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Abstract.  In this paper, we consider the asymptotic behavior of the sequence of
monic polynomials orthogonal with respect to the Sobolev inner product

(a5 = / " p()g(x)du + Mp™ (g™ (),

where { < 0, M > 0 and du = e *x"dx. We study the outer relative asymptotics of these polyno-
mials with respect to the classical Laguerre polynomials, and we deduce a Mehler—Heine type
formula and a Plancherel-Rotach type formula for the rescaled polynomials.
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1. INTRODUCTION

Let uy, to, . .., be kK measures supported in the real line, such that
/|x|2"d,uj(x)<00, }’ZGN, jzla"'7k’
c

the support of g is infinite and gy is not the null measure. The elements of the sequence
{P,(x)},cn of polynomials orthogonal with respect to Sobolev inner product
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Gaahs = [ 173" (o) ),

are called Sobolev Type Orthogonal Polynomials, where p and ¢ are real polynomials. In
particular, the present contribution is focused on the study of asymptotic properties of
the sequence {S‘j(x)}neN, of Laguerre—Sobolev type monic polynomials, orthogonal
with respect to the Sobolev-type inner product

D)5 = / " p(R)a(x)e dx + Mp™ Qg™ (0), (1)

where M > 0,2 > —1 and { < 0. The asymptotic behavior is an important topic in the
theory of orthogonal polynomials because it plays a key role in several applications in
physics and engineering, (electrostatic, rational approximation, among others). We
present an approach to the subject when p; is the classical Laguerre measure (un-
bounded support), i, is a Dirac mass, and u3 = --- = p, = 0. The case { = 0 has been
studied extensively in [2,7], where are shown some asymptotic and analytic properties
of the corresponding orthogonal polynomials, as well as interlacing properties of their
zeros and a limit relation between these and the zeros of Bessel function J,(x). The
monotonicity of each individual zero in terms of the mass M can be seen in [13]. On
the other hand, if the mass point ( is located outside the support of the measure, that
is, if { < 0, an analytic approach has been done in [14], where is presented a second
order differential equation for these polynomials and a 2m + 3 term recurrence rela-
tion that they satisfy. In [3] some properties concerning the location and monotonicity
of the zeros and their asymptotics are established when either M converges to zero or
to infinity. The particular cases when m = 0 and m = 1, has been treated, respectively,
in [5,6], where it is interesting to note that the same results concerning outer relative
asymptotics are obtained, as well as the same Mehler—Heine type formula, that is,
the asymptotic behavior of these polynomials is independent of m. Motivated by the
above results, the structure of the paper is as follows. In Section 2 we present the basic
background concerning the classical Laguerre polynomials. In Section 3 we study the
outer relative asymptotic of the sequence {Sfj(x)}neN, in Section 4 we deduce the
respective Mehler—Heine type formula and in Section 5 we give a Plancherel-Rotach
type formula for the scaled polynomials.

2. PRELIMINARIES

Let {Lz(x)}neN be the sequence of classical Laguerre monic polynomials, orthogonal
with respect to the inner product

(p.q) = / " p()a(x)du,

where du = e *x%dx, with o > —1, and for every n € N. It is well known that these
polynomials satisfy a three term recurrence relation, as well as their representation
as | F; hypergeometric function, their characterization as eigenfunction of a second
order linear differential equation, and the behavior of their zeros, their electrostatic
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interpretation and interlacing properties, (see [1,4,10-12,16,17]). We will summarize
the other properties of the classical Laguerre polynomials we will use in the sequel.

Proposition 1. The sequence ZZ(X)} N denotes the classical Laguerre polynomials
n ne
with leading coefficients % i.e. for every n
(_1)” o T
Sl L) = L), )
For every n € N
~\ (k) ~
0 (L) @ =D L), (3)
(@) LG = L) - L5 (), )
(3) Forz e C —[0,00)
£§+/'(Z) — (_Z)*a‘/2+ﬂ/2not/2*ﬁ/2 % (1 + \ _Z(j_ k)
Ln+k(z) \/ﬁ
o 1 ﬁ 1 z 2 =3
RO P A By AT | 2y,
[ G-a)- Gaesumofiren) ®
(see [0]).
(4) (Mehler—Heine)
L k
llm n(x/f:j + )) _ x—oc/ZJo((z\/})7 (6)

uniformly on compact subset of C, (see [17, thm. 8.1.3]). J,(x) represents Bessel’s
function of the first kind defined by

