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Abstract.  The existence of solutions for a multi point boundary value problem of a
fractional order differential inclusion is investigated. Several results are obtained by
using suitable fixed point theorems when the right hand side has convex or non convex
values.
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1. INTRODUCTION

Differential equations with fractional order have recently proved to be strong tools in
the modeling of many physical phenomena; for a good bibliography on this topic we
refer to [18]. As a consequence there was an intensive development of the theory of dif-
ferential equations of fractional order [2,16,22] etc.. The study of fractional differential
inclusions was initiated by El-Sayed and Ibrahim [13]. Very recently several qualitative
results for fractional differential inclusions were obtained in [1,3,6-11,15,20] etc.

In this paper we study the following problem

D*x(t) € F(t,x(1),x'(¢)) ae.[0,1], (1.1)
x(0) =x'(0) =0, x(1) - im—x(@) =1 (1.2)
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where D* is the standard Riemann-Liouville fractional derivative, o € (2,3],
m=1,0<é <--<&, <, a8 <1, 2>0, >0, i=1,m and F: |0, 1]
xR x R — P(R) is a set-valued map.

The present paper is motivated by a recent paper of Nyamoradi [19], where it is con-
sidered problem (1.1) and (1.2) with F single valued and several existence results are
provided.

The aim of our paper is to extend the study in [19] to the set-valued framework and
to present some existence results for problem (1.1) and (1.2). Our results are essentially
based on a nonlinear alternative of Leray—Schauder type, on Bressan—Colombo selec-
tion theorem for lower semicontinuous set-valued maps with decomposable values and
on Covitz and Nadler set-valued contraction principle. The methods used are known
([1,8,9] etc.), however their exposition in the framework of problem (1.1) and (1.2) is
new.

The paper is organized as follows: in Section 2 we recall some preliminary facts that
we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

In this section we sum up some basic facts that we are going to use later.

Let (X, d) be a metric space with the corresponding norm || and let / R be a com-
pact interval. Denoted by £([) the o-algebra of all Lebesgue measurable subsets of 7, by
P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel sub-
sets of X. If A c Ithen y4: I — {0,1} denotes the characteristic function of 4. For any
subset 4 < X we denote by A4 the closure of A.

Recall that the Pompeiu—Hausdorff distance of the closed subsets 4,B c X is defined
by

dy(A, B) = max{d"(4,B),d (B,A)}, d'(A4,B)=sup{d(a,B);ac A},

where d(x,B) = infcgd(x,y).

As usual, we denote by C(Z,X) the Banach space of all continuous functions x: I - X
endowed with the norm | xl ¢ = sup,c] x(1)| and by L'(Z,X) the Banach space of all
(Bochner) integrable functions x: 7 — X endowed with the norm |x|, = [, |x(¢)|dz.

A subset D c L'(1,X) is said to be decomposable if for any u,v € D and any subset
A € L(I) one has uy + vyg € D, where B = I\ A.

Consider T: X — P(X) a set-valued map. A point x € Xis called a fixed point for T’
if x € T(x). T is said to be bounded on bounded sets if 7(B):= U,cpT(x) is a bounded
subset of X for all bounded sets B in X. T is said to be compact if T(B) is relatively
compact for any bounded sets B in X. T is said to be totally compact if 7(X) is a com-
pact subset of X. T'is said to be upper semicontinuous if for any open set D c X, the set
{x € X: T(x) c D} is open in X. T is called completely continuous if it is upper semicon-
tinuous and totally bounded on X.

It is well known that a compact set-valued map T with nonempty compact values is
upper semicontinuous if and only if 7" has a closed graph.

We recall the following nonlinear alternative of Leray—Schauder type and its
consequences.
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Theorem 2.1 [21]. Let D and D be open and closed subsets in a normed linear space X
such that 0 € D and let T: D — P(X) be a completely continuous set-valued map with
compact convex values. Then either

(i) the inclusion x € T(x) has a solution, or
(i) there exists x € OD (the boundary of D) such that Ax € T(x) for some A > 1.

