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Abstract. In this paper we study the uniqueness theorems of meromorphic functions
which share a small function with its derivatives, and give some results which are related
to the results of P. Li.
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1. INTRODUCTION AND RESULTS

Let C be the complex plane. Throughout this paper f denotes a meromorphic function,
i.e. a function that is holomorphic in C except for poles. It is assumed that the reader is fa-
miliar with the notations of Nevanlinna theory (see, for example, [4,11,10]). We denote by
S(r, f), as usual, any function satisfying S(r, f) = o(T (r, f)) as r → ∞, possibly outside
a set of r with finite Lebesgue measure. If a meromorphic function β satisfies T (r, β) =
S(r, f), then we call that β a small function of f . Let f and g be non-constant meromorphic
functions, and let β be a meromorphic small function or constant in C ∪ {∞}. We say that
f and g share β CM (IM) if f and g have the same β-points with the same multiplicities (ig-
noring multiplicities). Let k be a positive integer, we denote by Nk)(r, 1

f −β ) (N(k(r, 1
f −β ))

the counting function of β-points of f with multiplicity ≤ k (> k). In the same way we
can define N̄k)(r, 1

f −β ) and N̄(k(r, 1
f −β ) where in counting the β-points of f we ignore the

multiplicities (see [11]).
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In 1979, Ruble and Yang [9] proved that if f is entire function and shares two finite values
CM with f ′, then f ≡ f ′. Mues and Steinmetz [6], and Gundersen [3] improved this result
and proved the following:

Theorem 1.1. Let f be a non-constant meromorphic function, a and b be two distinct values.
If f and f ′ share the values a and b CM, then f ≡ f ′.

Frank and Weissenborn [2] improved Theorem 1.1 and proved the following result

Theorem 1.2. Let f be a non-constant meromorphic function. If f and f (k) share two
distinct values a and b CM, then f ≡ f (k).

Yu [12], Lahiri–Sarkar [5], Zhang [13], Banerjee [1], Zhang–Lü [14], and many other authors
have obtained results on the uniqueness problems of meromorphic functions that share one
small function with their first or kth derivatives.

In 2003 P. Li [8] introduced the notation S1(r, f) which is defined to be any quantity such
that for any positive number ϵ there exists a set E(ϵ) whose upper logarithmic density is less
than ϵ and S1(r, f) = o(T (r, f)) as r → ∞, r ∉ E. It is clear that every S(r, f) is S1(r, f).
In the same paper he improved Theorem 1.2 and proved the following:

Theorem 1.3 ([8]). Let f be a non-constant meromorphic function, a1 and a2 (aj ≠ ∞)
(j = 1, 2) be two distinct meromorphic functions satisfying T (r, aj) = S1(r, f), j = 1, 2
and let k > 1 be a positive integer. If f and f (k) share a1 and a2 CM, then f ≡ f (k).

Theorem 1.4 ([8]). Let f be a non-constant meromorphic function, a1 and a2 (aj ≠ ∞)
(j = 1, 2) be two distinct meromorphic functions satisfying T (r, aj) = S1(r, f), j = 1, 2. If
f and f ′ share a1 and a2 CM, and if f ≢ f ′, then f can be expressed as f = α2+(α2 −α1)/
(h − 1), where h is a transcendental meromorphic function satisfying N̄(r, h) + N̄(r, 1

h ) =
S1(r, f), and αj(≠ aj), j = 1, 2 are two distinct meromorphic functions satisfying α′

1 = a2,
α′

2 = a1, a1 − a2 = α1 − α2 and T (r, αj) = S1(r, f), N(r, 1
f −αj

) = S1(r, f), j = 1, 2.

It is natural to ask whether the conditions of Theorems 1.3 and 1.4 remain true when f and
f (k)(k ≥ 1) share only one small function. In the present paper, we shall answer this question
and prove the following theorems:

Theorem 1.5. Let f be a non-constant meromorphic function and let β be a small meromor-
phic function of f such that β ≢ 0, ∞ and let k ≥ 1 be an integer. If f and f (k) share β
CM, and if N̄(r, 1

f ) = S(r, f), then either f ≡ f (k) or k = 1 and

f(z) =

 z

0
β(t)dt + b

1 + ce−z
(1.1)

where b and c ≠ 0 are constants.

