

# On a type of almost Kenmotsu manifolds with nullity distributions

U.C. DE\*, KRISHANU MANDAL

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kol-700019, West Bengal, India

> Received 8 December 2015; accepted 11 April 2016 Available online 27 April 2016

**Abstract.** The object of the present paper is to characterize Weyl semisymmetric almost Kenmotsu manifolds with its characteristic vector field  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $(k, \mu)$ -nullity distribution respectively. Also we characterize almost Kenmotsu manifolds satisfying the curvature condition  $C \cdot S = 0$ , where C and S are the Weyl conformal curvature tensor and Ricci tensor respectively with its characteristic vector field  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution. As a consequence of the main results we obtain several corollaries. Finally, we present an example to verify our results.

2010 Mathematics Subject Classification: 53C25; 53C35

Keywords: Almost Kenmotsu manifolds; Nullity distribution; Weyl semisymmetric; Conformally flat

### **1. INTRODUCTION**

In the present time the study of nullity distributions is a very interesting topic on almost contact metric manifolds. The notion of k-nullity distribution  $(k \in \mathbb{R})$  was introduced by Gray [7] and Tanno [11] in the study of Riemannian manifolds (M, g), which is defined for any  $p \in M$  and  $k \in \mathbb{R}$  as follows:

$$N_p(k) = \{ Z \in T_p M : R(X, Y)Z = k[g(Y, Z)X - g(X, Z)Y] \},$$
(1.1)

for any  $X, Y \in T_p M$ , where  $T_p M$  denotes the tangent vector space of M at any point  $p \in M$ and R denotes the Riemannian curvature tensor of type (1, 3).

\* Corresponding author.

*E-mail addresses:* uc\_de@yahoo.com (U.C. De), krishanu.mandal013@gmail.com (K. Mandal). Peer review under responsibility of King Saud University.



Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2016.04.001

<sup>1319-5166 © 2016</sup> The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Recently Blair, Koufogiorgos and Papantoniou [3] introduced a generalized notion of the k-nullity distribution named the  $(k, \mu)$ -nullity distribution on a contact metric manifold  $(M^{2n+1}, \phi, \xi, \eta, g)$ , which is defined for any  $p \in M^{2n+1}$  and  $k, \mu \in \mathbb{R}$  as follows:

$$N_p(k,\mu) = \{ Z \in T_p M^{2n+1} : R(X,Y)Z = k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)hX - g(X,Z)hY] \}, \quad (1.2)$$

where  $h = \frac{1}{2} \pounds_{\varepsilon} \phi$  and  $\pounds$  denotes the Lie differentiation.

In [4], Dileo and Pastore introduced the notion of  $(k, \mu)'$ -nullity distribution, another generalized notion of the k-nullity distribution, on an almost Kenmotsu manifold  $(M^{2n+1}, \phi, \xi, \eta, g)$ , which is defined for any  $p \in M^{2n+1}$  and  $k, \mu \in \mathbb{R}$  as follows:

$$N_p(k,\mu)' = \{ Z \in T_p M^{2n+1} : R(X,Y)Z = k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)h'X - g(X,Z)h'Y] \}, (1.3)$$

where  $h' = h \circ \phi$ .

On the other hand, Kenmotsu [9] introduced a new type of contact metric manifolds named Kenmotsu manifolds nowadays. Let us consider  $M^{2n+1}$  be an almost contact metric manifold with almost contact structure  $(\phi, \xi, \eta, g)$  given by a (1, 1) tensor field  $\phi$ , a characteristic vector field  $\xi$ , a 1-form  $\eta$  and a compatible metric g satisfying the conditions [1,2]

$$\begin{split} \phi^2 &= -I + \eta \otimes \xi, \qquad \phi(\xi) = 0, \qquad \eta(\xi) = 1, \qquad \eta \circ \phi = 0, \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \end{split}$$

for any vector fields X and Y of  $T_p M^{2n+1}$ . The fundamental 2-form  $\Phi$  is defined by  $\Phi(X,Y) = g(X,\phi Y)$  for any vector fields X and Y of  $T_p M^{2n+1}$ . The condition for an almost contact metric manifold being normal is equivalent to vanishing of the (1,2)-type torsion tensor  $N_{\phi}$ , defined by  $N_{\phi} = [\phi,\phi] + 2d\eta \otimes \xi$ , where  $[\phi,\phi]$  is the Nijenhuis torsion of  $\phi$  [1]. A normal almost Kenmotsu manifold is a Kenmotsu manifold such that  $d\eta = 0$  and  $d\Phi = 2\eta \wedge \Phi$ . Also Kenmotsu manifolds can be characterized by  $(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X$ , for any vector fields X, Y. It is well known [9] that a Kenmotsu manifold  $M^{2n+1}$  is locally a warped product  $I \times_f N^{2n}$  where  $N^{2n}$  is a Kähler manifold, I is an open interval with coordinate t and the warping function f, defined by  $f = ce^t$  for some positive constant c. Let us denote the distribution orthogonal to  $\xi$  by  $\mathcal{D}$  and defined by  $\mathcal{D} = Ker(\eta) = Im(\phi)$ . In an almost Kenmotsu manifold, since  $\eta$  is closed,  $\mathcal{D}$  is an integrable distribution.