Corollary 2.2. Let B,(0) and B,(0) be the open and closed balls in a normed linear space
X centered at the origin and of radius r and let T : B.(0) — P(X) be a completely
continuous set-valued map with compact convex values. Then either

(1) the inclusion x € T(x) has a solution, or
(i1) there exists x € X with| Xl = r and Ax € T(x) for some A > 1.

Corollary 2.3. Let B.(0) and B,(0) be the open and closed balls in a normed linear space
X centered at the origin and of radius r and let T : B,(0) — X be a completely continuous
single valued map with compact convex values. Then either

(1) the equation x = T(x) has a solution, or
(i) there exists x € X with| Xl = r and x = JT(x) for some 1 < 1.

We recall that a multifunction T : X — P(X) is said to be lower semicontinuous if for any
closed subset C c X, the subset {s € X: T(s) c C} is closed.

If F:IxR xR — PR) is a set-valued map with compact values and x € C(IR) we
define

Sr(x) = {f€ L'LR):  f(1) € F(t,x(1), X (1)) ae. I}.

We say that F is of lower semicontinuous type if Sg(.) is lower semicontinuous with closed
and decomposable values.

Theorem 2.4 [4]. Let S be a separable metric space and G : S — P(L'(I,R)) be a lower
semicontinuous set-valued map with closed decomposable values.

Then G has a continuous selection (i.e., there exists a continuous mapping g:
S — L'(IR) such that g(s) € G(s) VseS).

A set-valued map G : I — P(R) with nonempty compact convex values is said to be
measurable if for any x € R the function t — d(x,G(t)) is measurable.

A set-valued map F : I x R x R — P(R) is said to be Carathéodory if t — F(t,x,y) is
measurable for all x,y € R and (x,y) — F(t,x,y) is upper semicontinuous for almost all
tel

F is said to be L'-Carathéodory if for any | > 0 there exists h; € L'(IR) such that
sup{ M :ve Flixy)y <h(t) ae. I, Vx,y € B(0).

Theorem 2.5 [17]. Let X be a Banach space, let F: I x X — P(X) be a L'-Carathéodory
set-valued map with Sgp# O and let T: L' (I.X) — C(I,X) be a linear continuous mapping.
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Then the set-valued map T o Sp: C(I,X) — P(C(I, X)) defined by
(I' o Sp)(x) = I'(Sk(x))
has compact convex values and has a closed graph in C(1LX) x C(1X).
Note that if dimX < oo, and F is as in Theorem 2.5, then Sg(x) # 0 for any x € C(1,X)
(e.g., [17]).

Consider a set valued map 7 on X with nonempty values in X. T is said to be a
A-contraction if there exists 0 < A < 1 such that

dH(T(X),T(y)) < ;“d(xay) vay €X.

The set-valued contraction principle [12] states that if X is complete, and
T:X — P(X) is a set valued contraction with nonempty closed values, then T has a
fixed point, i.e. a point z € X such that z € T(z).

Definition 2.6.

(a) The fractional integral of order a > 0 of a Lebesgue integrable function f:
(0,00) = R is defined by

A UL Py

o) = [ s
provided the right-hand side is pointwise defined on (0,00) and I’ is the (Euler’s)
Gamma function defined by I'(a) = [;° *"'e~dt.

(b) The Riemann—Liouville fractional derivative of order o > 0 of a continuous
function f: (0,00) — R is defined by

dn ! —otn—1
Df(1) = ﬁ o /0 (1=3) fUs)ds,

where n = [o] + 1, provided the right-hand side is pointwise defined on (0,c0).By
AC'([0, 1],R) we denote the space of continuous real-valued functions whose first deriv-
ative exists and it is absolutely continuous on 7. On AC'([0, 1],R) we consider the norm

[[x]l = max{ sup |x(z)|, sup [x'(2)[}.
€0, 1] t€l0,1]

Definition 2.7. A function x € AC'([0,1],R) is called a solution of problem (1.1) and
(1.2) if there exists a function v € L'([0,1],R) with w(r) € F(1,x(¢),X'(1)), a.e. [0,1] such
that D*x(¢) = v(¢), a.e. [0,1] and conditions (1.2) are satisfied.

