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1. INTRODUCTION

Differential equations with fractional order have recently proved to be strong tools in
the modeling of many physical phenomena; for a good bibliography on this topic we
refer to [18]. As a consequence there was an intensive development of the theory of dif-
ferential equations of fractional order [2,16,22] etc.. The study of fractional differential
inclusions was initiated by El-Sayed and Ibrahim [13]. Very recently several qualitative
results for fractional differential inclusions were obtained in [1,3,6–11,15,20] etc.

In this paper we study the following problem
DaxðtÞ 2 Fðt; xðtÞ; x0ðtÞÞ a:e: ½0; 1�; ð1:1Þ

xð0Þ ¼ x0ð0Þ ¼ 0; xð1Þ �
Xm
i¼1

aixðniÞ ¼ k; ð1:2Þ
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where Da is the standard Riemann–Liouville fractional derivative, a 2 ð2; 3�;
m P 1; 0 < n1 < � � � < nm < 1;

Pm
i¼1ain

a�1
i < 1; k > 0; ai > 0; i ¼ 1;m and F : ½0; 1�

�R� R! PðRÞ is a set-valued map.
The present paper is motivated by a recent paper of Nyamoradi [19], where it is con-

sidered problem (1.1) and (1.2) with F single valued and several existence results are
provided.

The aim of our paper is to extend the study in [19] to the set-valued framework and
to present some existence results for problem (1.1) and (1.2). Our results are essentially
based on a nonlinear alternative of Leray–Schauder type, on Bressan–Colombo selec-
tion theorem for lower semicontinuous set-valued maps with decomposable values and
on Covitz and Nadler set-valued contraction principle. The methods used are known
([1,8,9] etc.), however their exposition in the framework of problem (1.1) and (1.2) is
new.

The paper is organized as follows: in Section 2 we recall some preliminary facts that
we need in the sequel and in Section 3 we prove our main results.
2. PRELIMINARIES

In this section we sum up some basic facts that we are going to use later.
Let (X,d) be a metric space with the corresponding norm ŒÆŒ and let I � R be a com-

pact interval. Denoted by LðIÞ the r-algebra of all Lebesgue measurable subsets of I, by
PðXÞ the family of all nonempty subsets of X and by BðXÞ the family of all Borel sub-
sets of X. If A � I then vA: I fi {0,1} denotes the characteristic function of A. For any
subset A � X we denote by A the closure of A.

Recall that the Pompeiu–Hausdorff distance of the closed subsets A,B � X is defined
by
dHðA;BÞ ¼ maxfd�ðA;BÞ; d�ðB;AÞg; d�ðA;BÞ ¼ supfdða;BÞ; a 2 Ag;
where d(x,B) = infy2Bd(x,y).
As usual, we denote by C(I,X) the Banach space of all continuous functions x: I fi X

endowed with the norm ŒxŒC = supt2IŒx(t)Œ and by L1(I,X) the Banach space of all
(Bochner) integrable functions x: I fi X endowed with the norm jxj1 ¼

R
I
jxðtÞjdt.

A subset D � L1(I,X) is said to be decomposable if for any u,v 2 D and any subset
A 2 LðIÞ one has uvA + vvB 2 D, where B = InA.

Consider T : X! PðXÞ a set-valued map. A point x 2 X is called a fixed point for T
if x 2 T(x). T is said to be bounded on bounded sets if T(B):¼ [x2BT(x) is a bounded
subset of X for all bounded sets B in X. T is said to be compact if T(B) is relatively
compact for any bounded sets B in X. T is said to be totally compact if TðXÞ is a com-
pact subset of X. T is said to be upper semicontinuous if for any open set D � X, the set
{x 2 X: T(x) � D} is open in X. T is called completely continuous if it is upper semicon-
tinuous and totally bounded on X.

It is well known that a compact set-valued map T with nonempty compact values is
upper semicontinuous if and only if T has a closed graph.

