On a multi point boundary value problem for a fractional order differential inclusion

Aurelian Cernea
Faculty of Mathematics and Informatics, University of Bucharest, Academiei
14, 010014 Bucharest, Romania

Received 4 June 2012; accepted 12 July 2012
Available online 21 July 2012

Abstract

The existence of solutions for a multi point boundary value problem of a fractional order differential inclusion is investigated. Several results are obtained by using suitable fixed point theorems when the right hand side has convex or non convex values.

Mathematics subject classification: 34A60; 34B18; 34B15
Keywords: Fractional derivative; Differential inclusion; Boundary value problem; Fixed point

1. Introduction

Differential equations with fractional order have recently proved to be strong tools in the modeling of many physical phenomena; for a good bibliography on this topic we refer to [18]. As a consequence there was an intensive development of the theory of differential equations of fractional order $[2,16,22]$ etc.. The study of fractional differential inclusions was initiated by El-Sayed and Ibrahim [13]. Very recently several qualitative results for fractional differential inclusions were obtained in $[1,3,6-11,15,20]$ etc.

In this paper we study the following problem

$$
\begin{align*}
& D^{\alpha} x(t) \in F\left(t, x(t), x^{\prime}(t)\right) \quad \text { a.e. }[0,1], \tag{1.1}\\
& x(0)=x^{\prime}(0)=0, \quad x(1)-\sum_{i=1}^{m} a_{i} x\left(\xi_{i}\right)=\lambda, \tag{1.2}
\end{align*}
$$

Tel.: +40785810358.
E-mail address: acernea@fmi.unibuc.ro
Peer review under responsibility of King Saud University.

1319-5166 © 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2012.07.001
where D^{α} is the standard Riemann-Liouville fractional derivative, $\alpha \in(2,3]$, $m \geqslant 1,0<\xi_{1}<\cdots<\xi_{m}<1, \sum_{i=1}^{m} a_{i} \xi_{i}^{\alpha-1}<1, \lambda>0, a_{i}>0, i=\overline{1, m}$ and $F:[0,1]$ $\times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ is a set-valued map.
The present paper is motivated by a recent paper of Nyamoradi [19], where it is considered problem (1.1) and (1.2) with F single valued and several existence results are provided.

The aim of our paper is to extend the study in [19] to the set-valued framework and to present some existence results for problem (1.1) and (1.2). Our results are essentially based on a nonlinear alternative of Leray-Schauder type, on Bressan-Colombo selection theorem for lower semicontinuous set-valued maps with decomposable values and on Covitz and Nadler set-valued contraction principle. The methods used are known ($[1,8,9]$ etc.), however their exposition in the framework of problem (1.1) and (1.2) is new.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space with the corresponding norm $|\cdot|$ and let $I \subset \mathbf{R}$ be a compact interval. Denoted by $\mathcal{L}(I)$ the σ-algebra of all Lebesgue measurable subsets of I, by $\mathcal{P}(X)$ the family of all nonempty subsets of X and by $\mathcal{B}(X)$ the family of all Borel subsets of X. If $A \subset I$ then $\chi_{A}: I \rightarrow\{0,1\}$ denotes the characteristic function of A. For any subset $A \subset X$ we denote by \bar{A} the closure of A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_{H}(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, \quad d^{*}(A, B)=\sup \{d(a, B) ; a \in A\}
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
As usual, we denote by $C(I, X)$ the Banach space of all continuous functions $x: I \rightarrow X$ endowed with the norm $|x|_{C}=\sup _{t \in l} l x(t) \mid$ and by $L^{1}(I, X)$ the Banach space of all (Bochner) integrable functions $x: I \rightarrow X$ endowed with the norm $|x|_{1}=\int_{I}|x(t)| \mathrm{d} t$.

A subset $D \subset L^{1}(I, X)$ is said to be decomposable if for any $u, v \in D$ and any subset $A \in \mathcal{L}(I)$ one has $u \chi_{A}+v \chi_{B} \in D$, where $B=I \backslash A$.

Consider $T: X \rightarrow \mathcal{P}(X)$ a set-valued map. A point $x \in X$ is called a fixed point for T if $x \in T(x)$. T is said to be bounded on bounded sets if $T(B):=\cup_{x \in B} T(x)$ is a bounded subset of X for all bounded sets B in $X . T$ is said to be compact if $T(B)$ is relatively compact for any bounded sets B in $X . T$ is said to be totally compact if $\overline{T(X)}$ is a compact subset of $X . T$ is said to be upper semicontinuous if for any open set $D \subset X$, the set $\{x \in X: T(x) \subset D\}$ is open in X. T is called completely continuous if it is upper semicontinuous and totally bounded on X.