Theorem 1.6. Let f be a non-constant meromorphic function and let β be a small meromor-
phic function of f such that β ≢ 0, ∞ and let k ≥ 1 be an integer. If f and f (k) share β
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IM, and if N̄(r, 1
f ) + N̄(r, 1

f(k) ) = S(r, f), then either f ≡ f (k) or k = 1, β ≡ constant

and

f(z) =
2β

1 + ce−2z
. (1.2)

where c is a nonzero constant.

2. SOME LEMMAS

Lemma 2.1 ([4]). Let f be a non-constant meromorphic function, and a1, a2, a3 be distinct
small functions of f . Then

T (r, f) ≤
3

j=1

N̄
 1

f − aj


+ S(r, f).

Lemma 2.2. Let k ≥ 1, f be a non-constant meromorphic function and ν ≢ ∞ be a small
meromorphic function of f . Then either

f (k)(z) − ν(z) = c(z + b)−(k+1), (2.1)

where b and c ≠ 0 are constants, or

(k − 1)N1)(r, f) ≤ 2N̄

r,

1
f (k) − ν


+ 2N̄(2(r, f) + S(r, f). (2.2)

Proof. We consider the following meromorphic function:

W =
f (k+1) − ν′

f (k) − ν

2

− (k + 1)
f (k+1) − ν′

f (k) − ν

′
. (2.3)

From Nevanlinna’s fundamental estimate of logarithmic derivative we obtain

m(r, W ) = S(r, f). (2.4)

Let z∞ be a simple pole of f and ν(z∞) ≠ 0, ∞. By a simple calculation on the local
expansion we see that

W (z) = O

(z − z∞)k−1


. (2.5)

In the following we shall treat two cases W ≡ 0 and W ≢ 0 separately.
Case i. W ≡ 0. We rewrite (2.3) in the formf (k+1) − ν′

f (k) − ν

−2f (k+1) − ν′

f (k) − ν

′
=

1
k + 1

.

Integrating twice, we get (2.1).
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Case ii. W ≢ 0. Then we deduce from (2.5), (2.4) and (2.3) that

(k − 1)N1)(r, f) ≤ N

r,

1
W


+ S(r, f) ≤ T (r, W ) + S(r, f)

≤ N(r, W ) + m(r, W ) + S(r, f) ≤ N(r, W ) + S(r, f)

≤ 2N̄

r,

1
f (k) − ν


+ 2N̄(2(r, f) + S(r, f).

This is (2.2). �

Lemma 2.3. Let k ≥ 1, f be a non-constant meromorphic function and ν ≢ 0, ∞ be a
meromorphic small function of f . If f and f (k) share ν IM, then only (2.2) holds.

Proof. If (2.1) holds, then ν ≡ constant. Integrating (2.1) k times we deduce that

f(z) − ν =
(−1)kc + (z + b)[(zk − k!)ν + k!Pk−1]

k!(z + b)
,

where Pk−1 is a polynomial of degree at most k − 1. Since f and f (k) share ν IM, we must
have (zk − k!)ν + k!Pk−1 ≡ 0. This implies that ν = 0, which contradicts with assumption
of Lemma 2.3. Thus from Lemma 2.2 we find (2.2) holds. �

Lemma 2.4 ([7]). Let f be a meromorphic function and Ψ = anfn + an−1f
n−1 + · · ·

+ a1f + a0, where an ≢ 0, an−1, . . . , a1, a0 be meromorphic small functions of f . If
N̄(r, 1

Ψ ) = S(r, f), then three cases are possible

(i) Ψ = an


f + an−1

nan

n

;

(ii) There exist a meromorphic small function α0 ≢ 0 and an integer µ such that n = 2µ
and

Ψ = an


f2 + 2

an−1

nan
f +

an−1

nan

2

+ α0

µ

;

(iii) There exist a meromorphic small function α0 ≢ 0, positive integers µ1 and µ2, and
distinct complex numbers λ1 and λ2 such that µ1 + µ2 = n, µ1λ1 + µ2λ2 = 0, and

Ψ = an


f +

an−1

nan
− λ1α0

µ1

f +

an−1

nan
− λ2α0

µ2

.

3. PROOF OF THEOREM 1.5

If f ≡ f (k), there is nothing to prove, so we assume that f ≢ f (k). We distinguish three
cases below.