A Riemannian manifold  $(M^{2n+1}, g)$  is called locally symmetric if its curvature tensor R is parallel, that is,  $\nabla R = 0$ , where  $\nabla$  is the Levi-Civita connection. The notion of semisymmetric manifold, a proper generalization of locally symmetric manifold, is defined by  $R(X,Y) \cdot R = 0$ , where R(X,Y) acts on R as a derivation. A complete intrinsic classification of these manifolds was given by Szabó in [10]. A Riemannian manifold is said to be Weyl semisymmetric if the Weyl conformal curvature tensor C satisfies  $R \cdot C = 0$ . In a recent paper [8] Jun, De and Pathak studied Weyl semisymmetric Kenmotsu manifolds.

In [5], Dileo and Pastore studied locally symmetric almost Kenmotsu manifolds. Moreover almost Kenmotsu manifolds satisfying some nullity conditions were also investigated by Dileo and Pastore [4]. We refer the reader to [5,4,6] for more related results on  $(k, \mu)'$ -nullity distribution and  $(k, \mu)$ -nullity distribution on almost Kenmotsu manifolds. In recent papers [12–15] Wang and Liu study almost Kenmotsu manifolds with nullity distributions.

In [13], Wang and Liu study  $\xi$ -Riemannian semisymmetric almost Kenmotsu manifolds with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $(k, \mu)$ -nullity distribution.

The paper is organized as follows:

In Section 2, we give a brief account on almost Kenmotsu manifolds with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution and  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution. Section 3 deals with Weyl semisymmetric almost Kenmotsu manifolds and almost Kenmotsu manifolds satisfying the curvature condition  $C \cdot S = 0$  with characteristic vector field  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution. Section 4 is devoted to study conformally flat almost Kenmotsu manifolds and Weyl semisymmetric almost Kenmotsu manifolds with characteristic vector field  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution. As a consequence of the main results we obtain several corollaries. In the final section, we present an example to verify our results.

### 2. Almost Kenmotsu manifolds

Let  $M^{2n+1}$  be an almost Kenmotsu manifold. We denote  $h = \frac{1}{2} \pounds_{\xi} \phi$  and  $l = R(\cdot, \xi)\xi$  on  $M^{2n+1}$ . The two (1, 1)-type tensors l and h are symmetric and satisfy [4]

$$h\xi = 0, \quad l\xi = 0, \quad tr(h) = 0, \quad tr(h\phi) = 0, \quad h\phi + \phi h = 0.$$
 (2.1)

Besides the above we have the following results [4]

$$\nabla_X \xi = X - \eta(X)\xi - \phi h X (\Rightarrow \nabla_\xi \xi = 0), \tag{2.2}$$

$$\phi l\phi - l = 2(h^2 - \phi^2), \tag{2.3}$$

$$R(X,Y)\xi = \eta(X)(Y - \phi hY) - \eta(Y)(X - \phi hX) + (\nabla_Y \phi h)X - (\nabla_X \phi h)Y, \quad (2.4)$$

for any vector fields X, Y. The (1, 1)-type symmetric tensor field  $h' = h \circ \phi$  is anticommuting with  $\phi$  and  $h'\xi = 0$ . Also it is clear that

$$h = 0 \quad \Leftrightarrow \quad h' = 0, \qquad {h'}^2 = (k+1)\phi^2 (\Leftrightarrow h^2 = (k+1)\phi^2).$$
 (2.5)

## 3. $\xi$ belongs to the $(k, \mu)'$ -nullity distribution

In this section we consider an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)'$ nullity distribution. Let  $X \in \mathcal{D}$  be the eigenvector of h' corresponding to the eigenvalue  $\lambda$ . Then from (2.5) it is clear that  $\lambda^2 = -(k+1)$ , a constant. Hence  $k \leq -1$  and  $\lambda = \pm \sqrt{-k-1}$ . We denote the eigenspaces associated with h' by  $[\lambda]'$  and  $[-\lambda]'$  corresponding to the non-zero eigenvalues  $\lambda$  and  $-\lambda$  of h' respectively. To prove our main theorem in this section we recall some results:

**Lemma 3.1** (Prop. 4.1 and Prop. 4.3 of [4]). Let  $(M^{2n+1}, \phi, \xi, \eta, g)$  be an almost Kenmotsu manifold such that  $\xi$  belongs to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$ . Then k < -1,  $\mu = -2$  and Spec  $(h') = \{0, \lambda, -\lambda\}$ , with 0 as simple eigenvalue and  $\lambda = \sqrt{-k-1}$ . The distributions  $[\xi] \oplus [\lambda]'$  and  $[\xi] \oplus [-\lambda]'$  are integrable with totally geodesic leaves. The distributions  $[\lambda]'$  and  $[-\lambda]'$  are integrable with totally umbilical leaves. Furthermore, the sectional curvature is given as follows:

(a) K(X,ξ) = k − 2λ if X ∈ [λ]' and K(X,ξ) = k + 2λ if X ∈ [−λ]',
(b) K(X,Y) = k − 2λ if X, Y ∈ [λ]'; K(X,Y) = k + 2λ if X, Y ∈ [−λ]' and K(X,Y) = −(k + 2) if X ∈ [λ]', Y ∈ [−λ]',
(c) M<sup>2n+1</sup> has constant negative scalar curvature r = 2n(k − 2n).

**Lemma 3.2** (Lemma 3 of [14]). Let  $(M^{2n+1}, \phi, \xi, \eta, g)$  be an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution. If  $h' \neq 0$ , then the Ricci operator Q of  $M^{2n+1}$  is given by

$$Q = -2nid + 2n(k+1)\eta \otimes \xi - 2nh'.$$
(3.1)

Moreover, the scalar curvature of  $M^{2n+1}$  is 2n(k-2n).