In what follows I = [0,1], « € (2,3], and A = Z;’;]aiéf—] € (0, 1). Next we need the
following technical result proved in [19].

Lemma 2.8 19. For any h € L'(I,R) the problem



On a multi point boundary value problem for a fractional order differential inclusion 77
has a unique solution given by

;Ltzfl o—1 m

x() = /0 G(z,s)h(s)ds+1’_—A;a,- /0 (&, $)h(s)ds, 1€ [0, 1],

where

s <t

t

<
<

o o
NN
NN

N

Note that G(t,s) > 0 Vts€land G(t,s) < (e.g., Lemma 5 in [19]). If we denote

1
(o)’

Gi(t,5) =G(t,s) + > 1, a{fj’A' G(&,s) ome has |Gi(t,s)] < r(lz) (1 +ZI‘A'[H) and

¢ 2(a—1 "
2 (1,5)| < 20 (14 24).

Let K;=sup,,c] G;(1,5)| and K, := sup, e/ %(r, s)|.

Finally, we denote z(t) = ‘1’: and Cp=sup,clz(t)|.

3. THE MAIN RESULTS

Now we are able to present the existence results for problem (1.1) and (1.2).
We consider first the case when F is convex valued.

Hypothesis 3.1.

(i) F:IxRxR—PR) has nonempty compact convex values and is
Carathéodory.

(ii) There exist ¢ € L'(I,R) with ¢ (r) > 0 a.e. I and there exists a nondecreasing
function ¥:[0,00) — (0,00) such that

sup{Pl, ve Ft,xp)} < oy(max{|x],|y[}) ae I, Vx,y€R.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and there exists r > 0 such that
r> Cy 4+ max{Ky, Kx } ||,y (r). (3.1)

Then problem (1.1) and (1.2) has at least one solution x such that ||x|| < r.

Proof. Let X = AC'(I,R) and consider » > 0 as in (3.1). It is obvious that the existence

of solutions to problem (1.1) and (1.2) reduces to the existence of the solutions of the
integral inclusion

x(t) € z(¢) + /1 Gi(t,8)F(s,x(s),x'(s))ds, te€lL (3.2)
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Consider the set-valued map T : B,(0) — P(AC'(I,R)) defined by

1
T(x) := {v € ACY(LR); v(1) = z(1) +/ G\(t,5)f(s)ds, fe Sp(x)}. (3.3)
0
We show that T satisfies the hypotheses of Corollary 2.2.

First, we show that T(x) ¢ AC'(I,R) is convex for any x € AC'(L,R). If v;,v, € T(x)
then there exist f1,f> € SH(x) such that for any ¢ € I one has

vi(t) = z(1) + /01 Gi(t,8)fi(s)ds, i=1,2.

Let 0 < o < 1. Then for any 7 € I we have

(o + (1 = 2)v2) (1) = 2(2) +/O Gi(1,5)[efi(s) + (1 — o)fa(s)]ds

The wvalues of F are convex, thus Sgx) is a convex set and hence
oavy + (1 — o)y, € T(x).

Second, we show that T is bounded on bounded sets of AC'(I,R). Let B < AC'(I,R)
be a bounded set. Then there ex1sts m > 0 such that ||x]| < m Vx € B.If v € T(x) there
exists /'€ Sg(x) such that v( fo G (1, 5)f(s)ds. One may write for any ¢ € [

1v(2)] |+/\st (5)|ds

z(1)] +/0 |G (2, 5) ()i (max{[x(s)], |x'(s)[})ds
On the other hand,

(o) |+/ 1290 1, 9)] - 705l

()] + / 129 1,9l max{ (5], [¥ (5) 1}
and therefore
Il = max{Is(o). ()]}

oG,

1
< me ' —
< maxmax{|z(0} 120} + | max{|Gi(e.9)| 5

X (1,5)[} ()9 (max{|x(s)], |X'(s) | })ds
< Cr+max{Ky, K}l ¥ (m)

