a Riemann surface is automatically flat because there are no
nonzero (2, 0) forms on a Riemann surface. A well-known theorem of Atiyah and Weil says
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that a holomorphic vector bundle E over M admits a holomorphic connection if and only if
each direct summand of E is of degree zero (see [1,11]). We will describe a generalization of
it to principal bundles.

Let G be a complex connected reductive affine algebraic group. A parabolic subgroup of
G is a Zariski closed connected subgroup P ⊂ G such that the quotient G/P is compact. A
Levi subgroup of G is a Zariski closed connected subgroup

L ⊂ G

such that there is a parabolic subgroup P ⊂ G containing L that satisfies the following
condition: L contains a maximal torus of P , and moreover L is a maximal reductive subgroup
of P . Given a holomorphic principal G-bundle EG on M and a complex Lie subgroup
H ⊂ G, a holomorphic reduction of EG to H is given by a holomorphic section of the
holomorphic fiber bundle EG/H over M . Let

qH : EG −→ EG/H

be the quotient map. If ν : M −→ EG/H is a holomorphic section of the fiber bundle
EG/H , then note that q−1

H (ν(M)) ⊂ EG is a holomorphic principal H-bundle on M . If
EH is a holomorphic principal H-bundle on M , and χ is a holomorphic character of H , then
the associated holomorphic line bundle EH(λ) = (EH × C)/H is the quotient of EH × C,
where (z1, c1), (z2, c2) ∈ EH × C are identified if there is an element g ∈ H such that

• z2 = z1g, and
• c2 = c1

λ(g) .

The following theorem is proved in [2] (see [2, Theorem 4.1]).

Theorem 4.1. A holomorphicG-bundleEG over M admits a holomorphic connection if and
only if for every triple of the form (H, EH , λ), where

(1) H is a Levi subgroup of G,
(2) EH ⊂ EG is a holomorphic reduction of structure group to H , and
(3) λ is a holomorphic character of H ,

the associated line bundle EH(λ) = (EH × C)/H over M is of degree zero.

Note that setting G = GL(n,C) in Theorem 4.1 the above mentioned criterion of Atiyah
and Weil is recovered.

We will describe a sketch of the proof of Theorem 4.1.
Let EG be a holomorphic G-bundle over M equipped with a holomorphic connection ∇.

Take any triple (H, EH , λ) as in Theorem 4.1. We will first show that the connection ∇
produces a holomorphic connection on the principal H-bundle EH .

Let g and h denote the Lie algebras of G and H respectively. The group H has adjoint
actions on both h and g. To construct the connection on EH , fix a splitting of the injective
homomorphism of H-modules

0 −→ h −→ g.

Since a holomorphic connection on EG is given by a holomorphic splitting of the Atiyah
exact sequence forEG, a holomorphic connection ∇ onEG produces a g-valued holomorphic
1-form ω on EG satisfying the following two conditions:
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• ω is G-equivariant (G acts on g by inner automorphism), and
• the restriction of ω to any fiber of EG is the Maurer–Cartan form on the fiber.

Using the chosen splitting homomorphism

g −→ h −→ 0,

the connection form ω on EG defines a h-valued holomorphic one-form ω′ on EG. The
restriction of ω′ to the complex submanifold EH ⊂ EG satisfies the two conditions needed
for a holomorphic h-valued 1-form on EH to define a holomorphic connection on EH .

Therefore, EH admits a holomorphic connection. A holomorphic connection on EH

induces a holomorphic connection on the associated line bundle EH(λ). Any line bundle
admitting a holomorphic connection must be of degree zero [1]. Therefore, if EG admits a
holomorphic connection then we know that the degree of EH(λ) is zero.

To prove the converse, let EG be a holomorphic G-bundle over M such that

degree(EH(λ)) = 0

for all triples (H, EH , λ) of the above type. We need to show that the Atiyah exact sequence
for EG in (2.10) splits holomorphically.

As the first step, in [2] the following is proved: it is enough to prove that the Atiyah exact
sequence for EG splits holomorphically under the assumption that EG does not admit any
holomorphic reduction of structure group to any proper Levi subgroup of G. Therefore, we
assume that EG does not admit any holomorphic reduction of structure group to any proper
Levi subgroup of G.

Let Ω1
M denote the holomorphic cotangent bundle of M . The obstruction for splitting of

the Atiyah exact sequence for EG is an element

τ(EG) ∈ H1(M, Ω1
M ⊗ ad(EG)).

By Serre duality,

H1(M, Ω1
M ⊗ ad(EG)) = H0(M, ad(EG))∗.

So we have

τ(EG) ∈ H1(M, ad(EG))∗. (4.1)

Any homomorphic section f of ad(EG) has a Jordan decomposition

f = fs + fn,

where fs is pointwise semisimple and fn is pointwise nilpotent. From the assumption thatEG

does not admit any holomorphic reduction of structure group to any proper Levi subgroup of
G it follows that the semisimple section fs is given by some element of the center of g. Using
this, from the assumption on EG it can be deduced that

τ(EG)(fs) = 0,

where τ(EG) is the element in (4.1).
The nilpotent section fn of ad(EG) gives a holomorphic reduction of structure group

EP ⊂ EG ofEG to a proper parabolic subgroup P ofG. This reductionEP has the property
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that fn lies in the image

H0(M, ad(EP )) ↩→ H0(M, ad(EG)),

where ad(EP ) is the adjoint bundle of EP . Using this reduction it can be shown that
τ(EG)(fn) = 0.