**Lemma 3.3** (Proposition 4.2 of [4]). Let  $(M^{2n+1}, \phi, \xi, \eta, g)$  be an almost Kenmotsu manifold such that  $h' \neq 0$  and  $\xi$  belongs to the (k, -2)'-nullity distribution. Then for any  $X_{\lambda}, Y_{\lambda}, Z_{\lambda} \in [\lambda]'$  and  $X_{-\lambda}, Y_{-\lambda}, Z_{-\lambda} \in [-\lambda]'$ , the Riemannian curvature tensor satisfies:

$$\begin{split} R(X_{\lambda}, Y_{\lambda})Z_{-\lambda} &= 0, \\ R(X_{-\lambda}, Y_{-\lambda})Z_{\lambda} &= 0, \\ R(X_{\lambda}, Y_{-\lambda})Z_{\lambda} &= (k+2)g(X_{\lambda}, Z_{\lambda})Y_{-\lambda}, \\ R(X_{\lambda}, Y_{-\lambda})Z_{-\lambda} &= -(k+2)g(Y_{-\lambda}, Z_{-\lambda})X_{\lambda}, \\ R(X_{\lambda}, Y_{\lambda})Z_{\lambda} &= (k-2\lambda)[g(Y_{\lambda}, Z_{\lambda})X_{\lambda} - g(X_{\lambda}, Z_{\lambda})Y_{\lambda}], \\ R(X_{-\lambda}, Y_{-\lambda})Z_{-\lambda} &= (k+2\lambda)[g(Y_{-\lambda}, Z_{-\lambda})X_{-\lambda} - g(X_{-\lambda}, Z_{-\lambda})Y_{-\lambda}]. \end{split}$$

From (1.3) we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)h'X - \eta(X)h'Y],$$
(3.2)

where  $k, \mu \in \mathbb{R}$ . Also we get from (3.2)

$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] + \mu[g(h'X, Y)\xi - \eta(Y)h'X].$$
(3.3)

Contracting Y in (3.2) we have

$$S(X,\xi) = 2nk\eta(X). \tag{3.4}$$

The Weyl conformal curvature tensor C on a (2n + 1)-dimensional manifold is defined by [16]

$$C(X,Y)Z = R(X,Y)Z - \frac{1}{2n-1} \{ S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY \} + \frac{r}{2n(2n-1)} \{ g(Y,Z)X - g(X,Z)Y \},$$
(3.5)

where X, Y, Z are any vector fields, S is the Ricci tensor of type (0, 2) and Q is the Ricci operator defined by S(X, Y) = g(QX, Y). Using the results (3.1)–(3.4) one can easily obtain

the following:

$$C(\xi, Y)Z = \left(\mu + \frac{2n}{2n-1}\right) \{g(h'Y, Z)\xi - \eta(Z)h'Y\},$$
(3.6)

$$C(X,Y)\xi = \left(\mu + \frac{2n}{2n-1}\right) \{\eta(Y)h'X - \eta(X)h'Y\}.$$
(3.7)

Now we are in a position to prove our main theorem.

**Theorem 3.1.** Let  $(M^{2n+1}, \phi, \xi, \eta, g)(n > 1)$  be an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$ . If the manifold  $M^{2n+1}$  is Weyl semisymmetric then  $M^{2n+1}$  is locally isometric to the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold.

**Proof.** We suppose that the manifold is conformally semisymmetric, that is,  $R \cdot C = 0$ . Then  $(R(X, Y) \cdot C)(U, V)W = 0$  for all vector fields X, Y, U, V, W, which implies

$$R(X,Y)C(U,V)W - C(R(X,Y)U,V)W - C(U,R(X,Y)V)W - C(U,V)R(X,Y)W = 0.$$
(3.8)

Substituting  $X = U = \xi$  in (3.8) we have,

$$R(\xi, Y)C(\xi, V)W - C(R(\xi, Y)\xi, V)W - C(\xi, R(\xi, Y)V)W - C(\xi, V)R(\xi, Y)W = 0.$$
(3.9)

Making use of (3.3) and (3.6) we get

$$R(\xi, Y)C(\xi, V)W = k[g(Y, C(\xi, V)W)\xi - \eta(C(\xi, V)W)Y] + \mu[g(h'Y, C(\xi, V)W)\xi - \eta(C(\xi, V)W)h'Y] = k\left(\mu + \frac{2n}{2n-1}\right) \{g(h'V, W)\eta(Y)\xi - g(h'V, W)Y - \eta(W)g(Y, h'V)\xi\} - \mu\left(\mu + \frac{2n}{2n-1}\right) \{g(h'Y, h'V)\eta(W)\xi + g(h'V, W)h'Y\},$$
(3.10)

for any vector fields Y, V, W on  $M^{2n+1}$ .

Similarly, it follows from (3.3) and (3.6) that

$$C(R(\xi, Y)\xi, V)W = k\eta(Y)C(\xi, V)W - kC(Y, V)W - \mu C(h'Y, V)W = k\left(\mu + \frac{2n}{2n-1}\right) \{g(h'V, W)\eta(Y)\xi - \eta(W)\eta(Y)h'V\} - kC(Y, V)W - \mu C(h'Y, V)W,$$
(3.11)

for any vector fields Y, V, W on  $M^{2n+1}$ .

With the help of (3.3) and (3.6) we obtain

$$C(\xi, R(\xi, Y)V)W = kg(Y, V)C(\xi, \xi)W - k\eta(V)C(\xi, Y)W + \mu g(h'Y, V)C(\xi, \xi)W - \mu \eta(V)C(\xi, h'Y)W = -k\left(\mu + \frac{2n}{2n-1}\right) \{g(h'Y, W)\eta(V)\xi - \eta(W)\eta(V)h'Y\} + \mu(k+1)\left(\mu + \frac{2n}{2n-1}\right) \{g(Y, W)\eta(V)\xi - \eta(W)\eta(V)Y\},$$
(3.12)

for any vector fields Y, V, W on  $M^{2n+1}$ .