It is well known that a compact set-valued map T with nonempty compact values is upper semicontinuous if and only if T has a closed graph.

We recall the following nonlinear alternative of Leray-Schauder type and its consequences.

Theorem 2.1 [21]. Let D and \bar{D} be open and closed subsets in a normed linear space X such that $0 \in D$ and let $T: \bar{D} \rightarrow \mathcal{P}(X)$ be a completely continuous set-valued map with compact convex values. Then either
(i) the inclusion $x \in T(x)$ has a solution, or
(ii) there exists $x \in \partial D$ (the boundary of D) such that $\lambda x \in T(x)$ for some $\lambda>1$.

Corollary 2.2. Let $B_{r}(0)$ and $\overline{B_{r}(0)}$ be the open and closed balls in a normed linear space X centered at the origin and of radius r and let $T: \overline{B_{r}(0)} \rightarrow \mathcal{P}(X)$ be a completely continuous set-valued map with compact convex values. Then either
(i) the inclusion $x \in T(x)$ has a solution, or
(ii) there exists $x \in X$ with $|x|=r$ and $\lambda x \in T(x)$ for some $\lambda>1$.

Corollary 2.3. Let $B_{r}(0)$ and $\overline{B_{r}(0)}$ be the open and closed balls in a normed linear space X centered at the origin and of radius r and let $T: \overline{B_{r}(0)} \rightarrow X$ be a completely continuous single valued map with compact convex values. Then either
(i) the equation $x=T(x)$ has a solution, or
(ii) there exists $x \in X$ with $|x|=r$ and $x=\lambda T(x)$ for some $\lambda<1$.

We recall that a multifunction $T: X \rightarrow \mathcal{P}(X)$ is said to be lower semicontinuous if for any closed subset $C \subset X$, the subset $\{s \in X: T(s) \subset C\}$ is closed.
If $F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ is a set-valued map with compact values and $x \in C(I, \mathbf{R})$ we define

$$
S_{F}(x):=\left\{f \in L^{1}(I, \mathbf{R}): \quad f(t) \in F\left(t, x(t), x^{\prime}(t)\right) \quad \text { a.e. } I\right\} .
$$

We say that F is of lower semicontinuous type if $S_{F}($.$) is lower semicontinuous with closed$ and decomposable values.

Theorem 2.4 [4]. Let S be a separable metric space and $G: S \rightarrow \mathcal{P}\left(L^{1}(I, \mathbf{R})\right)$ be a lower semicontinuous set-valued map with closed decomposable values.

Then G has a continuous selection (i.e., there exists a continuous mapping g : $S \rightarrow L^{I}(I, \mathbf{R})$ such that $\left.g(s) \in G(s) \quad \forall s \in S\right)$.

A set-valued map $G: I \rightarrow \mathcal{P}(\mathbf{R})$ with nonempty compact convex values is said to be measurable if for any $x \in \mathbf{R}$ the function $t \rightarrow d(x, G(t))$ is measurable.

A set-valued map $F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ is said to be Carathéodory if $t \rightarrow F(t, x, y)$ is measurable for all $x, y \in \mathbf{R}$ and $(x, y) \rightarrow F(t, x, y)$ is upper semicontinuous for almost all $t \in I$.
F is said to be L^{1}-Carathéodory if for any $l>0$ there exists $h_{l} \in L^{1}(I, \mathbf{R})$ such that $\sup \{|v|: v \in F(t, x, y)\} \leqslant h_{l}(t)$ a.e. $I, \forall x, y \in \overline{B_{l}(0)}$.

Theorem 2.5 [17]. Let X be a Banach space, let $F: I \times X \rightarrow \mathcal{P}(X)$ be a L^{l}-Carathéodory set-valued map with $S_{F} \neq \emptyset$ and let $\Gamma: L^{1}(I, X) \rightarrow C(I, X)$ be a linear continuous mapping.

Then the set-valued map $\Gamma \circ S_{F}: C(I, X) \rightarrow \mathcal{P}(C(I, X))$ defined by

$$
\left(\Gamma \circ S_{F}\right)(x)=\Gamma\left(S_{F}(x)\right)
$$

has compact convex values and has a closed graph in $C(I, X) \times C(I, X)$.
Note that if $\operatorname{dim} X<\infty$, and F is as in Theorem 2.5, then $S_{F}(x) \neq \emptyset$ for any $x \in C(I, X)$ (e.g., [17]).