We recall the following nonlinear alternative of Leray–Schauder type and its
consequences.
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Theorem 2.1 [21]. Let D and D be open and closed subsets in a normed linear space X
such that 0 2 D and let T : D! PðXÞ be a completely continuous set-valued map with
compact convex values. Then either

(i) the inclusion x 2 T(x) has a solution, or
(ii) there exists x 2 oD (the boundary of D) such that kx 2 T(x) for some k > 1.

Corollary 2.2. Let Br(0) and Brð0Þ be the open and closed balls in a normed linear space
X centered at the origin and of radius r and let T : Brð0Þ ! PðXÞ be a completely
continuous set-valued map with compact convex values. Then either

(i) the inclusion x 2 T(x) has a solution, or
(ii) there exists x 2 X with ŒxŒ = r and kx 2 T(x) for some k > 1.

Corollary 2.3. Let Br(0) and Brð0Þ be the open and closed balls in a normed linear space
X centered at the origin and of radius r and let T : Brð0Þ ! X be a completely continuous
single valued map with compact convex values. Then either

(i) the equation x = T(x) has a solution, or
(ii) there exists x 2 X with ŒxŒ = r and x = kT(x) for some k < 1.

We recall that a multifunction T : X ! PðX Þ is said to be lower semicontinuous if for any
closed subset C � X, the subset {s 2 X: T(s) � C} is closed.
If F : I� R� R! PðRÞ is a set-valued map with compact values and x 2 C(I,R) we
define
SFðxÞ :¼ ff 2 L1ðI;RÞ : fðtÞ 2 Fðt; xðtÞ; x0ðtÞÞ a:e: Ig:
We say that F is of lower semicontinuous type if SF(.) is lower semicontinuous with closed
and decomposable values.

Theorem 2.4 [4]. Let S be a separable metric space and G : S! PðL1ðI;RÞÞ be a lower
semicontinuous set-valued map with closed decomposable values.

Then G has a continuous selection (i.e., there exists a continuous mapping g:
S fi L1(I,R) such that g(s) 2 G(s) "s 2 S).

A set-valued map G : I! PðRÞ with nonempty compact convex values is said to be
measurable if for any x 2 R the function t fi d(x,G(t)) is measurable.

A set-valued map F : I� R� R! PðRÞ is said to be Carathéodory if t fi F(t,x,y) is
measurable for all x,y 2 R and (x,y) fi F(t,x,y) is upper semicontinuous for almost all
t 2 I.

F is said to be L1-Carathéodory if for any l> 0 there exists hl 2 L1(I,R) such that
sup{ŒvŒ: v 2 F(t,x,y)} 6 hl(t) a.e. I; 8x; y 2 Blð0Þ.

Theorem 2.5 [17]. Let X be a Banach space, let F : I� X! PðXÞ be a L1-Carathéodory
set-valued map with SF „ ; and let C: L1(I,X) fi C(I,X) be a linear continuous mapping.
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Then the set-valued map C � SF : CðI;XÞ ! PðCðI;XÞÞ defined by
ðC � SFÞðxÞ ¼ CðSFðxÞÞ

has compact convex values and has a closed graph in C(I,X) · C(I,X).
Note that if dimX <1, and F is as in Theorem 2.5, then SF(x) „ ; for any x 2 C(I,X)
(e.g., [17]).

Consider a set valued map T on X with nonempty values in X. T is said to be a
k-contraction if there exists 0 < k < 1 such that
dHðTðxÞ;TðyÞÞ 6 kdðx; yÞ 8x; y 2 X:
The set-valued contraction principle [12] states that if X is complete, and
T : X! PðXÞ is a set valued contraction with nonempty closed values, then T has a
fixed point, i.e. a point z 2 X such that z 2 T(z).

Definition 2.6.

(a) The fractional integral of order a > 0 of a Lebesgue integrable function f:
(0,1) fi R is defined by
Ia0fðtÞ ¼
Z t

0

ðt� sÞa�1

CðaÞ fðsÞds;

provided the right-hand side is pointwise defined on (0,1) and C is the (Euler’s)
Gamma function defined by CðaÞ ¼

R1
0

ta�1e�tdt.