Case 1. N̄(r, f) = S(r, f). From this, N̄(r, 1
f ) = S(r, f) and Lemma 2.1 we obtain

T (r, f) ≤ N̄

r,

1
f


+ N̄


r,

1
f − β


+ N̄(r, f) + S(r, f)

= N̄

r,

1
f − β


+ S(r, f). (3.1)
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Since f and f (k) share β CM, it follows that

N̄

r,

1
f − β


≤ N


r,

1
(f (k)/f) − 1


≤ T


r,

f (k)

f


+ O(1)

= N

r,

f (k)

f


+ S(r, f)

≤ k

N̄


r,

1
f


+ N̄(r, f)


+ S(r, f) = S(r, f).

Together with (3.1) we have T (r, f) = S(r, f) which is a contradiction.
Case 2. N̄(r, 1

f −β ) = S(r, f). Again by Lemma 2.1 we find that T (r, f) = N̄(r, f) +
S(r, f) which implies

N(2(r, f) + m(r, f) = S(r, f). (3.2)

Hence, employing Lemma 2.3, we find that T (r, f) = S(r, f). This is impossible unless
k = 1. Set

Γ =
1
f

 (f ′/β)′

(f ′/β) − 1
− 2

(f/β)′

(f/β) − 1


(3.3)

=
1
β

f ′

f

 (f ′/β)′

(f ′/β) − 1
− (f ′/β)′

f ′/β


− 2

 (f/β)′

(f/β) − 1
− (f/β)′

f/β


. (3.4)

Then from Nevanlinna’s fundamental estimate of the logarithmic derivative we have

m(r,Γ ) = S(r, f). (3.5)

It follows from (3.3) that if z∞ is a pole of f of order p ≥ 1, then

Γ (z) =


O((z − z∞)) if p = 1

O

(z − z∞)

p−1

if p ≥ 2.
(3.6)

From the hypotheses of Theorem 1.5, (3.4) and (3.6) we deduce that

N(r,Γ ) ≤ 2N̄

r,

1
f


+ N̄


r,

1
f − β


+ S(r, f) = S(r, f). (3.7)

If Γ ≡ 0, then from (3.3) we obtain by integrating once,

(f − β)2 = cβ(f ′ − β), (3.8)

where c is a nonzero constant. We have thus derived the result

2N

r,

1
f − β


= N


r,

1
f ′ − β


+ S(r, f).

Because of f and f ′ share β CM,

N

r,

1
f − β


= S(r, f). (3.9)
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(3.8) can be rewritten as

β′ − β

f − β
=

1
cβ

(f − β) − (f − β)′

f − β
.

If β ≢ β′, from (3.2) we see that

m

r,

1
f − β


≤ m(r, f) + S(r, f) = S(r, f).

Combining with (3.9) we get T (r, f) = S(r, f) a contradiction. Therefore β ≡ β′ and so
β = bez for some nonzero constant b. Thus (3.8) becomes

(f − β)−2(f − β)′ =
1
cb

e−z.

By integration once,

(f − β)−1 =
1
cβ

+ d,

where d is a constant. This gives the contradiction T (r, f) = S(r, f). If Γ ≢ 0, then from
(3.6), (3.5) and (3.7) we have

N̄(r, f) ≤ N

r,

1
Γ


+ S(r, f) ≤ T (r,Γ ) + S(r, f)

= N(r,Γ ) + m(r,Γ ) + S(r, f) = S(r, f).

This is impossible.
Case 3. N̄(r, f) ≠ S(r, f) and N̄(r, 1

f −β ) ≠ S(r, f), Let Λ be the function defined by

Λ =
1
f

 (f (k)/β)′

(f (k)/β) − 1
− (f/β)′

(f/β) − 1


. (3.10)

Similarly as the formula (3.3) we obtain

m(r,Λ) = S(r, f). (3.11)

From (3.10) it can be seen that if z∞ is a pole of f of order p ≥ 1, then z∞ is possible a zero
of Λ of order p − 1. i.e.

Λ(z) = O

(z − z∞)p−1


. (3.12)

Let z0 be a zero of f − β and β(z0) ≠ 0, ∞. In view of f and f (k) share β CM, from (3.10)

Λ(z0) = O(1). (3.13)

We can also conclude from (3.10) that if z1 is a zero of f of order n ≥ 1, then z1 is a zero of
Λ of order at most n + 1 + s. i.e.