2
P 2 e

and is known that if o > —1, J,(x) has a countably infinite set of real and positive zeros,
all simple except for the possible zero at the origin, (see [18,19]).
(5)  (Plancherel-Rotach) Let ¢(x) = x+ Vx> + 1 be the conformal mapping of
C — [—1,1] onto the exterior of the unit circle. Then
. L% (nx) 1
lim —2- =- , 7
M Ta) o272 "

uniformly on compact subsets of C\ [0,4], (see [8]).
If

Ko(ry) = SOLOILID)

2
o
k=0 HL/C o

denotes the n-th Kernel polynomial, then for every n € N, (see [4])
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Lra (DL0) = Ly () L)
[ REEE)

called Christoffel-Darboux formula. As a consequence of (8), is well known the next
confluent formula, (see [7])

K,,(X,y) = ) (8)

KO (ry) = — [Ty - L TR, )
L[, (x =)
where
m o (k)
T (x;y) = wa - (10)

k=0
denotes the Taylor Polynomial of degree m, of the polynomial L}(x) around x = y, and
y 9K, (x, )
K (5 —
(%, p) Txidy

As a consequence of (9):

., (m!)? 2m+1 (@m+1-)) @) 0 s

[((m.m)L _ o _ o o .

1= g S - )
(11)

3. RELATIVE OUTER ASYMPTOTICS

In this section we will find the relative asymptotic behavior of the Laguerre-Sobolev-
type orthogonal polynomials in the exterior of the positive real semiaxis. Let
{S‘,’;(x)}neN be the sequence of orthogonal polynomials with respect to (1). By using
of the classical Laguerre polynomials {Lf;(x)}nEN as a basis, for every n € N, S%(x)
can be written as

So‘ + Za,, kLk
where for 0 <j<n—1

ML) (@59 ©)

nj = 2 )
o
L

o

then

Si(x) = LA(x) — M(S9) " (KD (x,0). (12)

Remark 1. From (12), if m > n then S7(x) = L%(x).
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In order to compute (Sfj)(m) (¢), we take the m — th derivative in (12) and evaluate it
atx =

(Lx)(m)(c)

Sc{ (m) o

and replacing this value in (12), we have

S*(x) = L*(x) — M( n)(m)((:)Kﬁ,Ofr)(x, {)

(1+ME"E ) "

S(A

Now we are going to analyze how the quotient 7% behaves when n — oo, and x < 0.
In connection with (9), we have that for 0 < k < m —l,and y <0

m (L)Y o) (x = 2)" _m! e (Z;'i)(k) )
KAL) o)y B (2)" )

and using (3) and (5)

~\ (k)
Ly) () V/
( ) _ (_l)k—m|y|(m—k)/2n(k—m)/2 > (1 + |y| (m N k)

+ [(“;mf%)m— (“;k—}‘)k—g(m—k)%w(n3/2)),

PN
. L* )
and given that k —m < 0 ( ”) »_, 0 when n — oo, as a consequence

()"

o) (m)
iy ~ ) (o (14
Now, we divide by L%(x) in (13) and thus
. KO ()
Sz(x) e (L)"™ () e (15)
Ly(x) (14+ MK (E0)

In order to estimate the behavior of the above expression, by using the formula (9) and
(14), the numerator in the right hand side of (15) can be written as

Ko m'<L“)<”'><c> (LT 060 — Ly () T3 ()

o) (m)
(Ln) (é/) L;;( ) HLa 1“ m+1 Lz( )
le(U) <¢><L“ )““”(o(x 0", L (L“)“’”(o]
IH m+1 ( ) ( ) (C)
)" oE)"” (C) ll_Lg_l(x) (L")
||Ln 1|| X_C) Li(x) (LZ )(m>(é')




178 L.A.M. Molano

Taking into account the normalization (2), we obtain

AﬂLﬁwkoKﬁp“‘%V_m“‘lﬂM(iﬂ @) 0 e (@0

L}(x) Lz 1” (x=0) L(x) (E;_l)(m)(c) .
(16)
On the other hand, applying (11), we get
m,m 2m + 1
L+ MK (O =1+ M Xx )
(2m + 1 |L,1 .