Consider a set valued map T on X with nonempty values in $X . T$ is said to be a λ-contraction if there exists $0<\lambda<1$ such that

$$
d_{H}(T(x), T(y)) \leqslant \lambda d(x, y) \quad \forall x, y \in X .
$$

The set-valued contraction principle [12] states that if X is complete, and $T: X \rightarrow \mathcal{P}(X)$ is a set valued contraction with nonempty closed values, then T has a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$.

Definition 2.6.

(a) The fractional integral of order $\alpha>0$ of a Lebesgue integrable function f : $(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
I_{0}^{\alpha} f(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) d s
$$

provided the right-hand side is pointwise defined on $(0, \infty)$ and Γ is the (Euler's) Gamma function defined by $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$.
(b) The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $f:(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-s)^{-\alpha+n-1} f(s) d s
$$

where $n=[\alpha]+1$, provided the right-hand side is pointwise defined on $(0, \infty)$.By $A C^{1}([0,1], \mathbf{R})$ we denote the space of continuous real-valued functions whose first derivative exists and it is absolutely continuous on I. On $A C^{1}([0,1], \mathbf{R})$ we consider the norm

$$
\|x\|=\max \left\{\sup _{t \in[0,1]}|x(t)|, \sup _{t \in[0,1]}\left|x^{\prime}(t)\right|\right\} .
$$

Definition 2.7. A function $x \in A C^{1}([0,1], \mathbf{R})$ is called a solution of problem (1.1) and (1.2) if there exists a function $v \in L^{1}([0,1], \mathbf{R})$ with $v(t) \in F\left(t, x(t), x^{\prime}(t)\right)$, a.e. $[0,1]$ such that $D^{\alpha} x(t)=v(t)$, a.e. $[0,1]$ and conditions (1.2) are satisfied.

In what follows $I=[0,1], \alpha \in(2,3]$, and $\Delta=\sum_{i=1}^{m} a_{i} \zeta_{i}^{\alpha-1} \in(0,1)$. Next we need the following technical result proved in [19].

Lemma 2.8 19. For any $h \in L^{1}(I, \mathbf{R})$ the problem

$$
\begin{aligned}
& D^{\alpha} x(t)=h(t) \quad \text { a.e. }[0,1], \\
& x(0)=x^{\prime}(0)=0, \quad x(1)-\sum_{i=1}^{m} a_{i} x\left(\xi_{i}\right)=\lambda
\end{aligned}
$$

has a unique solution given by

$$
x(t)=\frac{\lambda t^{\alpha-1}}{1-\Delta}+\int_{0}^{1} G(t, s) h(s) d s+\frac{t^{\alpha-1}}{1-\Delta} \sum_{i=1}^{m} a_{i} \int_{0}^{1} G\left(\xi_{i}, s\right) h(s) d s, \quad t \in[0,1]
$$

where

$$
G(t, s):=\frac{1}{\Gamma(\alpha)} \begin{cases}{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1},} & \text { if } 0 \leqslant s<t \leqslant 1 \\ {[t(1-s)]^{\alpha-1},} & \text { if } 0 \leqslant t<s \leqslant 1\end{cases}
$$

Note that $G(t, s)>0 \forall t, s \in I$ and $G(t, s) \leqslant \frac{1}{\Gamma(\alpha)}$, (e.g., Lemma 5 in [19]). If we denote $G_{1}(t, s)=G(t, s)+\sum_{i=1}^{m} \frac{a_{i} t^{-1}}{1-\Delta} G\left(\xi_{i}, s\right) \quad$ one has $\quad\left|G_{1}(t, s)\right| \leqslant \frac{1}{\Gamma(\alpha)}\left(1+\frac{\sum_{i=1}^{m} a_{i}}{1-\Delta}\right) \quad$ and $\left|\frac{\partial G_{1}}{\partial t}(t, s)\right| \leqslant \frac{2(\alpha-1)}{\Gamma(\alpha)}\left(1+\frac{\sum_{i=1}^{m} a_{i}}{1-\Delta}\right)$.

Let $K_{l}:=\sup _{t, s \in l} G_{I}(t, s) \mid$ and $K_{2}: \left.=\sup _{t, s \in I} \frac{\partial G_{1}}{\partial t}(t, s) \right\rvert\,$.
Finally, we denote $z(t)=\frac{\lambda t^{\alpha-1}}{1-\Delta}$ and $C_{1}:=\sup _{t \in I}\|z(t)\|$.