Again using (3.3), (3.6) and (3.7) we have

$$C(\xi, V)R(\xi, Y)W = kg(Y, W)C(\xi, V)\xi - k\eta(W)C(\xi, V)Y + \mu g(h'Y, W)C(\xi, V)\xi - \mu \eta(W)C(\xi, V)h'Y = -\left(\mu + \frac{2n}{2n-1}\right) \{kg(Y, W)h'V + \mu g(h'Y, W)h'V + \mu g(h'V, h'Y)\eta(W)\xi\} - k\left(\mu + \frac{2n}{2n-1}\right) \{g(h'V, Y)\eta(W)\xi - \eta(Y)\eta(W)h'V\},$$
(3.13)

for any vector fields Y, V, W on  $M^{2n+1}$ .

Finally, substituting (3.10)–(3.13) in (3.9) yields

$$kC(Y,V)W + \mu C(h'Y,V)W + \left(\mu + \frac{2n}{2n-1}\right) \{-kg(h'V,W)Y - \mu g(h'V,W)h'Y + kg(h'Y,W)\eta(V)\xi - k\eta(V)\eta(W)h'Y - \mu(k+1)g(Y,W)\eta(V)\xi + \mu(k+1)\eta(V)\eta(W)Y + kg(Y,W)h'V + \mu g(h'Y,W)h'V\} = 0,$$
(3.14)

for any vector fields Y, V, W on  $M^{2n+1}$ .

Substituting Y = h'Y in (3.14) and using the fact  ${h'}^2 = (k+1)\phi^2$  of (2.5) we get

$$kC(h'Y,V)W - \mu(k+1)C(Y,V)W + \left(\mu + \frac{2n}{2n-1}\right) \{-kg(h'V,W)h'Y + \mu(k+1)g(h'V,W)Y - k(k+1)g(Y,W)\eta(V)\xi + k(k+1)\eta(V)\eta(W)Y - \mu(k+1)g(h'Y,W)\eta(V)\xi + \mu(k+1)\eta(V)\eta(W)h'Y + kg(h'Y,W)h'V - \mu(k+1)g(Y,W)h'V\} = 0,$$
(3.15)

for any vector fields Y, V, W on  $M^{2n+1}$ .

Subtracting  $\mu$  multiple of (3.15) from k multiple of (3.14) implies

$$(k+2)^{2}C(Y,V)W + (k+2)^{2}\left(\mu + \frac{2n}{2n-1}\right)\left\{g(h'Y,W)\eta(V)\xi - \eta(V)\eta(W)h'Y - g(h'V,W)Y + g(Y,W)h'V\right\} = 0,$$
(3.16)

for any vector fields Y, V, W on  $M^{2n+1}$ . In [4], Dileo and Pastore proved that if  $\xi$  belongs to the  $(k, \mu)'$ -nullity distribution then  $\mu = -2$ . Using this result, Lemmas 3.2 and 3.3 and letting  $Y, V, W \in [-\lambda]'$  we have

$$C(Y,V)W = \frac{2nk - 2\lambda + 2n}{2n - 1} \{g(V,W)Y - g(Y,W)V\},$$
(3.17)

for any vector fields Y, V, W on  $M^{2n+1}$ .

With the help of (3.17) and noticing  $Y, V, W \in [-\lambda]'$  we obtain from (3.16)

$$(k+2)^{2}(k+1-\lambda)\{g(V,W)Y - g(Y,W)V\} = 0.$$
(3.18)

Making use of (3.18) and the fact  $\lambda = \pm \sqrt{-k-1}$  yields

$$\lambda(\lambda - 1)^2(\lambda + 1)^3 = 0.$$
(3.19)

Since  $h' \neq 0$ , (2.5) implies  $k \neq -1$  and hence  $\lambda \neq 0$ . Then it follows from (3.19) that  $\lambda^2 = 1$  and consequently k = -2. Without loss of any generality we may choose  $\lambda = 1$ . Then we have from Lemma 3.3

$$R(X_{\lambda}, Y_{\lambda})Z_{\lambda} = -4[g(Y_{\lambda}, Z_{\lambda})X_{\lambda} - g(X_{\lambda}, Z_{\lambda})Y_{\lambda}],$$
  

$$R(X_{-\lambda}, Y_{-\lambda})Z_{-\lambda} = 0,$$

for any  $X_{\lambda}, Y_{\lambda}, Z_{\lambda} \in [\lambda]'$  and  $X_{-\lambda}, Y_{-\lambda}, Z_{-\lambda} \in [-\lambda]'$ . Also noticing  $\mu = -2$  it follows from Lemma 3.1 that  $K(X, \xi) = -4$  for any  $X \in [\lambda]'$  and  $K(X, \xi) = 0$  for any  $X \in [-\lambda]'$ . Again from Lemma 3.1 we see that K(X, Y) = -4 for any  $X, Y \in [\lambda]'$ ; K(X, Y) = 0for any  $X, Y \in [-\lambda]'$  and K(X, Y) = 0 for any  $X \in [\lambda]', Y \in [-\lambda]'$ . As is shown in [4] that the distribution  $[\xi] \oplus [\lambda]'$  is integrable with totally geodesic leaves and the distribution  $[-\lambda]'$  is integrable with totally umbilical leaves by  $H = -(1 - \lambda)\xi$ , where H is the mean curvature vector field for the leaves of  $[-\lambda]'$  immersed in  $M^{2n+1}$ . Here  $\lambda = 1$ , then two orthogonal distributions  $[\xi] \oplus [\lambda]'$  and  $[-\lambda]'$  are both integrable with totally geodesic leaves immersed in  $M^{2n+1}$ . Then we can say that  $M^{2n+1}$  is locally isometric to  $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$ . This completes the proof of our theorem.  $\Box$ 

Since conformally symmetric manifold  $(\nabla C = 0)$  implies  $R \cdot C = 0$ , therefore from Theorem 3.1 we can state the following:

**Corollary 3.1.** A conformally symmetric almost Kenmotsu manifold  $M^{2n+1}(n > 1)$  with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$  is locally isometric to the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold.