(b) The Riemann–Liouville fractional derivative of order a > 0 of a continuous

function f: (0,1) fi R is defined by
DafðtÞ ¼ 1

Cðn� aÞ
dn

dtn

Z t

0

ðt� sÞ�aþn�1
fðsÞds;
where n = [a] + 1, provided the right-hand side is pointwise defined on (0,1).By
AC1([0,1],R) we denote the space of continuous real-valued functions whose first deriv-
ative exists and it is absolutely continuous on I. On AC1([0, 1],R) we consider the norm
kxk ¼ maxf sup
t2½0; 1�
jxðtÞj; sup

t2½0; 1�
jx0ðtÞjg:
Definition 2.7. A function x 2 AC1([0,1],R) is called a solution of problem (1.1) and
(1.2) if there exists a function v 2 L1([0,1],R) with v(t) 2 F(t,x(t),x0(t)), a.e. [0, 1] such
that Dax(t) = v(t), a.e. [0, 1] and conditions (1.2) are satisfied.

In what follows I = [0,1], a 2 (2,3], and D ¼
Pm

i¼1ain
a�1
i 2 ð0; 1Þ. Next we need the

following technical result proved in [19].

Lemma 2.8 19. For any h 2 L1(I,R) the problem
DaxðtÞ ¼ hðtÞ a:e: ½0; 1�;

xð0Þ ¼ x0ð0Þ ¼ 0; xð1Þ �
Xm
i¼1

aixðniÞ ¼ k
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has a unique solution given by
xðtÞ ¼ kta�1

1� D
þ
Z 1

0

Gðt; sÞhðsÞdsþ ta�1

1� D

Xm
i¼1

ai

Z 1

0

Gðni; sÞhðsÞds; t 2 ½0; 1�;
where
Gðt; sÞ :¼ 1

CðaÞ
½tð1� sÞ�a�1 � ðt� sÞa�1; if 0 6 s < t 6 1;

½tð1� sÞ�a�1; if 0 6 t < s 6 1:

(

Note that G(t,s) > 0 "t,s 2 I and Gðt; sÞ 6 1
CðaÞ, (e.g., Lemma 5 in [19]). If we denote

G1ðt; sÞ ¼ Gðt; sÞ þ
Pm

i¼1
ait

a�1

1�D Gðni; sÞ one has jG1ðt; sÞj 6 1
CðaÞ 1þ

Pm

i¼1ai

1�D

� �
and

@G1

@t
ðt; sÞ

�� �� 6 2ða�1Þ
CðaÞ 1þ

Pm

i¼1
ai

1�D

� �
.

Let K1:¼supt,s2IŒG1(t,s)Œ and K2 :¼ supt;s2Ij @G1

@t ðt; sÞj.

Finally, we denote zðtÞ ¼ kta�1
1�D and C1:¼supt2Iiz(t)i.
3. THE MAIN RESULTS

Now we are able to present the existence results for problem (1.1) and (1.2).
We consider first the case when F is convex valued.

Hypothesis 3.1.

(i) F : I � R� R! PðRÞ has nonempty compact convex values and is
Carathéodory.

(ii) There exist u 2 L1(I,R) with u (t) > 0 a.e. I and there exists a nondecreasing
function w:[0,1) fi (0,1) such that
supfjvj; v 2 Fðt; x; yÞg 6 uðtÞwðmaxfjxj; jyjgÞ a:e: I; 8x; y 2 R:
Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and there exists r > 0 such that
r > C1 þmaxfK1;K2gjuj1wðrÞ: ð3:1Þ
Then problem (1.1) and (1.2) has at least one solution x such that ixi < r.

Proof. Let X = AC1(I,R) and consider r > 0 as in (3.1). It is obvious that the existence
of solutions to problem (1.1) and (1.2) reduces to the existence of the solutions of the
integral inclusion
xðtÞ 2 zðtÞ þ
Z 1

0

G1ðt; sÞFðs; xðsÞ; x0ðsÞÞds; t 2 I: ð3:2Þ
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Consider the set-valued map T : Brð0Þ ! PðAC1ðI;RÞÞ defined by
TðxÞ :¼ v 2 AC1ðI;RÞ; vðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðsÞds; f 2 SFðxÞ
� �

: ð3:3Þ
We show that T satisfies the hypotheses of Corollary 2.2.