3. The main results

Now we are able to present the existence results for problem (1.1) and (1.2). We consider first the case when F is convex valued.

Hypothesis 3.1.

(i) $F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty compact convex values and is Carathéodory.
(ii) There exist $\varphi \in L^{1}(I, \mathbf{R})$ with $\varphi(t)>0$ a.e. I and there exists a nondecreasing function $\psi:[0, \infty) \rightarrow(0, \infty)$ such that

$$
\sup \{|v|, \quad v \in F(t, x, y)\} \leqslant \varphi(t) \psi(\max \{|x|,|y|\}) \quad \text { a.e. } I, \quad \forall x, y \in \mathbf{R} .
$$

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and there exists $r>0$ such that

$$
\begin{equation*}
r>C_{1}+\max \left\{K_{1}, K_{2}\right\}|\varphi|_{1} \psi(r) \tag{3.1}
\end{equation*}
$$

Then problem (1.1) and (1.2) has at least one solution x such that $\|x\|<r$.
Proof. Let $X=A C^{1}(I, \mathbf{R})$ and consider $r>0$ as in (3.1). It is obvious that the existence of solutions to problem (1.1) and (1.2) reduces to the existence of the solutions of the integral inclusion

$$
\begin{equation*}
x(t) \in z(t)+\int_{0}^{1} G_{1}(t, s) F\left(s, x(s), x^{\prime}(s)\right) d s, \quad t \in I \tag{3.2}
\end{equation*}
$$

Consider the set-valued map $T: \overline{B_{r}(0)} \rightarrow \mathcal{P}\left(A C^{1}(I, \mathbf{R})\right)$ defined by

$$
\begin{equation*}
T(x):=\left\{v \in A C^{1}(I, \mathbf{R}) ; \quad v(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f(s) d s, \quad f \in \overline{S_{F}(x)}\right\} \tag{3.3}
\end{equation*}
$$

We show that T satisfies the hypotheses of Corollary 2.2.
First, we show that $T(x) \subset A C^{1}(I, \mathbf{R})$ is convex for any $x \in A C^{1}(I, \mathbf{R})$. If $v_{1}, v_{2} \in T(x)$ then there exist $f_{1}, f_{2} \in S_{F}(x)$ such that for any $t \in I$ one has

$$
v_{i}(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f_{i}(s) d s, \quad i=1,2
$$

Let $0 \leqslant \alpha \leqslant 1$. Then for any $t \in I$ we have

$$
\left(\alpha v_{1}+(1-\alpha) v_{2}\right)(t)=z(t)+\int_{0}^{1} G_{1}(t, s)\left[\alpha f_{1}(s)+(1-\alpha) f_{2}(s)\right] d s
$$

The values of F are convex, thus $S_{F}(x)$ is a convex set and hence $\alpha v_{1}+(1-\alpha) v_{2} \in T(x)$.

Second, we show that T is bounded on bounded sets of $A C^{1}(I, \mathbf{R})$. Let $B \subset A C^{1}(I, \mathbf{R})$ be a bounded set. Then there exists $m>0$ such that $\|x\| \leqslant m \forall x \in B$. If $v \in T(x)$ there exists $f \in S_{F}(x)$ such that $v(t)=\int_{0}^{1} G_{1}(t, s) f(s) d s$. One may write for any $t \in I$

$$
\begin{aligned}
|v(t)| & \leqslant|z(t)|+\int_{0}^{1}\left|G_{1}(t, s)\right| \cdot|f(s)| d s \\
& \leqslant|z(t)|+\int_{0}^{1}\left|G_{1}(t, s)\right| \varphi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|v^{\prime}(t)\right| & \leqslant\left|z^{\prime}(t)\right|+\int_{0}^{1}\left|\frac{\partial G_{1}}{\partial t}(t, s)\right| \cdot|f(s)| d s \\
& \leqslant\left|z^{\prime}(t)\right|+\int_{0}^{1}\left|\frac{\partial G_{1}}{\partial t}(t, s)\right| \varphi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\|v\|= & \max _{t \in I}\left\{|v(t)|,\left|v^{\prime}(t)\right|\right\} \\
\leqslant & \max _{t \in I} \max \left\{|z(t)|,\left|z^{\prime}(t)\right|\right\}+\int_{0}^{1} \max _{t, s \in I}\left\{\left|G_{1}(t, s)\right|, \left\lvert\, \frac{\partial G_{1}}{\partial t}\right.\right. \\
& \times(t, s) \mid\} \varphi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s \\
\leqslant & C_{1}+\max \left\{K_{1}, K_{2}\right\}|\varphi|_{1} \psi(m)
\end{aligned}
$$

$\forall v \in T(x)$, i.e., $T(B)$ is bounded.

