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Abstract. This article is devoted to use the variational iteration method (VIM) estab-

lished by J.H. He for solving linear and nonlinear delay differential equations (DDEs).

This method is based on the use of Lagrange multiplier for identification of optimal

value of a parameter in a functional. This procedure is a powerful tool for solving large

amount of problems. Using VIM, it is possible to find the exact solution or an approx-

imate solution of the proposed problem. This technique provides a sequence of func-

tions which converges to the exact solution of the problem. Convergence analysis is

reliable enough to estimate the maximum absolute error of the approximate solution

given by VIM. A comparison with the Adomian decomposition method is given.
Keywords: Delay differential equation; Variational iteration method; Convergence

analysis
1. INTRODUCTION

Many different methods have recently been introduced to solve nonlinear problems,
such as, VIM [1,13–16,19,26–28,30,31], Adomian decomposition method (ADM)
[2,11], homotopy perturbation method [20,24,29] and others [18]. The VIM is strongly
and simply capable for solving a large class of linear or nonlinear differential equations
without the tangible restriction of sensitivity to the degree of the nonlinear term and
also it reduces the size of calculations besides, its interactions are direct and
straightforward.

A delay differential equation (DDE) is a differential equation in which the derivative
of the function at any time depends on the solution at previous time. Introduction of
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delay in the model enriches its dynamics and allows a precise description of the real life
phenomena. DDEs are proved to be useful in control systems [12], lasers, traffic models
[4], metal cutting, epidemiology, neuroscience, population dynamics [21], chemical
kinetics [9], etc. In DDE one has to provide history of the system over the delay interval
[s, 0] as the initial condition. Due to this reason delay systems are infinite dimensional
in nature. Because of infinite dimensionality the DDEs are difficult to analyze analyt-
ically [3] and hence the numerical solutions play an important role.

The main aim in this work is to effectively employ VIM to establish exact solutions
of DDEs and study the convergence of the method. To guarantee this study we present
five examples of linear and nonlinear delay differential equations. Many papers have
been interested to study the numerical solutions of DDEs. In [22] the author studied
the first order delay differential equations, using spline functions, and studied the sta-
bility and the error analysis. Also, in [23] the authors studied the system of first order
delay differential equations, using spline functions, and studied the stability and the er-
ror analysis.

2. ANALYSIS OF VIM

To illustrate the analysis of VIM, we limit ourselves to consider the following nonlinear
delay differential equation in the type
LuðtÞ ¼ fðt; uðtÞ; uðaðtÞÞÞ; 0 6 t 6 T; ð1Þ

with the following initial conditions
uðkÞð0Þ ¼ uk0; k ¼ 0; 1; . . . ; n� 1; uðtÞ ¼ /ðtÞ; t 6 0; ð2Þ

where the differential operator L is defined by Lð�Þ ¼ dnð�Þ

dtn
.

Now, to illustrate the analysis of VIM and study the analysis of convergence, we re-
write Eq. (1) in the following form
Luþ RuþNðuÞ ¼ 0; ð3Þ

with specified initial conditions, where L and R are linear bounded operators, i.e., it is
possible to find numbers m1, m2 > 0 such that iLui 6 m1iui, iRui 6 m2iui. The nonlin-
ear term N(u) is Lipschitz continuous with ŒN(u) � N(v)Œ 6 mŒu � vŒ, "t 2 J = [0,T],
for arbitrary constant m > 0. The VIM gives the possibility to write the solution of
Eq. (3) with the aid of the correction functional
up ¼ up�1 þ
Z t

0

kðsÞ½Lup�1 þ R~up�1 þNð~up�1Þ�ds; p P 1: ð4Þ
It is obvious that the successive approximations up, p P 0 (the subscript p denotes the
pth order approximation), can be established by determining k, a general Lagrange
multiplier, which can be identified optimally via the variational theory. The function
~up is a restricted variation, which means d~up ¼ 0. Therefore, we first determine the La-
grange multiplier k that will be identified optimally via integration by parts. The suc-
cessive approximations up, p P 1, of the solution u will be readily obtained upon using
the Lagrange multiplier obtained and by using any selective function u0. The initial val-
ues of the solution are usually used for selecting the zeroth approximation u0. With k
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determined, then several approximations up, p P 1, follow immediately. Consequently,
the exact solution may be obtained by using
u ¼ lim
p!1

up: ð5Þ
In what follows, we apply VIM to some examples of linear and nonlinear delay differ-
ential equations to illustrate the strength of the method and to establish exact solutions
for these problems.