First, we show that T(x) � AC1(I,R) is convex for any x 2 AC1(I,R). If v1,v2 2 T(x)
then there exist f1,f2 2 SF(x) such that for any t 2 I one has
viðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfiðsÞds; i ¼ 1; 2:
Let 0 6 a 6 1. Then for any t 2 I we have
ðav1 þ ð1� aÞv2ÞðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞ½af1ðsÞ þ ð1� aÞf2ðsÞ�ds:
The values of F are convex, thus SF(x) is a convex set and hence
av1 + (1 � a)v2 2 T(x).

Second, we show that T is bounded on bounded sets of AC1(I,R). Let B � AC1(I,R)
be a bounded set. Then there exists m > 0 such that ixi 6 m "x 2 B. If v 2 T(x) there
exists f 2 SF(x) such that vðtÞ ¼

R 1
0 G1ðt; sÞfðsÞds. One may write for any t 2 I
jvðtÞj 6 jzðtÞj þ
Z 1

0

jG1ðt; sÞj � jfðsÞjds

6 jzðtÞj þ
Z 1

0

jG1ðt; sÞjuðsÞwðmaxfjxðsÞj; jx0ðsÞjgÞds:
On the other hand,
jv0ðtÞj 6 jz0ðtÞj þ
Z 1

0

j @G1

@t
ðt; sÞj � jfðsÞjds

6 jz0ðtÞj þ
Z 1

0

j @G1

@t
ðt; sÞjuðsÞwðmaxfjxðsÞj; jx0ðsÞjgÞds:
and therefore
kvk ¼ max
t2I
fjvðtÞj; jv0ðtÞjg

6 max
t2I

maxfjzðtÞj; jz0ðtÞjg þ
Z 1

0

max
t;s2I
fjG1ðt; sÞj; j

@G1

@t

�ðt; sÞjguðsÞwðmaxfjxðsÞj; jx0ðsÞjgÞds
6 C1 þmaxfK1;K2gjuj1wðmÞ
"v 2 T(x), i.e., T(B) is bounded.
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We show next that T maps bounded sets into equi-continuous sets. Let
B � AC1(I,R) be a bounded set as before and v 2 T(x) for some x 2 B. There exists
f 2 SF(x) such that vðtÞ ¼ zðtÞ þ

R 1
0 G1ðt; sÞfðsÞds. Then for any t,s 2 I we have
jvðtÞ � vðsÞj 6 jzðtÞ � zðsÞj þ j
Z 1

0

G1ðt; sÞfðsÞds�
Z 1

0

G1ðs; sÞfðsÞdsj

6 jzðtÞ � zðsÞj þ
Z 1

0

jG1ðt; sÞ

� G1ðs; sÞjuðsÞwðmaxfjxðsÞj; jx0ðsÞjgÞds

6 jzðtÞ � zðsÞj þ
Z 1

0

jG1ðt; sÞ � G1ðs; sÞjuðsÞwðmÞds:
Similarly, we have
jv0ðtÞ � v0ðsÞj 6 jz0ðtÞ � z0ðsÞj þ
Z 1

0

j @G1

@t
ðt; sÞ � @G1

@t
ðs; sÞjuðsÞwðmÞds:
It follows that Œv(t) � v(s)Œ fi 0 as t fi s . Therefore, T(B) is an equi-continuous set
in AC1(I,R). We apply now Arzela–Ascoli’s theorem we deduce that T is completely
continuous on AC1(I,R).