Λ(z) = O

(z − z1)−k−1+s


, (3.14)
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where β(z) = O((z − z1)s) and s is an integer number. Thus, from (3.12)–(3.14) and
N̄(r, 1

f ) = S(r, f) we deduce that

N(r,Λ) ≤ (k + 1)N̄

r,

1
f


+ N(r, β) + N


r,

1
β


= S(r, f).

Combining with (3.11) we get

T (r,Λ) = S(r, f). (3.15)

If Λ ≡ 0, then from integration of (3.10) we find f − β = c(f (k) − β). Hence N̄(r, f)
= S(r, f) which is impossible. Therefore, we must have Λ ≢ 0. Writing (3.10) as

f =
1
Λ

 (f (k)/β)′

(f (k)/β) − 1
− (f/β)′

(f/β) − 1


.

Consequently, from (3.15),

m(r, f) ≤ m

r,

1
Λ


+ S(r, f) ≤ T (r,Λ) + S(r, f) = S(r, f). (3.16)

Further, it follows from (3.12) and (3.15) that

N(2(r, f) − N̄(2(r, f) ≤ N

r,

1
Λ


+ S(r, f)

≤ T (r,Λ) + S(r, f) = S(r, f), (3.17)

and we may therefore conclude that

N(2(r, f) = S(r, f). (3.18)

We next define

Ω =
(f (k)/β)′

(f (k)/β) − 1
− (f/β)′

(f/β) − 1
− k

f ′

f
. (3.19)

Then

m(r,Ω) = S(r, f). (3.20)

If z∞ is a simple pole of f , then from (3.19) we find that Ω is holomorphic at z∞. Thus from
this, the assumptions of Theorem 1.5 and (3.18) we conclude

N(r,Ω) ≤ N̄

r,

1
f


+ N̄(2(r, f) + S(r, f) = S(r, f).

Together with (3.20) we have

T (r,Ω) = S(r, f). (3.21)

Eliminating (f(k)/β)′

(f(k)/β)−1
− (f/β)′

(f/β)−1 between (3.19) and (3.10) leads to

kf ′ = Λf2 − Ωf. (3.22)
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Suppose that z∞ is a simple pole of f and β(z∞) ≠ 0, ∞. In the neighborhood of z∞, the
function f has the following Laurent expansion

f(z) =
a−1

z − z∞
+ a0 + O((z − z∞)),

where a−1 ≠ 0 is the residue of f at z∞. By a simple computing, we find that Λ and Ω have
the following expansions:

Λ(z) =
−k

a−1
+

(k − 1)a0 + β

a2
−1

(z − z∞) + O

(z − z∞)2


(3.23)

and

Ω(z) =
β − (k + 1)a0

a−1
+ O((z − z∞)). (3.24)

Differentiating (3.23) once,

Λ′(z) =
(k − 1)a0 + β

a2
−1

+ O((z − z∞)). (3.25)

If we now eliminate a0 and a−1 among (3.23)–(3.25) we arrive at

Ω(z) =
−2

k − 1
Λ(z)β(z) +

k(k + 1)
k − 1

Λ′(z)
Λ(z)

+ O((z − z∞)), (3.26)

provided that k > 1. If Ω ≢ −2
k−1Λβ + k(k+1)

k−1
Λ′

Λ , then from (3.18), (3.26), (3.21) and (3.15)
we see

N̄(r, f) = N1)(r, f) + S(r, f) ≤ N

r,

1

Ω + 2
k−1Λβ − k(k+1)

k−1
Λ′

Λ


+ S(r, f)

≤ T (r,Ω) + 3T (r,Λ) + S(r, f) = S(r, f),

a contradiction. Therefore

Ω ≡ −2
k − 1

Λβ +
k(k + 1)
k − 1

Λ′

Λ
, (3.27)

provided that k > 1. If we next eliminate Ω between (3.27) and (3.22) gives

kf ′ = Λf2 +
 2

k − 1
Λβ − k(k + 1)

k − 1
Λ′

Λ


f. (3.28)

Since N̄(r, 1
f(k)−β

) = N̄(r, 1
f −β ), we may obtain from Lemma 2.3 and (3.18),

(k − 1)N1)(r, f) ≤ 2N̄

r,

1
f − β


+ S(r, f).