We show next that T maps bounded sets into equi-continuous sets. Let $B \subset A C^{1}(I, \mathbf{R})$ be a bounded set as before and $v \in T(x)$ for some $x \in B$. There exists $f \in S_{F}(x)$ such that $v(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f(s) d s$. Then for any $t, \tau \in I$ we have

$$
\begin{aligned}
|v(t)-v(\tau)| \leqslant & |z(t)-z(\tau)|+\left|\int_{0}^{1} G_{1}(t, s) f(s) d s-\int_{0}^{1} G_{1}(\tau, s) f(s) d s\right| \\
\leqslant & |z(t)-z(\tau)|+\int_{0}^{1} \mid G_{1}(t, s) \\
& -G_{1}(\tau, s) \mid \varphi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s \\
\leqslant & |z(t)-z(\tau)|+\int_{0}^{1}\left|G_{1}(t, s)-G_{1}(\tau, s)\right| \varphi(s) \psi(m) d s .
\end{aligned}
$$

Similarly, we have

$$
\left|v^{\prime}(t)-v^{\prime}(\tau)\right| \leqslant\left|z^{\prime}(t)-z^{\prime}(\tau)\right|+\int_{0}^{1}\left|\frac{\partial G_{1}}{\partial t}(t, s)-\frac{\partial G_{1}}{\partial t}(\tau, s)\right| \varphi(s) \psi(m) d s
$$

It follows that $|v(t)-v(\tau)| \rightarrow 0$ as $t \rightarrow \tau$. Therefore, $T(B)$ is an equi-continuous set in $A C^{1}(I, \mathbf{R})$. We apply now Arzela-Ascoli's theorem we deduce that T is completely continuous on $A C^{1}(I, \mathbf{R})$.

In the next step of the proof we prove that T has a closed graph. Let $x_{n} \in A C^{1}(I, \mathbf{R})$ be a sequence such that $x_{n} \rightarrow x^{*}$ and $v_{n} \in T\left(x_{n}\right) \forall n \in \mathbf{N}$ such that $v_{n} \rightarrow v^{*}$. We prove that $v^{*} \in T\left(x^{*}\right)$. Since $v_{n} \in T\left(x_{n}\right)$, there exists $f_{n} \in S_{F}\left(x_{n}\right)$ such that $v_{n}(t)=z(t)+$ $\int_{0}^{1} G_{1}(t, s) f_{n}(s) d s$. Define $\Gamma: L^{1}(I, \mathbf{R}) \rightarrow A C^{1}(I, \mathbf{R})$ by $(\Gamma(f))(t):=\int_{0}^{1} G_{1}(t, s) f(s) d s$. One has

$$
\begin{aligned}
& \max _{t \in I}\left\{\left|v_{n}(t)-z(t)-\left(v^{*}(t)-z(t)\right)\right|,\left|v_{n}^{\prime}(t)-z^{\prime}(t)-\left(\left(v^{*}\right)^{\prime}(t)-z^{\prime}(t)\right)\right|\right. \\
& \quad=\max _{t \in I}\left\{\left|v_{n}(t)-v^{*}(t)\right|,\left|v_{n}^{\prime}(t)-\left(v^{*}\right)^{\prime}(t)\right|\right\}=\left\|v_{n}-v^{*}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
We apply Theorem 2.5 to find that $\Gamma \circ S_{F}$ has closed graph and from the definition of Γ we get $v_{n} \in \Gamma \circ S_{F}\left(x_{n}\right)$. Since $x_{n} \rightarrow x^{*}, v_{n} \rightarrow v^{*}$ it follows the existence of $f^{*} \in S_{F}\left(x^{*}\right)$ such that $v^{*}(t)-z(t)=\int_{0}^{1} G_{1}(t, s) f^{*}(s) d s$. Therefore, T is upper semicontinuous and compact on $\overline{B_{r}(0)}$.

We apply Corollary 2.2 to deduce that either (i) the inclusion $x \in T(x)$ has a solution in $\overline{B_{r}(0)}$, or (ii) there exists $x \in X$ with $\|x\|=r$ and $\lambda x \in T(x)$ for some $\lambda>1$.