Now, to illustrate how to find the value of the Lagrange multiplier k, we will con-
sider the following case, which is dependent on the order of the operator L in Eq.
(3), we will study the case of the operator L ¼ d

dt
(without loss of generality).

Making the above correction functional stationary, and noticing that d~up ¼ 0, we
obtain
dup ¼ dup�1 þ d
Z t

0

kðsÞ dup�1
ds
þ R ~up�1 þNð~up�1Þ

� �
ds

¼ dup�1 þ ½kðsÞdup�1�s¼t �
Z t

0

_kðsÞ½dup�1�ds ¼ 0;
where d~up is considered as a restricted variation i.e., d~up ¼ 0, yields the following sta-
tionary conditions
_kðsÞ ¼ 0; 1þ kðsÞjs¼t ¼ 0: ð6Þ

The first equation in (6) is called Lagrange–Euler equation and the second equation in
(6) is called natural boundary condition. The solution of this equation gives the La-
grange multiplier k(s) = �1. Now, the following variational iteration formula can be
obtained
up ¼ up�1 �
Z t

0

½Lup�1 þ Rup�1 þNðup�1Þ�ds: ð7Þ
We start with an initial approximation, and by using the above iteration formula (7),
we can obtain directly the other components of the solution.

For more details about VIM and its advantages, see [8,30–32]

3. CONVERGENCE ANALYSIS OF VIM

In this section, the sufficient conditions are presented to guarantee the convergence of
VIM, when applied to solve nonlinear DDEs, where the main point is that we prove the
convergence of the recurrence sequence, which is generated by using VIM.

Definition 1. The variation of the functional v[u(x)] is defined as follows [10]
dv½uðxÞ� ¼ @

@a
v½uðxÞ þ adu�

� �
a¼0
; ð8Þ
where v[u(x)] is a functional dependent on the function uðxÞ; a 2 R.
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Theorem 1. If a functional v[u(x)]; has a variation, achieves a maximum or a minimum
at u = u0, then at u = u0
dv ¼ 0; ð9Þ

where u(x) is an interior point of the domain of definition of the functional.

Lemma 1. Let A : U fi V be a bounded linear operator and let {up} be a convergent
sequence in U with limit u, then up fi u in U implies that A(up) fi A(u) in V.

Proof. Since
kAup � AukV ¼ kAðup � uÞkV 6 kAk kup � ukU;

hence
lim
p!1
kAup � AukV 6 kAk lim

p!1
kup � ukU ¼ 0
implies that A(up) fi A(u). h
3.1. Uniqueness theorem

Theorem 2. The nonlinear problem (3) has a unique solution, whenever 0 < a < 1, where
a = (m2 + m)T and the constants m2 and m are defined above.

Proof. Since, the solution of Eq. (3) can be written in the following form
u ¼ fðtÞ � L�1½RuþNðuÞ�;

where f(t) is the solution of the homogenous equation Lu = 0, and the inverse operator
L�1 is defined by L�1ð�Þ ¼

R t

0
ð�Þdt.