That is (k − 1)T (r, f) ≤ 2T (r, f) + S(r, f), so that k ≤ 3. Let

F =
f (k) − β

f − β
, (3.29)
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which, in view of f and f (k) share β CM, leads to

N

r,

1
F


≡ 0. (3.30)

In the following we shall treat three cases only k = 3, k = 2 and k = 1 respectively.
Case 3.1. k = 3. Differentiating (3.28) three times we arrive at

f ′′′ = (2/9)Λ3f4 + ((4/9)Λ3β − 2ΛΛ′)f3 + α1f
2 + α2f, (3.31)

where α1 and α2 are small functions of f . Because of f and f ′′′ share β CM, it follows from
(3.31) that

(2/9)Λ3β3 + ((4/9)Λ3β − 2ΛΛ′)β2 + α1β + α2 ≡ 1. (3.32)

Substituting (3.31) into (3.29) and then using (3.32), we arrive at

F = (2/9)Λ3f3 + ((2/3)Λ3β − 2ΛΛ′)f2 + α3f + 1, (3.33)

where α3 is a small function of f . Applying Lemma 2.4 to (3.33) we shall have the following
three cases:

Case 3.1.1. F can be expressed as

F = (2/9)Λ3

f + β − 3

Λ′

Λ2

3

. (3.34)

From this and (3.33) we see that (Λβ − 3Λ′

Λ )3 = 9/2. This implies that

Λβ − 3
Λ′

Λ
= A, (3.35)

where A is a constant and A3 = 9
2 . If we next eliminate Λβ between (3.35) and (3.27) (when

k = 3) we obtain Ω = 3Λ′

Λ − A. Integration of each members of this and (3.19) yields the

following F = cΛ3e−Azf3, where c is a nonzero constant. By using (3.33), a contradiction
occurs.

Case 3.1.2. Since the power of f is three in (3.33) which contradicts with 3 = 2µ in
Lemma 2.4(ii).

Case 3.1.3. F can be expressed as

F = (2/9)Λ3(f + θ1)µ1(f + θ2)µ2 , (3.36)

where θ1 = β − 3 Λ′

Λ2 − λ1α0, θ2 = β − 3 Λ′

Λ2 − λ2α0 and µ1, µ2, λ1, λ2, α0 have the same
meaning as in Lemma 2.4 from which, (3.36) and (3.33) it follows readily that θ1 ≢ θ2,
θ1 ≢ 0, θ2 ≢ 0 and

N̄

r,

1
θ1


+ N̄


r,

1
θ2


= S(r, f).

Combining this with N̄(r, 1
f ) = S(r, f) and Lemma 2.1 we get T (r, f) = S(r, f) a

contradiction.
Case 3.2. k = 2. Differentiating (3.28) (when k = 2) twice, we obtain

f ′′ = (1/2)Λ2f3 + (1/2)(3Λ2β − 8Λ′)f2 + α4f,
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where α4 = 2Λβ − 6Λ′

Λ . Similarly as Case 3.1, we arrive at the conclusion

F = (1/2)Λ2f2 + 2(Λ2β − 2Λ′)f + 1. (3.37)

That is

Ff = (1/2)Λ2f3 + 2(Λ2β − 2Λ′)f2 + f. (3.38)

Obviously,

N̄

r,

1
Ff


≤ N̄


r,

1
F


+ N̄


r,

1
f


= S(r, f).

By Lemma 2.4, only three cases are possible.
Case 3.2.1. Ff = (1/2)Λ2(f + (4/3)(β − 2 Λ′

Λ2 ))3 which contradicts with (3.38).
Case 3.2.3. Similarly as Case 3.1.2, we will arrive at the same contradiction.
Case 3.2.3. Ff can be expressed as

Ff = (1/2)Λ2

f + (4/3)


β − 2

Λ′

Λ2


− λ1α0

µ1

×

f + (4/3)


β − 2

Λ′

Λ2


− λ2β0

µ2

(3.39)

where µ1, µ2, λ1, λ2, α0 have the same meaning as in Lemma 2.4. Without loss of gener-
ality, we can assume that µ1 = 1 and µ2 = 2. It can be obtained from (3.39) and (3.38)
that (4/3)(β − 2 Λ′

Λ2 ) − λ1α0 ≡ 0. From this, (3.39) and λ1 + 2λ2 = 0 we deduce that

F = (1/2)Λ2(f + 2(β − 2 Λ′

Λ2 ))2. This and (3.37) imply that (Λβ − 2 Λ′

Λ2 )2 ≡ 1/2. Using an
argument similar to that in the proof of Case 3.1.1, we have F = cΛ2e−2bzf2, where b and
c ≠ 0 are constants and b2 = 1. By (3.37) this is a contradiction again.