Vv e T(x), i.e., T(B) is bounded.
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We show next that 7 maps bounded sets into equi-continuous sets. Let
Bc AC'(IR) be a bounded set as before and v € T(x) for some x € B. There exists
f € SK(x) such that v(r) = z(¢) + fo Gi(t,5)f(s)ds. Then for any ¢,z € I we have

(1) =v(r)] < IZ(Z)—Z(T)H\/O Gl(l7S)f(S)dS—/() Gi(t,)/(s)ds|

<vm—4m+l|m@w
— Gi(25) gy (max{|x(s)], [¥'(5)]})ds
< |2() — =(0)] + /0 Gy (1,5) — G (5, 8)| () (m) ds.

Similarly, we have

MO =@ < 0 =201+ [ 12800 - 5 @ lotsimas

It follows that | v(r) — v(z)l — 0 as 1 — 7 . Therefore, T(B) is an equi-continuous set
in AC'(IR). We apply now Arzela—Ascoli’s theorem we deduce that T is completely
continuous on AC'(LR).

In the next step of the proof we prove that 7 has a closed graph. Let x,, € AC'(I,R)
be a sequence such that x, — x and v, € T\ (x,) Vn € N such that v, > V. We prove
that Ve T(x)). Since v, € T(xn) there exists f, € S F(xn) such that v,(7) = z(¢)+
fo G1(t,5)f,(s)ds. Define I': L'(IR) = AC'(LR) by (I'(f)(t fo G (¢, 5)f(s)ds. One
has

max{]r, (1) — 2()) = (v(1) = 2(O)], (1) = (1) = () () = (1)
= max{[v,(1) =" (O], () = (" (1} = v = v = 0

as n — oo.

We apply Theorem 2.5 to find that FoSF has closed graph and from the definition of
I we get v, elo SF(xn) Smce X, — X, v, = v it follows the existence of /€ SHx")
such that v*(r) — fo Gi(t,s)f*(s )ds. Therefore, T is upper semicontinuous and
compact on Br(O)

We apply Corollary 2.2 to deduce that either (i) the inclusion x € T7{(x) has a
solution in B,(0), or (ii) there exists x € X with ||x|| = r and Ax € T(x) for some 2 > 1.

Assume that (ii) is true. With the same arguments as in the second step of our proof
we get r = ||x|| < C; + max{K;,K>}| ¢l 1 (r) which contradicts (3.1). Hence only (i) is
valid and theorem is proved.

We consider now the case when F is not necessarily convex valued. Our first
existence result in this case is based on the Leray—Schauder alternative for single valued
maps and on Bressan Colombo selection theorem. [
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Hypothesis 3.3.

(1) F: I x R x R — P(R) has compact values, Fis £(/) ® B(R) ® B(R) measurable
and (x,y) — F(t,x,y) is lower semicontinuous for almost all 7 € I.

(ii) There exist ¢ € L'(I,R) with ¢ (r) > 0 a.e. I and there exists a nondecreasing
function y :[0,00) — (0,00) such that

sup{Pl, ve Ft,x,p)} < o)y(max{|x],|y[}) ae I, Vx,y R

Theorem 3.4. Assume that Hypothesis 3.3 is satisfied and there exists r > 0 such that
condition (3.1) is satisfied. Then problem (1.1) and (1.2) has at least one solution on I.

Proof. We note first that if Hypothesis 3.3 is satisfied then F'is of lower semicontinuous
type (e.g., [14]). Therefore, we apply Theorem 2.4 to deduce that there exists f:
ACY(I,R) = L'(I,R) such that f{x) € SH(x) Vx € AC'(IR).