Now let, u and u* be two different solutions to (3) then by using the above equation,
we get
ju� u�j ¼ j �
Z t

0

½R ðu� u�Þ þNðuÞ �Nðu�Þ�dtj

6

Z t

0

½jRðu� u�Þj þ jNðuÞ �Nðu�Þj�dt 6 ðm2ju� u�j þmju� u�jÞT

6 aju� u�j
from which we get (1 � a)Œu � u*Œ 6 0. Since 0 < a < 1, then Œu � u*Œ = 0 implies,
u = u* and this completes the proof. h

Now, to prove the convergence of the variational iteration method, we will rewrite
the Eq. (7) in the operator form as follows
up ¼ A½up�1�; ð10Þ

where the operator A takes the following form
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A½u� ¼ �
Z t

0

½Luþ R uþNðuÞ�ds: ð11Þ
3.2. Convergence theorem

Theorem 3 (Banach’s fixed point theorem). Assume that X be a Banach space and A :
X fi X is a nonlinear mapping, and suppose that
kA½u� � A½v�k 6 cku� vk; 8u; v 2 X; ð12Þ

for some constant c = (a + m1T) < 1. Then A has a unique fixed point. Furthermore,
the sequence (10) using VIM with an arbitrary choice of u0 2 X, converges to the fixed
point of A and
kup � uqk 6
cq

1� c
ku1 � u0k: ð13Þ
Proof. Denoting (C[J], i Æ i) Banach space of all continuous functions on J with the
norm defined by
kfðtÞk ¼ max
t2J
jfðtÞj:
We are going to prove that the sequence {up} is a Cauchy sequence in this Banach space
kup � uqk ¼ max
t2J
jup � uqj

¼ max
t2J
j �
Z t

0

½Lðup�1 � uq�1Þ þ Rðup�1 � uq�1Þ þNðup�1Þ �Nðuq�1Þ�dsj

6 max
t2J

Z t

0

½jLðup�1 � uq�1Þj þ jRðup�1 � uq�1Þj þ jNðup�1Þ �Nðuq�1Þj�ds

6 max
t2J

Z t

0

½ðm1 þm2 þmÞðup�1 � uq�1Þ�ds 6 ckup�1 � uq�1k:
Let, p = q + 1 then
kuqþ1 � uqk 6 ckuq � uq�1k 6 c2kuq�1 � uq�2k 6 . . . 6 cqku1 � u0k:

From the triangle inequality we have
kup � uqk 6 kuqþ1 � uqk þ kuqþ2 � uqþ1k þ � � � þ kup � up�1k
6 ½cq þ cqþ1 þ � � � þ cp�1�ku1 � u0k

6 cq½1þ cþ c2 þ � � � þ cp�q�1�jju1 � u0k 6 cq
1� cp�q�1

1� c
�ku1 � u0k:
Since 0 < c < 1 so, (1 � cp�q) < 1 then
kup � uqk 6
cq

1� c
ku1 � u0k:
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But iu1 � u0i <1 so, as q fi1 then iup � uqi fi 0. We conclude that {up} is a Cauchy
sequence in C[J] so, the sequence is convergent. And this ends the proof of the
theorem. h
3.3. Error estimate

Theorem 4. The maximum absolute error of the approximate solution up to problem (3) is
estimated to be
max
t2J
juexact � upj 6 b; ð14Þ
where b ¼ cqT½ðm1þm2Þku0kþk�
1�c ; k ¼ maxt2JjNðu0Þj.

Proof. From Theorem 3 and inequality (13) we have
kup � uqk 6
cq

1� c
ku1 � u0k;
as p fi1 then up fi uexact and
ku1 � u0k ¼ max
t2J
j �
Z t

0

½Lu0 þ R u0 þNðu0Þ�dsj

6 max
t2J

Z t

0

½jLu0j þ jRu0j þ jNðu0Þj�ds 6 T½ðm1 þm2Þku0k þ k�;
so, the maximum absolute error in the interval J is
kuexact � upk ¼ max
t2J
juexact � upj 6 b:
This completes the proof. For more details about the convergence of VIM, see,
[28,32] h
4. NUMERICAL APPLICATION

In this section, we discuss the numerical treatment of some problems of linear DDE
(LDDE) and nonlinear DDE (NDDE) by using the proposed method.