Case 3.3. k = 1. Since f and f ′ share the β CM, we conclude from (3.15), (3.21) and
(3.22) that

N̄

r,

1
f − β


≤ N


r,

1
βΛ − Ω − 1


+ S(r, f)

≤ T (r,Λ) + T (r,Ω) + T (r, β) + S(r, f) = S(r, f).

Thus, we have a contradiction and it follows that βΛ − Ω ≡ 1. From this, (3.10), (3.19)
and (3.29) we can show that F ′/(F − 1) − F ′/F = 1. Integration of each member of
this yields F = 1

1−cez , where c is a nonzero constant. Together with (3.29) we find that

[f( 1−cez

ez )]′ = −βc. By integration we get (1.1). This proves Theorem 1.5. �

4. PROOF OF THEOREM 1.6

Consider the following function

H =
(f (k)/β)′[(f/β) − 1]

(f (k)/β)[(f (k)/β) − 1]
=

 (f (k)/β)′

(f (k)/β) − 1
− (f (k)/β)′

f (k)/β


[(f/β) − 1]. (4.1)

By lemma of logarithmic derivative, we get

m(r, H) ≤ m(r, f) + S(r, f). (4.2)
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Similar to Case 1 and Case 2 in the proof of Theorem 1.5, we can prove that N̄(r, f) =
S(r, f) is impossible, and if N̄(r, 1

f −β ) = S(r, f), then we have only (3.8), which may also
be written

cβf ′ = [f + β(i
√

c − 1)][f − β(i
√

c + 1)].

From this, N̄(r, 1
f ) + N̄(r, 1

f ′ ) = S(r, f) and Lemma 2.1 we find T (r, f) = S(r, f) which

is a contradiction. Therefore in the following, we assume that N̄(r, 1
f −β ) ≠ S(r, f) and

N̄(r, f) ≠ S(r, f). It follows from (4.1) that if z∞ is a pole of f of order p ≥ 1 and
β(z∞) ≠ 0, ∞, then

H(z) = O

(z − z∞)k−1


. (4.3)

Since f and f (k) share β IM, we deduce from (4.1) that if z0 is a zero of f − β of order
q ≥ 1 and β(z∞) ≠ 0, ∞, then

H(z) = O

(z − z0)q−1


. (4.4)

Thus from (4.1), (4.3), (4.4) and N̄(r, 1
f(k) ) = S(r, f), we find

N(r, H) ≤ N̄

r,

1
f (k)


+ S(r, f) = S(r, f).

Together with (4.2) we have

T (r, H) ≤ m(r, f) + S(r, f). (4.5)

Obviously, H ≢ 0. By (4.3)–(4.5) we see that

(k − 1)N̄(r, f) + N̄(2


r,

1
f − β


≤ N


r,

1
H


+ S(r, f)

≤ T (r, H) + S(r, f)
≤ m(r, f) + S(r, f). (4.6)

By using the same methods as those in the proof of Theorem 1.5,

T (r,Λ) ≤ N̄(2


r,

1
f − β


+ N̄(2


r,

1
f (k) − β


+ S(r, f)

and

m(r, f) + N(2(r, f) − N̄(2(r, f) ≤ N

r,

1
Λ


+ m


r,

1
Λ


+ S(r, f).

Combining these two inequalities, (4.6) and N̄(r, 1
f(k) ) = S(r, f) yields

(k − 1)N̄(r, f) + N(2(r, f) ≤ N̄(2


r,

1
f (k) − β


+ N̄(2(r, f) + S(r, f)

≤ N(2


r,

1
f (k+1)/f (k) − β′/β


+ N̄(2(r, f) + S(r, f)

≤ T

r,

f (k+1)

f (k)


+ N̄(2(r, f) + S(r, f)
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≤ N̄

r,

1
f (k)


+ N̄(r, f) + N̄(2(r, f) + S(r, f)

= N̄(r, f) + N̄(2(r, f) + S(r, f).