(L) @)@ - (L) 0 @)

By using (2), the sum in the above expression becomes

(Z" )(/’)(C) (Z“)Qmﬂﬂ)(é')
= n—1 n ~\ 0 ~ (2m+1-))
DUV b | 1= : | < (L) (O L ©,
2 @) 0 ()" o () )

where b,,; = <2m]+ ! > Thereby, the denominator 1 + MK ({,{) can be written as

(m!)*nl(n — 1)!
(m+ 1L

. £e 0 © (L (2m+1-)) ol o
X ;bmj 1 — ((ZX;Z)(C) ((Za )) (2'n+l—/)(C) (LZ) U)(C)( ” )(2 +1 1)(0
) n n—1
(17)
Taking the results obtained in (16) and (17) we get

M<V%mﬂc@umu -
(rmEIC0) ey T B0 @) e | ()0 (57 0
' I® e @) ) @ B

o %)M@ (z; ,)Wm
N ) (Z“,)(’:k@
L (5z,)" @

Zm: (/\2 )v)(g) (/L\,%)(EWH)(() (z\")(nm (2\: ])Gnnl—n(;) :
7’” o~ 2m- - o~ (m ~ m
B T\ @) )" ol @0 ()"

Taking into account that

o 2
N” — ||LH*IH1 N

Mat(n — 1)!(Lz) "0 (Z: l)<m)(C)

=
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when 1 — oo is faster than (/(n=*/?), therefore we can remove it from the computations.
Now we are going to estimate the rate of convergence of the ratios in the above result,
outside the support of the measure. Using (5)

E o () )

and applying (3)

()" LV (< +m_ 1) _ §) Ly o,

~, \™ n 2 4 2
()"0 V"
oo (2)"0
then the term —ﬁ 1 — === | can be written as
Y Lo () ©
e e VI mm
x=0) NV 2n
1 Il = v—x
~ 18
(x=0  n (18)

On the other hand, if 0 < j < m, denoting f = 2m + 1 — j and applying (5) we obtain

(Z‘ZLI)U)(C) A ({247 1\ O\,
(Z“)%Zl_ - ((-3) r)ar e,

n

and

A\ @mi)
(&) o VA (<a+ﬁ_l> _c)lw(n_m)
n

ey

Then we conclude that

)"0 ()" o it
- <(fz))m<<:> ((Zz_?)(zmﬂ”(cfl (1 - ((;Ji)%)l“(/))

x <1+ \/Eu((“;ﬁf%) g)iw(nm))

:(j—m—%)%w(n”/%(j—m—%)%. (19)

Moreover

_ (_l)j*m|c‘(m*j)/2n(j—m)/2 X <1 + |C| (m —])

4L -



180 L.A.M. Molano

and
Y (2m+1-j)
(LZ‘1> mtl=j o) (j=1=-m)/2_ (m+1-j)/2 [
~ (m) :(_1) |C| n D x IJFW(]_WZ_I)
(Z:) " ©
o 1\, a m 1
¢, 2 1 -3/2
2 (i—m-=1)1 -+ 0 /
SG=m =12 ok )
thus
(iﬁwo(ﬁ~YMHw“> o o
)70 (o e
+ | = g+l,l i+ §+T,l m,é‘,(m,')z 1+(ﬂ(n*3/2)
22 g T\ Ty T
x (=" <1+ aU=m=1)
1 1 1
+{—<g+§—z>(j—2m—2)+<§+,; 4>(m+1)—§(/ m—l)}n
Ty SV
~ = Va1 i) (20)
where K(m,a,j) is a term that does not depend on n. Then from (18)—(20) we get
mn o \/m_‘/:
ORI 0/ L) =

(l—i—MKfZ’;”(C,C)) _<ﬁ\1/|?(1 ﬁ>)[2fjj'ﬂ mej(l m— ]

In the next proposition, we are going to compute the sum of the above result.

Proposition 2. For every m € N U {0}

(m!)? "’<mn+1>(, 1) 1

— ) j—m—=)=—= 21

(2m+1)!; Jj 2 2 (21)
Proof. It can be shown that

" om A+ 1 . 2m+ 1

Z( ; )(2m+1—2]):<m+1)(m+1) O (22)

J=0
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Finally, by using (21) we get

m (0.m) x,¢
s ML) y]JEWW—ﬁ@ S T

O ~ =

Lo (MK D) =0 il

n—1

thus, we have proved the next

Theorem 3.