Assume that (ii) is true. With the same arguments as in the second step of our proof we get $r=\|x\| \leqslant C_{1}+\max \left\{K_{1}, K_{2}\right\}|\varphi|_{1} \psi(r)$ which contradicts (3.1). Hence only (i) is valid and theorem is proved.

We consider now the case when F is not necessarily convex valued. Our first existence result in this case is based on the Leray-Schauder alternative for single valued maps and on Bressan Colombo selection theorem.

Hypothesis 3.3.

(i) $F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has compact values, F is $\mathcal{L}(I) \otimes \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ measurable and $(x, y) \rightarrow F(t, x, y)$ is lower semicontinuous for almost all $t \in I$.
(ii) There exist $\varphi \in L^{1}(I, \mathbf{R})$ with $\varphi(t)>0$ a.e. I and there exists a nondecreasing function $\psi:[0, \infty) \rightarrow(0, \infty)$ such that

$$
\sup \{|v|, \quad v \in F(t, x, y)\} \leqslant \varphi(t) \psi(\max \{|x|,|y|\}) \quad \text { a.e. } I, \quad \forall x, y \in \mathbf{R} .
$$

Theorem 3.4. Assume that Hypothesis 3.3 is satisfied and there exists $r>0$ such that condition (3.1) is satisfied. Then problem (1.1) and (1.2) has at least one solution on I.

Proof. We note first that if Hypothesis 3.3 is satisfied then F is of lower semicontinuous type (e.g., [14]). Therefore, we apply Theorem 2.4 to deduce that there exists f : $A C^{1}(I, \mathbf{R}) \rightarrow L^{1}(I, \mathbf{R})$ such that $f(x) \in S_{F}(x) \forall x \in A C^{1}(I, \mathbf{R})$.

We consider the corresponding problem

$$
\begin{equation*}
x(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f(x(s)) d s, \quad t \in I \tag{3.4}
\end{equation*}
$$

in the space $X=A C^{1}(I, \mathbf{R})$. It is clear that if $x \in A C^{1}(I, \mathbf{R})$ is a solution of the problem (3.4) then x is a solution to problem (1.1) and (1.2).

Let $r>0$ that satisfies the condition (3.1) and define the set-valued map $T: \overline{B_{r}(0)} \rightarrow \mathcal{P}\left(A C^{1}(I, \mathbf{R})\right)$ by

$$
(T(x))(t):=z(t)+\int_{0}^{1} G_{1}(t, s) f(x(s)) d s
$$

Obviously, the integral Eq. (3.4) is equivalent with the operator equation

$$
\begin{equation*}
x(t)=(T(x))(t), \quad t \in I . \tag{3.5}
\end{equation*}
$$

It remains to show that T satisfies the hypotheses of Corollary 2.3.
We show that T is continuous on $\overline{B_{r}(0)}$. From Hypotheses 3.3. (ii) we have

$$
|f(x(t))| \leqslant \varphi(t) \psi\left(\max \left\{|x(t)|,\left|x^{\prime}(t)\right|\right\}\right) \quad \text { a.e. } I
$$

for all $x \in A C^{1}(I, \mathbf{R})$. Let $x_{n}, x \in \overline{B_{r}(0)}$ such that $x_{n} \rightarrow x$. Then

$$
\left|f\left(x_{n}(t)\right)\right| \leqslant \varphi(t) \psi(r) \quad \text { a.e. I. }
$$

From Lebesgue's dominated convergence theorem and the continuity of f we obtain, for all $t \in I$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(T\left(x_{n}\right)\right)(t) & =z(t)+\lim _{n \rightarrow \infty} \int_{0}^{1} G_{1}(t, s) f\left(x_{n}(s)\right) d s=z(t)+\int_{0}^{1} G_{1}(t, s) f(x(s)) d s \\
& =(T(x))(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(T\left(x_{n}\right)\right)^{\prime}(t) & =z^{\prime}(t)+\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\partial G_{1}}{\partial t}(t, s) f\left(x_{n}(s)\right) d s \\
& =z^{\prime}(t)+\int_{0}^{1} \frac{\partial G_{1}}{\partial t}(t, s) f(x(s)) d s=(T(x))^{\prime}(t)
\end{aligned}
$$

i.e., T is continuous on $\overline{B_{r}(0)}$.