Hence τ(EG)(f) = 0 for all f , which implies that τ(EG) = 0. Therefore, the Atiyah exact
sequence for EG splits holomorphically, implying that EG admits a holomorphic connection.

5. REAL HIGGS BUNDLES

As before, let M be a compact connected Riemann surface. Let

σ : M −→ M

be an anti-holomorphic automorphism of order two. Take a holomorphic vector bundle E
on M of rank r. Let E denote the C∞C-vector bundle on M of rank r whose underlying
C∞R-vector bundle is the R-vector bundle underlying E, while the multiplication by

√
−1

on the fibers of E coincides with the multiplication by −
√

−1 on the fibers of E. We note
that the pullback σ∗E has a natural structure of a holomorphic vector bundle. Indeed, a C∞

section s of σ∗E defined over an open subset U ⊂ M is holomorphic if the section σ∗s
of E over σ(U) is holomorphic; this condition uniquely defines the holomorphic structure
on σ∗E. We use the terminology “R-vector bundles” because the terminology “real vector
bundles” will be used for something else.

If α : A −→ B is a C∞ homomorphism of holomorphic vector bundles on M , then α
will denote the homomorphism A −→ B defined by α using the identifications of A and B
with A and B respectively. A real structure on E is a holomorphic isomorphism of vector
bundles

φ : E −→ σ∗E

over the identity map of M such that the composition

E
φ−→ σ∗E

σ∗φ−→ σ∗σ∗E = E (5.1)

is the identity map of E.
A quaternionic structure on E is a holomorphic isomorphism of vector bundles

φ : E −→ σ∗E

over the identity map of M such that the composition E −→ E in (5.1) is −IdE .
A real vector bundle on (M, σ) is a pair of the form (E, φ), where E is a holomorphic

vector bundle on M and φ is a real structure on E.
A quaternionic vector bundle on (M, σ) is a pair of the form (E, φ), where E is a

holomorphic vector bundle on M and φ is a quaternionic structure on E.
Consider the differential dσ : TRM −→ σ∗TRM of the automorphism σ. Since σ is

anti-holomorphic, it produces an isomorphism

σ′′ : T 1,0M −→ σ∗T 0,1M = σ∗T 1,0M.
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It is easy to check that σ′′ is holomorphic and it is a real structure on the holomorphic tangent
bundle T 1,0M . Let

σ′ : KM := (T 1,0M)∗ −→ σ∗KM (5.2)

be the real structure on the holomorphic cotangent bundle KM obtained from σ′′.
We recall that a Higgs field on E is a holomorphic section of Hom(E, E ⊗ KM ) =

End(E) ⊗ KM [6,10]. A Higgs field θ on a real or quaternionic vector bundle (E, φ) is
called real if the following diagram is commutative:

E
θ−→ E ⊗ KMφ φ ⊗ σ′

σ∗E
σ∗θ−→ σ∗E ⊗ KM = σ∗E ⊗ σ∗KM

where σ′ is the isomorphism in (5.2). A real (respectively, quaternionic) Higgs bundle on
(M, σ) is a triple of the form ((E, φ), θ), where (E, φ) is a real (respectively, quaternionic)
vector bundle on (M, σ) and θ is a real Higgs field on (E, φ).

We recall that the slope of a holomorphic vector bundle W on M is the rational number
degree(W )/rank(W ) := µ(W ). A real or quaternionic Higgs bundle ((E, φ), θ) on (M, σ)
is called semistable (respectively, stable) if for all nonzero holomorphic subbundles F ( E
with

(1) φ(F ) ⊂ σ∗F ⊂ σ∗E, and
(2) θ(F ) ⊂ F ⊗ KM ,

we have µ(F ) ≤ µ(E) (respectively, µ(F ) < µ(E)). A semistable real (respectively,
quaternionic) Higgs bundle is called polystable if it is a direct sum of stable real (respectively,
quaternionic) Higgs bundles.

It is known that a real Higgs bundle ((E, φ), θ) is semistable (respectively, polystable)
if and only if the Higgs bundle (E, θ) is semistable (respectively, polystable) [3,
p. 2555, Lemma 5.3]. Similarly, a quaternionic Higgs bundle ((E, φ), θ) is semistable
(respectively, polystable) if and only if the Higgs bundle (E, θ) is semistable (respectively,
polystable).

A polystable Higgs vector bundle (E, θ) of degree zero on M admits a harmonic metric
h that satisfies the Yang–Mills–Higgs equation [10,5,6]. If ((E, φ), θ) is real or quaternionic
polystable of degree zero, then E admits a harmonic metric h because (E, θ) is polystable
of degree zero. The harmonic metric h on E can be so chosen that the isomorphism φ is an
isometry (note that h induces a Hermitian structure on E) [3, p. 2557, Proposition 5.5].
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