Six) _ V-
L) v+

uniformly on compact subsets of C\ R,.

1iml‘l~>00

(23)

Note that the above result has been obtained in [5], (im = 0), and in [6], (m = 1). It

means that the sequence of analytic functions {¢,(x)},.y. With ¢, (x) = ‘ZEEX, converges

. ) . e e
uniformly on compact subsets of the exterior of the positive axis to ¢(x) = W=yl
Thus thanks to the well known Hurwitz’s theorem, [17, Thm. 1.91.3], given that (is
a simple zero of ¢(x), then { is an accumulation point of roots of ¢,(x), that is, given
that the zeros of every S;(x) are the same as those of every ¢,(x), then { attracts exactly
one zero of S”(x) for n large enough. As a consequence, for n large enough, S%(x) has a
negative zero, but this fact is well known of [15].

4. MEHLER—-HEINE TYPE FORMULA

In this section we will focus our attention on Mehler—Heine type formula for the
polynomials {S%(x)} _ . Taking into account the connection formula

(L))" (OK (x,0)
(1 + MK™M (¢, C)) 7

neN”

Si(x) = Li(x) - M

multiplying both hand sides by CV and applying (2), we get

S ()" O |SERY (.0
S*(x)=L%x)—M ' .
(1+ MK C0)

Making the change of variable x — x/n, and taking into account the results of the

previous section, it is convenient to introduce the factor (ijfl)(m)(ﬁ) in the next way

()" ) "o sl
() _ () _ ()"0
Sn (n) o Ln (n) M (1 +MK(m,m)(C7é,)>

n—1

(24)
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In order to estimate the behavior of the numerator in (24) and by using (9), we get

IX Om

Ve m(e) @) @

LZ_ ('")(C) L: X "’)(C)[ —~ =
()" OO ERCR)

im0+

X

_ ((n:]l)?l ( 1 )mLx+n;+m) (C) (5 _

Now we will analyze the behavior of the terms
T{n—l,a] (x . )
— (_1)"1fo+n;+m (é/) (5 - C)m

and
LT )

_ ((”_—11) (_1)/nLoz+ni+m)(C) (5 _ C)m .

Beginning with (25), we will use (10) as follows

o~

- Lo ©
T[n—l.;x (v() kz;(_l)k - (;!rl) : (;_ é,)k
— (('1:11)2" ( 1)mLo¢+;(;;+m)(C) (5 . C)m ( 1)”1Lo<+ml+m)(c) (% _ é,)m .
Then, if 0 <k <m— 1, we get

( l)k m Loc+1»1+k)(C) (x _ é‘) B ( l)k m Loc 1+k)(C) X —m
k! T otm n C) ’
Lo n

l+m)(Q (ﬁ - g)m N k! Lwnﬁm)(c)

and by using (5) as our main tool to analyze the above ratios, we get

k

(0 kg ( I]
(1+k) Ea
ey (1 k)
Litm (O v

o" o

—{<(a;k)—%>(k+l)+<(W;m)—%>(m+l) S k)] +0(n *‘/2))

Given that 5 < 0 and lim,_ (X — C)IH" = ¢, we have 0 <k <m — 1
K
lim

( l)k m Loc+kl+k)(€) (E _ C)
e k! L1+ml+m) (C) (% - é/) "

When k& = m we obtain

=0.

k

(1) L (O E=0) 1

k! L”"]H,)(C) (x— g)’" m!’
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As a consequence
-1 (=:0) 1
D L, O
On the other hand, (26) can be written as
Y O (x - g)f
k=0

(_1> L“Jr’(’;er)(C) (ﬁ - C)m
then if 0 < k <m — 1, using (5) we get

_()”’Nﬁ'

) L6 (1 VI (4 1)k
@ T, 0600 07 + -0

_K(Hk) 1>k—<(“+m)—%)(m+1)+%((m+1)—k)2%+]+cf( w)>

= \C|k7m, we have

2 4 2

Given that k — m < 0 and taking into account that lim,_ (5 — C)
—m o X k
(_1)1L Ln+11§((:) (; — C) =0
E-9"
In the case where k = m, we obtain
sz+m x _ A\
L Lo6-9" 1 (1 VAL [ ((a +m) D B g] 1 @(nm))

% LzH»m )(C) (:_l _ C)m \/ﬁ 2

lim,,_.
- | 7 otm
k! L —(1+m)