Therefore

(k − 2)N̄(r, f) + N(2(r, f) ≤ N̄(2(r, f) + S(r, f). (4.7)

This is impossible unless k ≤ 2. If k = 2, from (4.7) we have N(2(r, f) = S(r, f). This,
N̄(r, 1

f ′′ ) = S(r, f) and Lemma 2.2 (with ν ≡ 0) give a contradiction. Hence, k = 1. In
view of (3.3) in the proof of Theorem 1.5 we can consider two cases.

Case I. Γ ≢ 0. Denote by N̄(1,2)(r, 1
f −β ) is the counting function of those zeros of f − β

of order one and zeros of f ′ − β of order two, each zero in this counting function is counted
only once. From (3.3) and (3.6) it is easy to conclude that

N(r, f) − N̄(2(r, f) ≤ N

r,

1
Γ


+ S(r, f) ≤ T (r,Γ ) − m


r,

1
Γ


+ S(r, f)

≤ N̄

r,

1
f − β


− N̄(1,2)


r,

1
f − β


− m


r,

1
Γ


+ S(r, f). (4.8)

Writing (3.3) as

f =
1
Γ


(f ′/β)′

(f ′/β) − 1
− 2

(f/β)′

(f/β) − 1


.

Hence

m(r, f) ≤ m

r,

1
Γ


+ S(r, f).

Combining with (4.8) we obtain

m(r, f) + N(r, f) + N̄(1,2)


r,

1
f − β


≤ N̄


r,

1
f − β


+ N̄(2(r, f) + S(r, f).

Because of f and f ′ share β IM and N̄(r, 1
f ) = S(r, f),

N̄

r,

1
f − β


≤ N


r,

1
(f ′/f) − 1


+ S(r, f) ≤ T


r,

f ′

f


+ S(r, f)

≤ N̄

r,

1
f


+ N̄(r, f) + S(r, f) = N̄(r, f) + S(r, f).

Combining these two inequalities, we find

m(r, f) + N(r, f) + N̄(1,2)


r,

1
f − β


≤ N̄(2(r, f) + N̄(r, f) + S(r, f).

Hence

m(r, f) + N(3(r, f) + N̄(1,2)


r,

1
f − β


= S(r, f). (4.9)
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From (4.1) we deduce that if z∞ is a pole of f of order p ≥ 1 and β(z∞) ≠ 0, ∞,

H(z∞) = 1 +
1
p
. (4.10)

If p = 1 and H ≢ 2, then from (4.10), (4.5) and (4.9) we see

N1)(r, f) ≤ N

r,

1
H − 2


+ S(r, f) ≤ T (r, H) + S(r, f) = S(r, f). (4.11)

If p = 2 and H ≢ 3/2, then again from (4.10), (4.5) and (4.9) we get

N̄2)(r, f) − N1)(r, f) ≤ N

r,

1
H − 3/2


+ S(r, f) = S(r, f). (4.12)

Then from (4.9), (4.11) and (4.12) we have a contradiction N̄(r, f) = S(r, f). Therefore
either H ≡ 2 or H ≡ 3/2. If H ≡ 2, from this, (4.12) and (4.1) we obtain

N̄(2(r, f) + N(2


r,

1
f − β


= S(r, f). (4.13)

From (2.3) we obtain by putting k = 1 and ν ≡ 0 the function

W1 =
f ′′

f ′

2

− 2
f ′′

f ′

′
. (4.14)

By using the same methods as those in the proof of Lemma 2.2, we get

T (r, W1) ≤ 2N̄

r,

1
f ′


+ 2N̄(2(r, f) + S(r, f).

Combining with N̄(r, 1
f ′ ) = S(r, f) and (4.13) we find

T (r, W1) = S(r, f). (4.15)

If z0 is a zero of f ′ − β of order p ≥ 3 and β(z0) ≠ 0, ∞, then

f ′′

f ′ =
β′

β
+ O


(z − z0)p−1


. (4.16)

Substituting (4.16) into (4.14), W1 is changed to

W1 =
β′

β

2

− 2
β′

β

′
+ O


(z − z0)p−2


. (4.17)

If W1 ≡ (β′/β)2 − 2(β′/β)′, then (4.14) becomesf ′′

f ′ − β′

β

f ′′

f ′ +
β′

β


= 2

f ′′

f ′ − β′

β

′
.