Since  $R \cdot R = 0$  implies  $R \cdot C = 0$ , we obtain the following:

**Corollary 3.2.** A semisymmetric almost Kenmotsu manifold  $M^{2n+1}(n > 1)$  with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$  is locally isometric to the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold.

The above corollary has been proved by Wang and Liu [13]. Obviously, Theorem 3.1 generalizes the theorem of Wang and Liu [13].

Next we consider an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$  satisfying the curvature condition  $C \cdot S = 0$ . Then  $(C(X, Y) \cdot S)(U, V) = 0$  for all vector fields X, Y, U, V, which implies

$$S(C(X,Y)U,V) + S(U,C(X,Y)V) = 0,$$
(3.20)

for any vector fields X, Y, U, V on  $M^{2n+1}$ .

Substituting  $X = U = \xi$  in (3.20) we have,

$$S(C(\xi, Y)\xi, V) + S(\xi, C(\xi, Y)V) = 0.$$
(3.21)

Making use of (3.4) and (3.6) we get from (3.21)

$$\left(\mu + \frac{2n}{2n+1}\right) \left\{ S(h'Y, V) - 2nkg(h'Y, V) \right\} = 0,$$
(3.22)

for any vector fields Y, V on  $M^{2n+1}$ . Since  $\xi$  belongs to the  $(k, \mu)'$ -nullity distribution, therefore  $\mu = -2$  [4].

Hence for  $2n + 1 \ge 5$ ,

$$S(h'Y,V) = 2nkg(h'Y,V),$$
(3.23)

for any vector fields Y, V on  $M^{2n+1}$ .

Replacing Y by h'Y in (3.23) and using (2.5) yields

$$(k+1)\{S(Y,V) - 2nkg(Y,V)\} = 0, (3.24)$$

for any vector fields Y, V on  $M^{2n+1}$ .

Suppose k + 1 = 0, that is, k = -1. Dileo and Pastore [4] prove that in an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution if k = -1, then h' = 0 and the manifold  $M^{2n+1}$  is locally a warped product of an almost Kähler manifold and an open interval. Thus k + 1 = 0 contradicts our hypothesis  $h' \neq 0$ . Therefore S(V,Y) = 2nkg(V,Y), for any vector fields V, Y on  $M^{2n+1}$ . Thus the manifold is an Einstein manifold.

Conversely, if the manifold under consideration is an Einstein manifold, then from (3.20) it follows that  $C \cdot S = 0$  holds identically.

By the above discussions we can state the following:

**Theorem 3.2.** An almost Kenmotsu manifold  $(M^{2n+1}, \phi, \xi, \eta, g)$ , n > 1, with  $\xi$  belonging to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$  satisfies the curvature condition  $C \cdot S = 0$  if and only if the manifold is an Einstein manifold.

### 4. $\xi$ belongs to the $(k, \mu)$ -nullity distribution

In this section we study the curvature properties C = 0 and  $R \cdot C = 0$  on an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution, where C and R are the conformal curvature tensor and Riemannian curvature tensor respectively. From (1.2) we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY],$$
(4.1)

where  $k, \mu \in \mathbb{R}$ .

Now we state the following:

**Lemma 4.1** (*Theorem 4.1 of [4]*). Let  $M^{2n+1}$  be an almost Kenmotsu manifold of dimension 2n + 1. Suppose the characteristic vector field  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution. Then k = -1, h = 0 and  $M^{2n+1}$  is locally a warped product of an open interval and an almost Kähler manifold.

From (4.1) and Lemma 4.1 we have the following:

$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X, \tag{4.2}$$

$$R(\xi, X)Y = -g(X, Y)\xi + \eta(Y)X, \tag{4.3}$$

$$S(X,\xi) = -2n\eta(X),\tag{4.4}$$

for any vector fields X, Y on  $M^{2n+1}$ . Moreover, we have the following:

$$\eta(R(X,Y)Z) = g(X,Z)\eta(Y) - g(Y,Z)\eta(X),$$
(4.5)

for any vector fields X, Y on  $M^{2n+1}$ .

Let us consider the manifold  $M^{2n+1}$  be conformally flat, that is,

$$C(X,Y)Z = 0, (4.6)$$

for any vector fields X, Y, Z on  $M^{2n+1}$ .