T oml

(I4+m
1 I
~— | 14+=].
m! ( + N/
Now taking into account the above process, we conclude that
1 T[n o] 1
(n=1)! m zx+(n)11’ ) X R <1 i \/|E|> (28)
(_1) L (l+m)(c)(;_1_ C) m./\ ,:l\
Li3) if the expression (24) is di-

T
By using (27), (28) and (6) and knowing that —- n'( )

ne

vided by n* we have
i Z:ﬁi%)ﬁyz 1l (x,r /L\Z,i(%),ﬂn,x] x
()" 0(5,)"© [ () ()
S:G) _LiG) L0 ey ©
n* n* (1 +M ”mlm (C,é’))

) 1,2y
=X L(24/%).

>
C

~x P (2V/X) -
(

27)

We summarize the last result in the next
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Theorem 4.

lim, . n() = —x""2J,(2VX), (29)

uniformly on every compact subset of C.

Note that the same result is obtained in [5,6], for the particular cases m = 0 and
m = 1. On the other hand, given that 0 is a zero of y(x) = —x*2J,(2,/x), then for
Hurwit’s theorem, for n large enough, it attracts at least one zero of the polynomial
S%*(x). Let {n,.«}r_, be the zeros in the increasing order of this one, then if j, ; represents
the i — th positive zero of the Bessel function J,(x), again by Hurwitz’s theorem, the
number ;2 ,/4 attracts to ny* , for n large enough, where 1, represents the i — ¢ posi-
tive zero of the polynomial S(x).

5. PLANCHEREL—ROTACH TYPE FORMULA

Our next purpose is to determine the Plancherel-Rotach type formula of the Laguerre—
Sobolev-type for the scaled polynomials {Sfj(nx) }neN. Taking into account the formula

Mm!
1L 1” (x =
" (L) ™ (O [L2() T (x;0) — L2, () T2 (x;0)
(1 + MK, g))

multiplying both sides by ) we get

~ ~ Mm!
SZ(X) = z(x) m+1
HLH 1|| X_C
(£2)"™©) |2 Ty 6 0) + Ly ()

(1+ MK (C0)

Sy(x) = Li(x) —

)

X

)

and scaling the variable x — nx, divide by Eﬁ(nx), and introducing the factor

(L l) " (¢), we have
S?(nx) 11— Mm!
Li(nx) 1| e = 0!
o (m) (L; 1)( ( n—1,0] (nx) f (I’I‘CiC))
L 7,7, T[ nx;{) + Ly ) 1" (i)
( n) (C> (L;; I)( © ( é) L"(nx) n
X . (30)

(1+ MK (0)
We will analyze the behavior of the terms
T[”_l’“] (nx- 0)

(L)™'’ Y
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and
PRty
n(L; )" Q)
As before, beginning with (31), when k <m — 1

(— l)k " LZ*fHk)(C)(nx - C)k _ (— l)k " LZH((Hk © e (x _E)k " 0
k! L1+n1 (O)nx = Q)" k! La+m ) n ’

(14+m (14-m)

(- l)k m L nx— )

n— (l+k)< o(

when n — oco. When k& = m the quotient becomes - and then as a

Kl -
Lffffh,”)( D=0y

consequence
ﬁ"‘l-“l(nx- 9.1 (32)
(L)@ m
On the other hand, if 0 <k < m — 1,
GV ¥ (9] G M
k! Lm+ml+m) (C) (% - C)m ,
and if k = m
LoLmoeE-9" 1 ( m)
m' L[x+n;+m)(é) (% - C)m m! \/ﬁ
and thus
n,0) .
L) LV (33)
(La ) m) ©) m! Vn

Then, by using (32), (33) and (7) we have

__m! 1 1 \/_
Sj;( ) =T <m!+ (217 (1+ f))

NI 1 I
—— 1 1 .
*(nx—o( "ol —2 >/2>< i f))
Note that e é) = (nx\/jlél) < \xl -, SO that

2vn/|0) 1 VIOV
(e —0) <1+<p((x—2)/2)<1+\/ﬁ>> "

when n — oco. We summarize the main result of this section in the next
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Theorem 5.
lim, . A _ (34)
L*(nx)

uniformly on compact subsets of C \ [0,4]

Note that the value of m does not modify the result obtained in [6], in the case
m = 1. The same result is given for m = 0 in [9].
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