We consider the corresponding problem

x(t) = z(1) —I—/O G\ (t,s)f(x(s))ds, tel (3.4)

in the space X = AC'(L,R). It is clear that if x € AC'(L,R) is a solution of the problem
(3.4) then x is a solution to problem (1.1) and (1.2).

Let r > 0 that satisfies the condition (3.1) and define the set-valued map
T: B,(0) — P(AC'(I,R)) by

1
(@) =20+ | Gult,s)x(s)ds.
0
Obviously, the integral Eq. (3.4) is equivalent with the operator equation

x(t) = (T(x))(r), tel (3.5)
It remains to show that T satisfies the hypotheses of Corollary 2.3.

We show that T is continuous on B,(0). From Hypotheses 3.3. (ii) we have

fx())] < @y (max{|[x(1)],|xX'()]}) ae I
for all x € AC'(I,R). Let x,,x € m such that x, — x. Then
[ (D) < @(OY(r) ae. I

From Lebesgue’s dominated convergence theorem and the continuity of /' we obtain,
foralltel

1

lim (T(x,))(t) = z(¢) + im [ G (¢,$)f(x,(s))ds = z(t) + /0 Gy (t,9)f(x(s))ds

n—o0 n—o0 0

= (T(x)(1)



On a multi point boundary value problem for a fractional order differential inclusion 81

and

1

lim (T(x,))'(£) = 2/(¢) + lim a_th(l’ () ds

n—o00 n—oo [o 0
=20+ % (£, 5)f(x(s))ds = (T(x))'(1)

0
1.e., T is continuous on m

Repeating the arguments in the proof of Theorem 3.2 with corresponding
modifications it follows that T is compact on B,(0). We apply Corollary 2.3 and we
find that either (i) the equation x = T(x) has a solution in B,(0), or (ii) there exists
x € X with |[x|| = r and x = AT(x) for some 1 < 1.

As in the proof of Theorem 3.2 if the statement (ii) holds true, then we obtain a
contradiction to (3.1). Thus only the statement (i) is true and problem (1.1) has a
solution x € AC'(I,R) with |x] < r.

In order to obtain an existence result for problem (1.1) and (1.2) by using the set-

valued contraction principle we introduce the following hypothesis on F. [

Hypothesis 3.5.

(i) F: I x R x R — P(R) has nonempty compact values, is integrably bounded and
for every x,y € R, F(.,x,y) is measurable.
(ii) There exists /1,/» € L'(Z,R ;) such that for almost all 7 € 1,

dy(F(t,x1,91), F(t,x2,,)) < L(t)[x1 — X2 + L(2)|y; — »,]
Vxlrxz»yl’yz S R

Theorem 3.6. Assume that Hypothesis 3.5. is satisfied and (| I, + 14 1)-
max{K; K>} < 1. Then problem (1.1) and (1.2) has a solution.

Proof. We transform the problem (1.1) and (1.2) into a fixed point problem. Consider
the set-valued map 7: AC'(I,R) — P(AC'(I,R)) defined by

T(x) := {v € AC'(LLR); v(t) = z(¢) —|—/O G\ (1, 5)f(s)ds, fe€ Sr(x)}.

Note that since the set-valued map F(.,x(.)) is measurable with the measurable selec-
tion theorem (e.g., Theorem III. 6 in [5]) it admits a measurable selection f: 7 — R.
Moreover, since F is integrably bounded, f € L'(I,R). Therefore, S Fx# .