Example 1. Consider the LDDE of first-order [5,25]
duðxÞ
dx
¼ 1

2
ex=2u

x

2

� �
þ 1

2
uðxÞ; 0 6 x 6 1; uð0Þ ¼ 1: ð15Þ
The exact solution of this example is u(x) = ex. To solve Eq. (15) by means of VIM, we
construct a correction functional which reads
upþ1ðxÞ ¼ upðxÞ þ
Z x

0

kðsÞ ups �
1

2
es=2~up

s
2

� �
� 1

2
~upðsÞ

� �
ds; p P 0: ð16Þ
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Making the above correction functional stationary, and noticing that du(0) = 0, we
obtain
dupþ1ðxÞ ¼ dupðxÞ þ d
Z x

0

kðsÞ ups �
1

2
es=2~up

s
2

� �
� 1

2
~upðsÞ

� �
ds

¼ dup þ ½kðsÞdup�s¼x �
Z x

0

_kðsÞ½dup�ds ¼ 0;
where d~up is considered as a restricted variation, i.e., d~up ¼ 0, yields the following sta-
tionary conditions
_kðsÞ ¼ 0; 1þ kðsÞjs¼x ¼ 0: ð17Þ

The solution of this equation gives the Lagrange multiplier k(s) = �1.

Now, the following variational iteration formula can be obtained
upþ1ðxÞ ¼ upðxÞ �
Z x

0

ups �
1

2
es=2up

s
2

� �
� 1

2
upðsÞ

� �
ds; p P 0: ð18Þ
We start with an initial approximation u0(x) = u(0), and by using the above iteration
formula (18), we can obtain directly the other components as
u0ðxÞ ¼ 1; u1ðxÞ ¼ ex=2 þ 1

2
x; . . .
In order to verify numerically whether the proposed methodology leads to higher accu-
racy, we can evaluate the numerical solutions using p = 5 terms approximation. Fig. 1
shows the behavior of the error between the exact solution and the numerical solution
in [0,1]. We achieved a very good approximation with the exact solution of Eq. (15) by
using five terms only of the iteration equation derived above, where in [11] obtained the
solution after 13 iterations using Adomian decomposition method. It is evident that the
overall errors can be made smaller by adding new terms of the iteration formula. The
obtained numerical results justify the advantage of the proposed method, even in the
few terms approximation is accurate.

Example 2. Consider the LDDE of second-order [6]
d2uðxÞ
dx2

¼ 3

4
uðxÞ þ u

x

2

� �
� x2 þ 2; 0 6 x 6 1; uð0Þ ¼ 1;

duð0Þ
dx
¼ 0: ð19Þ
The exact solution of this example is u(x) = x2. To solve Eq. (19) by means of VIM, we
construct a correction functional which reads
upþ1ðxÞ ¼ upðxÞ þ
Z x

0

kðsÞ upss �
3

4
~upðsÞ � ~up

s
2

� �
þ s2 � 2

� �
ds; p P 0: ð20Þ
Making the above correction functional stationary, and noticing that du(0) = 0, we
obtain Z � �
dupþ1ðxÞ ¼ dupðxÞ þ d
x

0

kðsÞ upss �
3

4
~upðsÞ � ~up

s
2

� �
þ s2 � 2 ds

¼ dup þ ½ _kðsÞdup � kðsÞd _up�s¼x þ
Z x

0

€kðsÞ½dup�ds ¼ 0;
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where d~up is considered as a restricted variation, i.e., d~up ¼ 0, yields the following sta-
tionary conditions
€kðsÞ ¼ 1; _kðsÞjs¼x ¼ 0; kðsÞjs¼x ¼ 0: ð21Þ

The solution of this equation gives the Lagrange multiplier k(s) = s � x.