In the next step of the proof we prove that T has a closed graph. Let xn 2 AC1(I,R)
be a sequence such that xn fi x* and vn 2 T(xn) "n 2 N such that vn fi v*. We prove
that v* 2 T(x*). Since vn 2 T(xn), there exists fn 2 SF(xn) such that vnðtÞ ¼ zðtÞþR 1
0 G1ðt; sÞfnðsÞds. Define C: L1(I,R) fi AC1(I,R) by ðCðfÞÞðtÞ :¼

R 1
0 G1ðt; sÞfðsÞds: One

has
max
t2I
fjvnðtÞ � zðtÞ � ðv�ðtÞ � zðtÞÞj; jv0nðtÞ � z0ðtÞ � ððv�Þ0ðtÞ � z0ðtÞÞj

¼ max
t2I
fjvnðtÞ � v�ðtÞj; jv0nðtÞ � ðv�Þ

0ðtÞjg ¼ kvn � v�k ! 0
as n fi1.
We apply Theorem 2.5 to find that C�SF has closed graph and from the definition of

C we get vn 2 C� SF(xn). Since xn fi x*, vn fi v* it follows the existence of f* 2 SF(x
*)

such that v�ðtÞ � zðtÞ ¼
R 1
0 G1ðt; sÞf�ðsÞds. Therefore, T is upper semicontinuous and

compact on Brð0Þ.

We apply Corollary 2.2 to deduce that either (i) the inclusion x 2 T(x) has a
solution in Brð0Þ, or (ii) there exists x 2 X with ixi = r and kx 2 T(x) for some k > 1.

Assume that (ii) is true. With the same arguments as in the second step of our proof
we get r = ixi 6 C1 + max{K1,K2}ŒuŒ1w (r) which contradicts (3.1). Hence only (i) is
valid and theorem is proved.

We consider now the case when F is not necessarily convex valued. Our first
existence result in this case is based on the Leray–Schauder alternative for single valued
maps and on Bressan Colombo selection theorem. h
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Hypothesis 3.3.

(i) F : I � R� R! PðRÞ has compact values, F is LðIÞ � BðRÞ � BðRÞ measurable
and (x,y) fi F(t,x,y) is lower semicontinuous for almost all t 2 I.

(ii) There exist u 2 L1(I,R) with u (t) > 0 a.e. I and there exists a nondecreasing
function w :[0,1) fi (0,1) such that
supfjvj; v 2 Fðt; x; yÞg 6 uðtÞwðmaxfjxj; jyjgÞ a:e: I; 8x; y 2 R:
Theorem 3.4. Assume that Hypothesis 3.3 is satisfied and there exists r> 0 such that
condition (3.1) is satisfied. Then problem (1.1) and (1.2) has at least one solution on I.

Proof. We note first that if Hypothesis 3.3 is satisfied then F is of lower semicontinuous
type (e.g., [14]). Therefore, we apply Theorem 2.4 to deduce that there exists f:
AC1(I,R) fi L1(I,R) such that f(x) 2 SF(x) "x 2 AC1(I,R).

We consider the corresponding problem
xðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðxðsÞÞds; t 2 I ð3:4Þ
in the space X= AC1(I,R). It is clear that if x 2 AC1(I,R) is a solution of the problem
(3.4) then x is a solution to problem (1.1) and (1.2).

Let r > 0 that satisfies the condition (3.1) and define the set-valued map
T : Brð0Þ ! PðAC1ðI;RÞÞ by
ðTðxÞÞðtÞ :¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðxðsÞÞds:
Obviously, the integral Eq. (3.4) is equivalent with the operator equation
xðtÞ ¼ ðTðxÞÞðtÞ; t 2 I: ð3:5Þ

It remains to show that T satisfies the hypotheses of Corollary 2.3.