Hence (f ′′/f ′) − (β′/β) = O(1), which contradicts with (4.16). Therefore W1 ≢ (β′/β)2 −
2(β′/β)′, and so, from (4.17) and (4.15) we see

N(3


r,

1
f ′ − β


≤ 3N


r,

1
W1 − (β′/β)2 + 2(β′/β)′


≤ 3T (r, W1) + S(r, f) = S(r, f).
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Together with (4.9) and (4.13) we have N(2(r, 1
f ′ −β ) = S(r, f). Thus by this and (4.13),

N

r,

1
f − β


= N1)


r,

1
f − β


+ S(r, f) = N1)


r,

1
f ′ − β


+ S(r, f)

= N

r,

1
f ′ − β


+ S(r, f),

which, in view of f and f ′ share the value IM, leads to f and f ′ share β CM “at most”. Using
an argument similar to that in the proof of Theorem 1.5, we arrive at the conclusion (1.1).
From this it is easy to see that N̄(r, 1

f ′ ) ≠ S(r, f), a contradiction. If H ≡ 3/2, from this
and (4.11) we find

N̄1)(r, f) + N(2


r,

1
f − β


= S(r, f). (4.18)

We set

Φ = 2
f ′′

f ′ − 3
f ′

f
. (4.19)

Then it is clear that m(r,Φ) = S(r, f) and if z∞ is a pole of f of order 2, from (4.19) we see
that Φ is holomorphic at z∞. Thus, from (4.18), (4.9) and N̄(r, 1

f ′ ) + N̄(r, 1
f ) = S(r, f),

T (r,Φ) ≤ N1)(r, f) + N̄(3(r, f) + N̄

r,

1
f ′


+ N̄


r,

1
f


= S(r, f). (4.20)

Similarly according to the above discussion, we arrive at the result either Φ ≢ 2β′

β − 3, and
so

N̄(2


r,

1
f ′ − β


≤ N̄


r,

1
Φ − 2β′

β + 3


+ S(r, f)

≤ T (r,Φ) + S(r, f) = S(r, f).

From this, (4.18), (3.12) and (3.15) we reach the contradiction N̄(r, f) = S(r, f). Or
Φ ≡ 2β′

β − 3. Combining with (4.19) we obtain 2( f ′′

f ′ − β′

β ) ≡ 3 f ′

f − 3. Hence, by direct

integration, we have f ′2 = cβ2e−3zf3, where c is a nonzero constant. Because of f and f ′

share β IM and N̄(r, 1
f −β ) ≠ S(r, f), the last equation becomes f −3/2f ′ = β−1/2, where

β = ez

3√
c
. Then by integration, we conclude the contradiction T (r, f) = S(r, f).

Case II. Γ ≡ 0. From (3.8) we know that 2T (r, f) = T (r, f ′) + S(r, f). From this it is
easy to see that m(r, f) + N(2(r, f) = S(r, f). It follows from this and (4.11) that H ≡ 2.

We write (4.1) in the form 2 ≡ ( f ′′

f ′ − β′

β )( f −β
f ′ −β ), and eliminating f ′ − β between this and

(3.8) gives

2(f − β)f ′ = c(f ′′β − β′f ′). (4.21)

Differentiating (3.8) and then using (4.21), we arrive at β′f ≡ 0, which results in β′ ≡ 0, so
that β is a constant and rewrite (3.8) as

f ′ =
1
cβ

[f + β(i
√

c − 1)][f − β(i
√

c + 1)], (4.22)
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and so, from N̄(r, 1
f ′ ) = S(r, f),

N̄

r,

1
f + β(i

√
c − 1)


+ N̄


r,

1
f − β(i

√
c + 1)


= S(r, f).

Hence, employing Lemma 2.1 and N̄(r, 1
f ) = S(r, f) we find T (r, f) = S(r, f). This is

impossible unless c = −1. Thus (4.22) reads f ′

f −2β − f ′

f = −2. By integration once, we
conclude (1.2) and the required result is proved. �
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