Now, the following variational iteration formula can be obtained
upþ1ðxÞ ¼ upðxÞ þ
Z x

0

ðs� xÞ upss �
3

4
upðsÞ � up

s
2

� �
þ s2 � 2

� �
ds; p P 0: ð22Þ
We start with an initial approximation u0ðxÞ ¼ uð0Þ þ x duð0Þ
dx

, and by using the above
iteration formula (22), we can obtain directly the other components as
u0ðxÞ ¼ 0; u1ðxÞ ¼ x2 � 1

2
x4; u2ðxÞ ¼ x2 � 0:00225694x6; . . .
In order to verify numerically whether the proposed methodology leads to higher accu-
racy, we can evaluate the numerical solutions using p = 5 terms approximation. Fig. 2
shows the behavior of the error between the exact solution and the numerical solution
in [0,1]. We achieved a very good approximation with the exact solution of Eq. (19) by
using five terms only of the iteration equation derived above, wherein [11] obtained the
solution after 8 iterations using Adomian decomposition method. This shows the
advantage of the VIM.

Example 3. Consider the LDDE of third-order
d3uðxÞ
dx3

¼ �uðxÞ � uðx� 0:3Þ þ e�xþ0:3; 0 6 x 6 1; ð23Þ
with the initial conditions
uð0Þ ¼ 1;
duð0Þ
dx
¼ �1; d2uð0Þ

dx2
¼ 1; yðxÞ ¼ e�x; x 6 0:
The exact solution of this example is u(x) = e�x.
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To solve Eq. (23) by means of VIM, we can obtain the Lagrange multiplier k, as
follows:
kðsÞ ¼ � 1

2
ðs� xÞ2:
Now, the following variational iteration formula can be obtained
upþ1ðxÞ ¼ upðxÞ þ
Z x

0

�1

2
ðs� xÞ2½upsssþ upðsÞ þ upðs� 0:3Þ � e�sþ0:3� ds; p P 0:

ð24Þ

We start with an initial approximation u0ðxÞ ¼ 1

2
x2 � xþ 1, and by using the

above iteration formula (24), we can obtain directly the components of the solution
u(x).

In order to verify numerically whether the proposed methodology leads to higher
accuracy, we can evaluate the numerical solutions using p = 6 terms approximation.
Fig. 3 shows the behavior of the error between the exact solution and the numerical
solution in [0,1]. We achieved a very good approximation with the exact solution of
Eq. (23) by using six terms only of the iteration equation derived above, wherein
[11] obtained the solution after 6 iterations using Adomian decomposition method.
Fig. 3 Example 3.
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Example 4. Consider the NDDE of first-order [7,17]
duðxÞ
dx
¼ 1� 2u2

x

2

� �
; uð0Þ ¼ 0; 0 6 x 6 1: ð25Þ
The exact solution of this example is u(x) = sin(x). To solve Eq. (25) by means of VIM,
we can obtain the Lagrange multiplier k, as follows k(s) = �1.

Now, the following variational iteration formula can be obtained
upþ1ðxÞ ¼ upðxÞ �
Z x

0

ups þ 2u2p
s
2

� �
� 1

h i
ds; p P 0: ð26Þ
We start with an initial approximation u0(x) = 0, and by using the above iteration for-
mula (26), we can obtain directly the other components as
u0ðxÞ ¼ 0; u1ðxÞ ¼ x; u2ðxÞ ¼ x� x3

6
; u3ðxÞ ¼ x� x3

6
þ x5

120
� x7

8064
; . . .
From these components, we can note that it is the Taylor series of the exact solution
u(x) = sin(x).

In order to verify numerically whether the proposed methodology leads to higher
accuracy, we can evaluate the numerical solutions using p = 8 terms approximation.
Fig. 4 shows the behavior of the error between the exact solution and the numerical
solution in [0,1]. We achieved a very good approximation with the actual solution of
Eq. (25) by using eight terms only of the iteration equation derived above, wherein
[11] obtained the solution using Adomian decomposition method.