From (3.5) and (4.6) we have

$$R(X,Y)Z = \frac{1}{2n-1} \{ S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY \} - \frac{r}{2n(2n-1)} \{ g(Y,Z)X - g(X,Z)Y \}.$$
(4.7)

Substituting  $Z = \xi$  in (4.7) and using (4.2), (4.4) yields

$$\eta(Y)QX - \eta(X)QY = \left(1 + \frac{r}{2n}\right)\left\{\eta(Y)X - \eta(X)Y\right\}.$$
(4.8)

Putting  $Y = \xi$  in (4.8) and using (4.4) we obtain

$$QX = \left(1 + \frac{r}{2n}\right)X - \left(1 + 2n + \frac{r}{2n}\right)\eta(X)\xi.$$
(4.9)

Taking inner product of (4.9) with Y we have

$$S(X,Y) = \left(1 + \frac{r}{2n}\right)g(X,Y) - \left(1 + 2n + \frac{r}{2n}\right)\eta(X)\eta(Y).$$
(4.10)

Now substituting the values of QX and S(X, Y) in the expression of the conformal curvature tensor and considering the hypothesis C(X, Y)Z = 0, we get

$$R(X,Y)Z = \left(\frac{r+4n}{2n(2n-1)}\right) \{g(Y,Z)X - g(X,Z)Y\} - \frac{1}{2n-1} \left(1+2n+\frac{r}{2n}\right) \{g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\}.$$
(4.11)

In [4], Dileo and Pastore prove that in an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution the sectional curvature  $K(X, \xi) = -1$ . From this we get in an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution the scalar curvature r = -2n(2n + 1).

Thus from (4.11) we obtain

$$R(X,Y)Z = -\{g(Y,Z)X - g(X,Z)Y\},\$$

which implies that the manifold is of constant curvature -1.

Conversely, if the manifold  $M^{2n+1}$  is of constant curvature -1, then it can be easily shown that the manifold under consideration is conformally flat.

Hence we can state the following:

**Proposition 4.1.** Let  $(M^{2n+1}, \phi, \xi, \eta, g)$  be an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution. Then  $M^{2n+1}$  is conformally flat if and only if the manifold is of constant curvature -1.

Using (4.3), (4.4) and (3.5) one can easily verify the following:

$$C(\xi, Y)Z = \left(\frac{r+2n}{2n(2n-1)}\right) \{g(Y, Z)\xi - \eta(Z)Y\} - \frac{1}{2n-1} \{S(Y, Z)\xi - \eta(Z)QY\},$$
(4.12)

for any vector field Y, Z on  $M^{2n+1}$ .

Now we prove the following:

**Proposition 4.2.** Let  $(M^{2n+1}, \phi, \xi, \eta, g)$  be an almost Kenmotsu manifold with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution. Then  $M^{2n+1}$  is Weyl semisymmetric if and only if the manifold is conformally flat.

**Proof.** Let  $M^{2n+1}$  be a Weyl semisymmetric almost Kenmotsu manifold with  $\xi$  belongs to the  $(k, \mu)$ -nullity distribution. Therefore  $(R(X, Y) \cdot C)(U, V)W = 0$  for all vector fields X, Y, U, V, W, which implies

$$R(X,Y)C(U,V)W - C(R(X,Y)U,V)W - C(U,R(X,Y)V)W = 0.$$
(4.13)

Substituting  $X = U = \xi$  in (4.13) we have,

$$R(\xi, Y)C(\xi, V)W - C(R(\xi, Y)\xi, V)W - C(\xi, R(\xi, Y)V)W - C(\xi, V)R(\xi, Y)W = 0.$$
(4.14)

Making use of (4.3) and (4.12) we get

$$R(\xi, Y)C(\xi, V)W = \left(\frac{r+2n}{2n(2n-1)}\right) \{g(V, Y)\eta(W)\xi - g(V, W)\eta(Y)\xi + g(V, W)Y - \eta(W)\eta(V)Y\} + \frac{1}{2n-1} \{S(V, W)\eta(Y)\xi - S(V, Y)\eta(W)\xi - S(V, W)Y - 2n\eta(W)\eta(V)Y\},$$
(4.15)

for any vector field Y, V, W on  $M^{2n+1}$ .

Again using (4.3) and (4.12) we obtain

$$C(R(\xi, Y)\xi, V)W = C(Y, V)W - \left(\frac{r+2n}{2n(2n-1)}\right) \times \{g(V, W)\eta(Y)\xi - \eta(W)\eta(Y)V\} + \frac{1}{2n-1}\{S(V, W)\eta(Y)\xi - \eta(Y)\eta(W)QV\},$$
(4.16)

for any vector field Y, V, W on  $M^{2n+1}$ .

Similarly, it follows from (4.3) and (4.12) that

$$C(\xi, R(\xi, Y)V)W = \left(\frac{r+2n}{2n(2n-1)}\right) \{g(Y, W)\eta(V)\xi - \eta(V)\eta(W)Y\} - \frac{1}{2n-1} \{S(Y, W)\eta(V)\xi - \eta(W)\eta(V)QY\},$$
(4.17)

for any vector field Y, V, W on  $M^{2n+1}$ .

With the help of (4.3) and (4.12) we have

$$C(\xi, V)R(\xi, Y)W = \left(\frac{r+2n}{2n(2n-1)}\right) \{g(Y, W)V - g(Y, W)\eta(V)\xi + g(Y, V)\eta(W)\xi - \eta(W)\eta(Y)V\} - \frac{1}{2n-1} \{2ng(Y, W)\eta(V)\xi + g(Y, W)QV + S(V, Y)\eta(W)\xi - \eta(W)\eta(Y)QV\},$$
(4.18)

for any vector field Y, V, W on  $M^{2n+1}$ .

Finally, substituting (4.15)–(4.18) in (4.14) gives

$$\begin{pmatrix} \frac{r+2n}{2n(2n-1)} \end{pmatrix} \{g(V,W)Y - g(Y,W)V\} - C(Y,V)W + \frac{1}{2n-1} \{S(Y,W)\eta(V)\xi - \eta(W)\eta(V)QY + 2ng(Y,W)\eta(V)\xi + g(Y,W)QV - S(V,W)Y - 2n\eta(V)\eta(W)Y\} = 0,$$
(4.19)

for any vector field Y, V, W on  $M^{2n+1}$ .