It is clear that the fixed points of 7 are solutions of problem (1.1) and (1.2). We shall
prove that 7 fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since S, # 0, T(x) # (0 for any x € AC'(L,R).
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Second, we prove that T(x) is closed for any x € AC'(I,R). Let {x,},=0 € T(x) such
that x, » x in AC'(IR). Then x" € AC'(I,R) and there exists f, € S F.x such that

x, (1) = z(1) +/0 Gi(t,5)fu(s)ds

Since F has compact values and Hypothesis 3.5 is satisfied we may pass to a
subsequence (if necessary) to get that f, converges to f€ L'(LR) in L'(LR). In
particular, f€ Sg, and for any ¢ € I we have

walt) = (1) = =(1) + / G\ (1,5)f(s)ds,

ie., x" € T(x) and T(x) is closed.
Finally, we show that T is a contraction on AC'(IR). Let x;,x, € AC'(I,R) and
v; € T(x;). Then there exist f| € Sry, such that

vi(t) = z(2) + /l G(t,9)fi(s)ds, tel
Consider the set-valued map
H(1) := F(t,x:(1), x3(1)) N {x € Ry [f1(1) — x]|
< W) = x|+ L@ (1) = x50}, el
From Hypothesis 3.5 one has
dy(F(t,x,(1), x1(1)), F(t,x2(1), x3(1))) < h(0)]x1(2) = x2(0)] + L)X, (1) — x5(0)],

hence H has nonempty closed values. Moreover, since H is measurable, there exists /> a
measurable selection of H. It follows that f; € Sg,, and for any ¢ € /

1) =] < L(0)lxi (1) = x2(0)] + h(0)1x (1) = x3(1)].
Define
n(t) =z(1) + /1 G\(t,9)f>(s)ds, tel

and we have
[vi(2) — va(t / |G (2,9)| - |fi(s) — fa(s)|ds
/01 (£,5) [l ($)|x1(s) — x2(s)[ + L(s)[) () — x5 (s)|]ds

Ki(|h], + Al ) lx = x|l

Similarly, we have

Vi(6) = a0 < Ka(lhly + (Al = x|
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So, |vi = vl < il y + | 1) Hmax{K;,K>}||x; — x»|. From an analogous reasoning by
interchanging the roles of x; and x, it follows

du(T(x1), T(x2)) < (|h]; +[&],) max{Ky, K> }x) — x2.
Therefore, T admits a fixed point which is a solution to problem (1.1) and (1.2). O

REFERENCES

[1] B. Ahmad, S.K. Ntouyas, Arab J. Math. Sci. 18 (2012) 121-134.

[2] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, J. Math. Anal. Appl. 338 (2008) 1340-1350.

[3] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Fract. Calc. Appl. Anal. 11 (2008) 35-56.

[4] A. Bressan, G. Colombo, Studia Math. 90 (1988) 69-86.

[S] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.

[6] A. Cernea, Fract. Calc. Appl. Anal. 12 (2009) 433-442.

[7] A. Cernea, Nonlinear Anal. 72 (2010) 204-208.

[8] A. Cernea, Electronic J. Qual. Theory Differ. Equ. 78 (2010) 1-13.

[9] A. Cernea, J. Appl. Math. Comput. 38 (2012) 133-143.

[10] A. Cernea, Fract. Calc. Appl. Anal. 15 (2012) 183-194.

[11] Y.K. Chang, J.J. Nieto, Math. Comput. Modell. 49 (2009) 605-609.

[12] H. Covitz, S.B. Nadler Jr., Israel J. Math. 8 (1970) 5-11.

[13] A.M.A. El-Sayed, A.G. Ibrahim, Appl. Math. Comput. 68 (1995) 15-25.

[14] M. Frignon, A. Granas, C. R. Acad. Sci. Paris I 310 (1990) 819-822.

[15] J. Henderson, A. Ouahab, Nonlinear Anal. 70 (2009) 2091-2105.

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, Amsterdam, 2006.

[17] A. Lasota, Z. Opial, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 13 (1965) 781-786.

[18] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley,
New York, 1993.

[19] N. Nyamoradi, Arab J. Math. Sci. 18 (2012) 165-175.

[20] A. Ouahab, Nonlinear Anal. 69 (2009) 3871-3896.

[21] D. O’ Regan, Arch. Math. (Brno) 34 (1998) 191-197.

[22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.



	On a multi point boundary value problem for a fractional  order differential inclusion
	1 Introduction
	2 Preliminaries
	3 The main results
	References