Example 5. Consider the NDDE of third-order
d3uðxÞ
dx3

¼ �1þ 2u2
x

2

� �
; uð0Þ ¼ 0;

duð0Þ
dx
¼ 1;

d2uð0Þ
dx2

¼ 0; 0 6 x 6 1:

ð27Þ

To solve Eq. (27) by means of VIM, we can obtain the Lagrange multiplier kðsÞ ¼
� 1

2
ðs� xÞ2.
Now, the following variational iteration formula can be obtained
upþ1ðxÞ ¼ upðxÞ �
Z x

0

1

2
ðs� xÞ2 upsss � 2u2p

s
2

� �
þ 1

h i
ds; p P 0: ð28Þ
Fig. 4 Example 4.
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We start with an initial approximation u0(x) = x, and by using the above iteration
formula (28), we can obtain the components of the solution u(x). Consequently, the ex-
act solution may be obtained by using
u ¼ lim
p!1

up ¼ sinðxÞ: ð29Þ

Fig. 5 shows the behavior of the error between the exact solution and the numerical
solution in [0,1]. We achieved a very good approximation with the actual solution of
Eq. (27) by using eight terms only of the iteration equation derived above, wherein
[11] obtained the solution after 10 iterations using ADM (Fig. 6).

Example 6. This example is concerned with the implementation of VIM to obtain the
numerical solution of the Logistic equation with delay of the form
duðtÞ
dt
¼ quðtÞð1� uðt� rÞÞ; t > 0; q > 0: ð30Þ
With the following initial condition u(0) = u0, u0 > 0.
Fig. 6 Example 6.
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Applications of logistic equation.
A typical application of the logistic equation is a common model of population

growth. Let u(t) presents the population size and t represents time where the constant
q defines the growth rate. Another application of logistic curve is in medicine, where
the logistic differential equation is used to model the growth of tumors. This applica-
tion can be considered an extension of the above mentioned use in the framework of
ecology. Denoting with u(t) the size of the tumor at time t.

To solve Eq. (30) by means of VIM, we can obtain the Lagrange multiplier
k(s) = �1. Now, the following variational iteration formula can be obtained as
upþ1ðtÞ ¼ upðtÞ �
Z t

0

½upsðsÞ � qupðsÞð1� upðs� rÞÞ�ds: ð31Þ
We start with an initial approximation u0(t) = 0.85, and by using the above iteration
formula (31), we can obtain the components of the solution u(t) with r= 0.0
u0ðtÞ ¼ 0:85;

u1ðtÞ ¼ 0:85þ 0:06375t;

u2ðtÞ ¼ 0:85þ 0:06375t� 0:0111563t2 � 0:000677344t3:
Therefore, the complete approximate solution can be readily obtained by the same iter-
ative process. Consequently, the exact solution may be obtained by using:
u ¼ lim
p!1

up: ð32Þ
In order to verify numerically whether the proposed methodology leads to higher accu-
racy, we can evaluate the numerical solutions using p = 8 terms approximation.

The behavior of the approximate solution and the exact solution in the interval [0,6]
at q = 0.5 and using eight-iterations of the recurrence formula (31) using VIM is pre-
sented in Fig. 7 with r= 0.0, where in this case the exact solution is known and given by
uðtÞ ¼ u0
u0 þ ð1� u0Þe�qt

:

Also, Fig. 8 the behavior of the approximate solution with different values of the
parameter of delay r is given. From this figure we can see that the approximate solution
depends on this parameter.
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The numerical results we obtained justify the advantage of the proposed method,
even in the few terms approximation is accurate and the solutions are very rapidly con-
vergent. It is evident that the overall errors can be made smaller by adding new terms of
the iteration formula. Also, it must be noted that VIM used here gives the possibility
for obtaining an analytical satisfactory solution for which the other techniques of cal-
culation are more laborious and the results contain a great complexity.

5. CONCLUSION

In this paper, the He’s variational iteration method has been successfully applied to
find the approximate solution of linear and nonlinear delay differential equations.
The presented examples show that the results of the proposed method are in excellent
agreement with those of Adomian decomposition method [11], but with less number of
iterations. In our work, we use the Mathematica Package. An interesting point about
VIM is that only few iterations or, even in some special cases, one iteration, leads to
exact solutions or solutions with high accuracy. The main merits of VIM are, VIM
can overcome the difficulties arising in the calculation of Adomian’s polynomials in
ADM, VIM does not require small parameters which are needed in perturbation meth-
od and no linearization is needed; the method is very promising for solving wide appli-
cation in nonlinear differential equations.
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