Using (3.5) in (4.19) yields

$$R(Y,V)W = \frac{1}{2n-1} \{g(V,W)Y - g(Y,W)V - 2n\eta(V)\eta(W)Y + S(Y,W)\eta(V)\xi - \eta(V)\eta(W)QY + 2ng(Y,W)\eta(V)\xi - S(Y,W)V + g(V,W)QY\}.$$
(4.20)

Contracting Y in (4.20) it follows that

$$S(V,W) = \left(1 + \frac{r}{2n}\right)g(V,W) - \left(1 + 2n + \frac{r}{2n}\right)\eta(V)\eta(W),$$
(4.21)

for any vector field V, W on  $M^{2n+1}$ .

Taking inner product of (4.19) with respect to Z gives

$$\begin{pmatrix} \frac{r+2n}{2n(2n-1)} \end{pmatrix} \{g(V,W)g(Y,Z) - g(Y,W)g(V,Z)\} - g(C(Y,V)W,Z) \\ + \frac{1}{2n-1} \{S(Y,W)\eta(V)\eta(Z) - \eta(W)\eta(V)S(Y,Z) + 2ng(Y,W)\eta(V)\eta(Z) \\ + g(Y,W)S(V,Z) - S(V,W)g(Y,Z) - 2n\eta(V)\eta(W)g(Y,Z)\} = 0.$$
(4.22)

Putting the value of S(V, W) in (4.22) one can easily obtain

$$g(C(Y,V)W,Z) = 0,$$
 (4.23)

that is, C(Y, V)W = 0, for any vector field Y, V, W on  $M^{2n+1}$ . Hence the manifold is conformally flat.

Conversely, if the manifold is conformally flat then obviously it is Weyl semisymmetric. This completes the proof of the proposition.  $\Box$ 

From Propositions 4.1 and 4.2 we obtain the following:

**Theorem 4.1.** An almost Kenmotsu manifold  $M^{2n+1}(n > 1)$  with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution is Weyl semisymmetric if and only if the manifold is of constant curvature -1.

Since conformally symmetric manifold  $(\nabla C = 0)$  implies  $R \cdot C = 0$ , therefore from Theorem 4.1 we can state the following:

**Corollary 4.1.** An almost Kenmotsu manifold  $M^{2n+1}(n > 1)$  with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution is conformally symmetric if and only if the manifold is of constant curvature -1.

Since  $R \cdot R = 0$  implies  $R \cdot C = 0$ , we obtain the following:

**Corollary 4.2.** An almost Kenmotsu manifold  $M^{2n+1}(n > 1)$  with  $\xi$  belonging to the  $(k, \mu)$ -nullity distribution is semisymmetric if and only if the manifold is of constant curvature -1.

The above corollary has been proved by Wang and Liu [13].

#### 5. EXAMPLE OF A 5-DIMENSIONAL ALMOST KENMOTSU MANIFOLD

In this section, we construct an example of an almost Kenmotsu manifold such that  $\xi$  belongs to the  $(k, \mu)'$ -nullity distribution and  $h' \neq 0$ , which is an Einstein manifold. We consider 5-dimensional manifold  $M = \{(x, y, z, u, v) \in \mathbb{R}^5\}$ , where (x, y, z, u, v) are the standard coordinates in  $\mathbb{R}^5$ . Let  $\xi$ ,  $e_2$ ,  $e_3$ ,  $e_4$ ,  $e_5$  be five vector fields in  $\mathbb{R}^5$  which satisfies [4]

$$[\xi, e_2] = -2e_2, \qquad [\xi, e_3] = -2e_3, \qquad [\xi, e_4] = 0, \qquad [\xi, e_5] = 0, \\ [e_i, e_j] = 0, \quad \text{where } i, j = 2, 3, 4, 5.$$

Let g be the Riemannian metric defined by

$$\begin{split} g(\xi,\xi) &= g(e_2,e_2) = g(e_3,e_3) = g(e_4,e_4) = g(e_5,e_5) = 1\\ \text{and} \quad g(\xi,e_i) = g(e_i,e_j) = 0 \quad \text{for } i \neq j; \, i,j = 2,3,4,5. \end{split}$$

Let  $\eta$  be the 1-form defined by

$$\eta(Z) = g(Z,\xi),$$

for any  $Z \in \chi(M)$ . Let  $\phi$  be the (1,1)-tensor field defined by

$$\phi(\xi) = 0, \qquad \phi(e_2) = e_4, \qquad \phi(e_3) = e_5, \qquad \phi(e_4) = -e_2, \qquad \phi(e_5) = -e_3.$$

Using the linearity of  $\phi$  and g we have

$$\eta(\xi) = 1, \qquad \phi^2 Z = -Z + \eta(Z)\xi$$

and

$$g(\phi Z, \phi U) = g(Z, U) - \eta(Z)\eta(U),$$

for any  $Z, U \in \chi(M)$ . Moreover,

$$h'\xi = 0,$$
  $h'e_2 = e_2,$   $h'e_3 = e_3,$   $h'e_4 = -e_4,$   $h'e_5 = -e_5.$ 

The Levi-Civita connection  $\nabla$  of the metric tensor g is given by Koszul's formula which is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) -g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