Repeating the arguments in the proof of Theorem 3.2 with corresponding modifications it follows that T is compact on $\overline{B_{r}(0)}$. We apply Corollary 2.3 and we find that either (i) the equation $x=T(x)$ has a solution in $\overline{B_{r}(0)}$, or (ii) there exists $x \in X$ with $\|x\|=r$ and $x=\lambda T(x)$ for some $\lambda<1$.

As in the proof of Theorem 3.2 if the statement (ii) holds true, then we obtain a contradiction to (3.1). Thus only the statement (i) is true and problem (1.1) has a solution $x \in A C^{1}(I, \mathbf{R})$ with $\|x\|<r$.

In order to obtain an existence result for problem (1.1) and (1.2) by using the setvalued contraction principle we introduce the following hypothesis on F.

Hypothesis 3.5.

(i) $F: I \times \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty compact values, is integrably bounded and for every $x, y \in \mathbf{R}, F(., x, y)$ is measurable.
(ii) There exists $l_{1}, l_{2} \in L^{1}\left(I, \mathbf{R}_{+}\right)$such that for almost all $t \in I$,

$$
\begin{aligned}
& d_{H}\left(F\left(t, x_{1}, y_{1}\right), F\left(t, x_{2}, y_{2}\right)\right) \leqslant l_{1}(t)\left|x_{1}-x_{2}\right|+l_{2}(t)\left|y_{1}-y_{2}\right| \\
& \forall x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R} .
\end{aligned}
$$

Theorem 3.6. Assume that Hypothesis 3.5. is satisfied and $\left(\left|l_{1}\right|_{1}+\left|l_{2}\right|_{1}\right)$ $\max \left\{K_{1}, K_{2}\right\}<1$. Then problem (1.1) and (1.2) has a solution.

Proof. We transform the problem (1.1) and (1.2) into a fixed point problem. Consider the set-valued map $T: A C^{1}(I, \mathbf{R}) \rightarrow \mathcal{P}\left(A C^{1}(I, \mathbf{R})\right)$ defined by

$$
T(x):=\left\{v \in A C^{1}(I, \mathbf{R}) ; \quad v(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f(s) d s, \quad f \in S_{F}(x)\right\}
$$

Note that since the set-valued map $F(., x()$.$) is measurable with the measurable selec-$ tion theorem (e.g., Theorem III. 6 in [5]) it admits a measurable selection $f: I \rightarrow \mathbf{R}$. Moreover, since F is integrably bounded, $f \in L^{1}(I, \mathbf{R})$. Therefore, $S_{F, x} \neq \emptyset$.

It is clear that the fixed points of T are solutions of problem (1.1) and (1.2). We shall prove that T fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since $S_{F, x} \neq \emptyset, T(x) \neq \emptyset$ for any $x \in A C^{1}(I, \mathbf{R})$.

Second, we prove that $T(x)$ is closed for any $x \in A C^{1}(I, \mathbf{R})$. Let $\left\{x_{n}\right\}_{n \geqslant 0} \in T(x)$ such that $x_{n} \rightarrow x^{*}$ in $A C^{1}(I, \mathbf{R})$. Then $x^{*} \in A C^{1}(I, \mathbf{R})$ and there exists $f_{n} \in S_{F, x}$ such that

$$
x_{n}(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f_{n}(s) d s
$$

Since F has compact values and Hypothesis 3.5 is satisfied we may pass to a subsequence (if necessary) to get that f_{n} converges to $f \in L^{1}(I, \mathbf{R})$ in $L^{1}(I, \mathbf{R})$. In particular, $f \in S_{F, x}$ and for any $t \in I$ we have

$$
x_{n}(t) \rightarrow x^{*}(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f(s) d s
$$

i.e., $x^{*} \in T(x)$ and $T(x)$ is closed.

Finally, we show that T is a contraction on $A C^{1}(I, \mathbf{R})$. Let $x_{1}, x_{2} \in A C^{1}(I, \mathbf{R})$ and $v_{1} \in T\left(x_{1}\right)$. Then there exist $f_{1} \in S_{F, x_{1}}$ such that

$$
v_{1}(t)=z(t)+\int_{0}^{1} G(t, s) f_{1}(s) d s, \quad t \in I .
$$

Consider the set-valued map

$$
\begin{aligned}
H(t) & :=F\left(t, x_{2}(t), x_{2}^{\prime}(t)\right) \cap\left\{x \in \mathbf{R} ; \quad\left|f_{1}(t)-x\right|\right. \\
& \left.\leqslant l_{1}(t)\left|x_{1}(t)-x_{2}(t)\right|+l_{2}(t)\left|x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right|\right\}, \quad t \in I .
\end{aligned}
$$