We show that T is continuous on Brð0Þ. From Hypotheses 3.3. (ii) we have
jfðxðtÞÞj 6 uðtÞwðmaxfjxðtÞj; jx0ðtÞjgÞ a:e: I
for all x 2 AC1(I,R). Let xn; x 2 Brð0Þ such that xn fi x. Then
jfðxnðtÞÞj 6 uðtÞwðrÞ a:e: I:
From Lebesgue’s dominated convergence theorem and the continuity of f we obtain,
for all t 2 I
lim
n!1
ðTðxnÞÞðtÞ ¼ zðtÞ þ lim

n!1

Z 1

0

G1ðt; sÞfðxnðsÞÞds ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðxðsÞÞds

¼ ðTðxÞÞðtÞ
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and
lim
n!1
ðTðxnÞÞ0ðtÞ ¼ z0ðtÞ þ lim

n!1

Z 1

0

@G1

@t
ðt; sÞfðxnðsÞÞds

¼ z0ðtÞ þ
Z 1

0

@G1

@t
ðt; sÞfðxðsÞÞds ¼ ðTðxÞÞ0ðtÞ
i.e., T is continuous on Brð0Þ.
Repeating the arguments in the proof of Theorem 3.2 with corresponding

modifications it follows that T is compact on Brð0Þ. We apply Corollary 2.3 and we
find that either (i) the equation x = T(x) has a solution in Brð0Þ, or (ii) there exists
x 2 X with ixi = r and x = kT(x) for some k < 1.

As in the proof of Theorem 3.2 if the statement (ii) holds true, then we obtain a
contradiction to (3.1). Thus only the statement (i) is true and problem (1.1) has a
solution x 2 AC1(I,R) with ixi < r.

In order to obtain an existence result for problem (1.1) and (1.2) by using the set-
valued contraction principle we introduce the following hypothesis on F. h

Hypothesis 3.5.

(i) F : I � R� R! PðRÞ has nonempty compact values, is integrably bounded and
for every x,y 2 R, F(.,x,y) is measurable.

(ii) There exists l1,l2 2 L1(I,R+) such that for almost all t 2 I,
dHðFðt; x1; y1Þ;Fðt; x2; y2ÞÞ 6 l1ðtÞjx1 � x2j þ l2ðtÞjy1 � y2j
"x1,x2,y1,y2 2 R.
Theorem 3.6. Assume that Hypothesis 3.5. is satisfied and (Œl1Œ1 + Œl2Œ1)-
max{K1,K2} < 1. Then problem (1.1) and (1.2) has a solution.

Proof. We transform the problem (1.1) and (1.2) into a fixed point problem. Consider
the set-valued map T : AC1ðI;RÞ ! PðAC1ðI;RÞÞ defined by
TðxÞ :¼ fv 2 AC1ðI;RÞ; vðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðsÞds; f 2 SFðxÞg:
Note that since the set-valued map F(.,x(.)) is measurable with the measurable selec-
tion theorem (e.g., Theorem III. 6 in [5]) it admits a measurable selection f: I fi R.
Moreover, since F is integrably bounded, f 2 L1(I,R). Therefore, SF,x „ ;.

It is clear that the fixed points of T are solutions of problem (1.1) and (1.2). We shall
prove that T fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since SF,x „ ;, T(x) „ ; for any x 2 AC1(I,R).
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Second, we prove that T(x) is closed for any x 2 AC1(I,R). Let {xn}nP0 2 T(x) such
that xn fi x* in AC1(I,R). Then x* 2 AC1(I,R) and there exists fn 2 SF,x such that
xnðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfnðsÞds:
Since F has compact values and Hypothesis 3.5 is satisfied we may pass to a
subsequence (if necessary) to get that fn converges to f 2 L1(I,R) in L1(I,R). In
particular, f 2 SF,x and for any t 2 I we have
xnðtÞ ! x�ðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞfðsÞds;
i.e., x* 2 T(x) and T(x) is closed.
Finally, we show that T is a contraction on AC1(I,R). Let x1,x2 2 AC1(I,R) and