Using Koszul's formula we get the following:

$$\begin{array}{lll} \nabla_{\xi}\xi=0, & \nabla_{\xi}e_{2}=0, & \nabla_{\xi}e_{3}=0, & \nabla_{\xi}e_{4}=0, & \nabla_{\xi}e_{5}=\xi, \\ \nabla_{e_{2}}\xi=2e_{2}, & \nabla_{e_{2}}e_{2}=-2\xi, & \nabla_{e_{2}}e_{3}=0, & \nabla_{e_{2}}e_{4}=0, & \nabla_{e_{2}}e_{5}=0, \\ \nabla_{e_{3}}\xi=2e_{3}, & \nabla_{e_{3}}e_{2}=0, & \nabla_{e_{3}}e_{3}=-2\xi, & \nabla_{e_{3}}e_{4}=0, & \nabla_{e_{3}}e_{5}=0, \\ \nabla_{e_{4}}\xi=0, & \nabla_{e_{4}}e_{2}=0, & \nabla_{e_{4}}e_{3}=0, & \nabla_{e_{4}}e_{4}=0, & \nabla_{e_{4}}e_{5}=0, \\ \nabla_{e_{5}}\xi=0, & \nabla_{e_{5}}e_{2}=0, & \nabla_{e_{5}}e_{3}=0, & \nabla_{e_{5}}e_{4}=0, & \nabla_{e_{5}}e_{5}=0. \end{array}$$

In view of the above relations we have

$$\nabla_X \xi = -\phi^2 X + h' X,$$

for any  $X \in \chi(M)$ . Therefore, the structure  $(\phi, \xi, \eta, g)$  is an almost contact metric structure such that  $d\eta = 0$  and  $d\Phi = 2\eta \wedge \Phi$ , so that M is an almost Kenmotsu manifold.

By the above results, we can easily obtain the components of the curvature tensor R as follows:

$$\begin{split} R(\xi, e_2)\xi &= 4e_2, \qquad R(\xi, e_2)e_2 = -4\xi, \qquad R(\xi, e_3)\xi = 4e_3, \\ R(\xi, e_3)e_3 &= -4\xi, \\ R(\xi, e_4)\xi &= R(\xi, e_4)e_4 = R(\xi, e_5)\xi = R(\xi, e_5)e_5 = 0, \\ R(e_2, e_3)e_2 &= 4e_3, \qquad R(e_2, e_3)e_3 = -4e_2, \qquad R(e_2, e_4)e_2 = R(e_2, e_4)e_4 = 0, \\ R(e_2, e_5)e_2 &= R(e_2, e_5)e_5 = R(e_3, e_4)e_3 = R(e_3, e_4)e_4 = 0, \\ R(e_3, e_5)e_3 &= R(e_3, e_5)e_5 = R(e_4, e_5)e_4 = R(e_4, e_5)e_5 = 0. \end{split}$$

With the help of the expressions of the curvature tensor we conclude that the characteristic vector field  $\xi$  belongs to the  $(k, \mu)'$ -nullity distribution, with k = -2 and  $\mu = -2$ .

Using the expressions of the curvature tensor we find the values of the Ricci tensor S as follows:

$$S(\xi,\xi) = S(e_2, e_2) = S(e_3, e_3) = -8,$$
  $S(e_4, e_4) = S(e_5, e_5) = 0.$ 

Since  $\{\xi, e_2, e_3, e_4, e_5\}$  forms a basis, any vector field  $X, Y \in \chi(M)$  can be written as

$$X = a_1\xi + a_2e_2 + a_3e_3 + a_4e_4 + a_5e_5$$

and

$$Y = b_1 \xi + b_2 e_2 + b_3 e_3 + b_4 e_4 + b_5 e_5,$$

where  $a_1, a_2, a_3, a_4, a_5, b_1, b_2, b_3, b_4, b_5 \in \mathbb{R} \setminus \{0\}$  such that  $a_4b_4 + a_5b_5 = 0$ . Hence,

$$g(X,Y) = a_1b_1 + a_2b_2 + a_3b_3$$

and

$$S(X,Y) = -8(a_1b_1 + a_2b_2 + a_3b_3).$$

Therefore, we see that S(X,Y) = -8g(X,Y), that is, the manifold M is an Einstein manifold.

Thus, Theorem 3.2 is verified.

#### REFERENCES

- D.E. Blair, Contact manifold in Riemannian geometry, in: Lecture Notes on Mathematics, vol. 509, Springer, Berlin, 1976.
- [2] D.E. Blair, Riemannian geometry on contact and symplectic manifolds, Progr. Math., 203.
- [3] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel. J. Math. 91 (1995) 189–214.
- [4] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009) 46–61.
- [5] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007) 343–354.
- [6] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds with a condition of  $\eta$ -parallelism, Differential Geom. Appl. 27 (2009) 671–679.
- [7] A. Gray, Spaces of constancy of curvature operators, Proc. Amer. Math. Soc. 17 (1966) 897–902.

- [8] J.-B. Jun, U.C. De, G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005) 435–445.
- [9] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972) 93–103.
- [10] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying  $R(X, Y) \cdot R = 0$ , the local version, J. Differential Geom. 17 (1982) 531–582.
- [11] S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30 (1978) 509-531.
- [12] Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (2014) 839–847.
- [13] Y. Wang, X. Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112 (2014) 37–46.
- [14] Y. Wang, X. Liu, On  $\phi$ -recurrent almost Kenmotsu manifolds, Kuwait J. Sci. 42 (2015) 65–77.
- [15] Y. Wang, X. Liu, On a type of almost Kenmotsu manifolds with harmonic curvature tensors, Bull. Belg. Math. Soc. Simon Stevin 22 (2015) 15–24.
- [16] K. Yano, M. Kon, Structures on Manifolds, Vol. 40, World Scientific Press, 1989.