From Hypothesis 3.5 one has

$$
d_{H}\left(F\left(t, x_{1}(t), x_{1}^{\prime}(t)\right), F\left(t, x_{2}(t), x_{2}^{\prime}(t)\right)\right) \leqslant l_{1}(t)\left|x_{1}(t)-x_{2}(t)\right|+l_{2}(t)\left|x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right|,
$$

hence H has nonempty closed values. Moreover, since H is measurable, there exists f_{2} a measurable selection of H. It follows that $f_{2} \in S_{F, x_{2}}$ and for any $t \in I$

$$
\left|f_{1}(t)-f_{2}(t)\right| \leqslant l_{1}(t)\left|x_{1}(t)-x_{2}(t)\right|+l_{2}(t)\left|x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right| .
$$

Define

$$
v_{2}(t)=z(t)+\int_{0}^{1} G_{1}(t, s) f_{2}(s) d s, \quad t \in I
$$

and we have

$$
\begin{aligned}
\left|v_{1}(t)-v_{2}(t)\right| & \leqslant \int_{0}^{1}\left|G_{1}(t, s)\right| \cdot\left|f_{1}(s)-f_{2}(s)\right| d s \\
& \leqslant \int_{0}^{1} G_{1}(t, s)\left[l_{1}(s)\left|x_{1}(s)-x_{2}(s)\right|+l_{2}(s)\left|x_{1}^{\prime}(s)-x_{2}^{\prime}(s)\right|\right] d s \\
& \leqslant K_{1}\left(\left|l_{1}\right|_{1}+\left|l_{2}\right|_{1}\right) \| x_{1}-x_{2} \mid .
\end{aligned}
$$

Similarly, we have

$$
\left|v_{1}^{\prime}(t)-v_{2}^{\prime}(t)\right| \leqslant K_{2}\left(\left|l_{1}\right|_{1}+\left|l_{2}\right|_{1}\right)\left\|x_{1}-x_{2}\right\| .
$$

So, $\left\|v_{1}-v_{2}\right\| \leqslant\left(\left|l_{1}\right|_{1}+\left|l_{2}\right|_{1}\right) \max \left\{K_{1}, K_{2}\right\}\left\|x_{1}-x_{2}\right\|$. From an analogous reasoning by interchanging the roles of x_{1} and x_{2} it follows

$$
d_{H}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leqslant\left(\left|l_{1}\right|_{1}+\left|l_{2}\right|_{1}\right) \max \left\{K_{1}, K_{2}\right\}\left\|x_{1}-x_{2}\right\| .
$$

Therefore, T admits a fixed point which is a solution to problem (1.1) and (1.2).

References

[1] B. Ahmad, S.K. Ntouyas, Arab J. Math. Sci. 18 (2012) 121-134.
[2] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, J. Math. Anal. Appl. 338 (2008) 1340-1350.
[3] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Fract. Calc. Appl. Anal. 11 (2008) 35-56.
[4] A. Bressan, G. Colombo, Studia Math. 90 (1988) 69-86.
[5] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
[6] A. Cernea, Fract. Calc. Appl. Anal. 12 (2009) 433-442.
[7] A. Cernea, Nonlinear Anal. 72 (2010) 204-208.
[8] A. Cernea, Electronic J. Qual. Theory Differ. Equ. 78 (2010) 1-13.
[9] A. Cernea, J. Appl. Math. Comput. 38 (2012) 133-143.
[10] A. Cernea, Fract. Calc. Appl. Anal. 15 (2012) 183-194.
[11] Y.K. Chang, J.J. Nieto, Math. Comput. Modell. 49 (2009) 605-609.
[12] H. Covitz, S.B. Nadler Jr., Israel J. Math. 8 (1970) 5-11.
[13] A.M.A. El-Sayed, A.G. Ibrahim, Appl. Math. Comput. 68 (1995) 15-25.
[14] M. Frignon, A. Granas, C. R. Acad. Sci. Paris I 310 (1990) 819-822.
[15] J. Henderson, A. Ouahab, Nonlinear Anal. 70 (2009) 2091-2105.
[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[17] A. Lasota, Z. Opial, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 13 (1965) 781-786.
[18] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[19] N. Nyamoradi, Arab J. Math. Sci. 18 (2012) 165-175.
[20] A. Ouahab, Nonlinear Anal. 69 (2009) 3871-3896.
[21] D. O' Regan, Arch. Math. (Brno) 34 (1998) 191-197.
[22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