v1 2 T(x1). Then there exist f1 2 SF;x1 such that
v1ðtÞ ¼ zðtÞ þ
Z 1

0

Gðt; sÞf1ðsÞds; t 2 I:
Consider the set-valued map
HðtÞ :¼ Fðt; x2ðtÞ; x02ðtÞÞ \ fx 2 R; jf1ðtÞ � xj
6 l1ðtÞjx1ðtÞ � x2ðtÞj þ l2ðtÞjx01ðtÞ � x02ðtÞjg; t 2 I:
From Hypothesis 3.5 one has
dHðFðt; x1ðtÞ; x01ðtÞÞ;Fðt; x2ðtÞ; x02ðtÞÞÞ 6 l1ðtÞjx1ðtÞ � x2ðtÞj þ l2ðtÞjx01ðtÞ � x02ðtÞj;
hence H has nonempty closed values. Moreover, since H is measurable, there exists f2 a
measurable selection of H. It follows that f2 2 SF;x2 and for any t 2 I
jf1ðtÞ � f2ðtÞj 6 l1ðtÞjx1ðtÞ � x2ðtÞj þ l2ðtÞjx01ðtÞ � x02ðtÞj:

Define
v2ðtÞ ¼ zðtÞ þ
Z 1

0

G1ðt; sÞf2ðsÞds; t 2 I
and we have
jv1ðtÞ � v2ðtÞj 6
Z 1

0

jG1ðt; sÞj � jf1ðsÞ � f2ðsÞjds

6

Z 1

0

G1ðt; sÞ½l1ðsÞjx1ðsÞ � x2ðsÞj þ l2ðsÞjx01ðsÞ � x02ðsÞj�ds

6 K1ðjl1j1 þ jl2j1Þkx1 � x2k:
Similarly, we have
jv01ðtÞ � v02ðtÞj 6 K2ðjl1j1 þ jl2j1Þkx1 � x2k:
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So, iv1 � v2i 6 (Œl1Œ1 + Œl2Œ1)max{K1,K2}ix1 � x2i. From an analogous reasoning by
interchanging the roles of x1 and x2 it follows
dHðTðx1Þ;Tðx2ÞÞ 6 ðjl1j1 þ jl2j1ÞmaxfK1;K2gkx1 � x2k:

Therefore, T admits a fixed point which is a solution to problem (1.1) and (1.2). h
REFERENCES

[1] B. Ahmad, S.K. Ntouyas, Arab J. Math. Sci. 18 (2012) 121–134.

[2] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, J. Math. Anal. Appl. 338 (2008) 1340–1350.

[3] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Fract. Calc. Appl. Anal. 11 (2008) 35–56.

[4] A. Bressan, G. Colombo, Studia Math. 90 (1988) 69–86.

[5] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.

[6] A. Cernea, Fract. Calc. Appl. Anal. 12 (2009) 433–442.

[7] A. Cernea, Nonlinear Anal. 72 (2010) 204–208.

[8] A. Cernea, Electronic J. Qual. Theory Differ. Equ. 78 (2010) 1–13.

[9] A. Cernea, J. Appl. Math. Comput. 38 (2012) 133–143.

[10] A. Cernea, Fract. Calc. Appl. Anal. 15 (2012) 183–194.

[11] Y.K. Chang, J.J. Nieto, Math. Comput. Modell. 49 (2009) 605–609.

[12] H. Covitz, S.B. Nadler Jr., Israel J. Math. 8 (1970) 5–11.

[13] A.M.A. El-Sayed, A.G. Ibrahim, Appl. Math. Comput. 68 (1995) 15–25.

[14] M. Frignon, A. Granas, C. R. Acad. Sci. Paris I 310 (1990) 819–822.

[15] J. Henderson, A. Ouahab, Nonlinear Anal. 70 (2009) 2091–2105.

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations, Elsevier, Amsterdam, 2006.

[17] A. Lasota, Z. Opial, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 13 (1965) 781–786.

[18] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley,

New York, 1993.

[19] N. Nyamoradi, Arab J. Math. Sci. 18 (2012) 165–175.

[20] A. Ouahab, Nonlinear Anal. 69 (2009) 3871–3896.

[21] D. O’ Regan, Arch. Math. (Brno) 34 (1998) 191–197.

[22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.


	On a multi point boundary value problem for a fractional  order differential inclusion
	1 Introduction
	2 Preliminaries
	3 The main results
	References


