Notes on meromorphic functions sharing small function and its derivatives

Amer H.H. Al-Khaladi
Department of Mathematics, College of Basic Education, Tikrit University, P.O. Box 42, Tikrit, Iraq

Received 26 October 2013; received in revised form 6 October 2014; accepted 11 October 2014
Available online 22 October 2014

Abstract

In this paper we study the uniqueness theorems of meromorphic functions which share a small function with its derivatives, and give some results which are related to the results of P. Li.

2010 Mathematics Subject Classification: 30D35

Keywords: Meromorphic; Uniqueness theorem; Sharing; Nevanlinna theory

1. Introduction and results

Let \mathbb{C} be the complex plane. Throughout this paper f denotes a meromorphic function, i.e. a function that is holomorphic in \mathbb{C} except for poles. It is assumed that the reader is familiar with the notations of Nevanlinna theory (see, for example, $[4,11,10]$). We denote by $S(r, f)$, as usual, any function satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r with finite Lebesgue measure. If a meromorphic function β satisfies $T(r, \beta)=$ $S(r, f)$, then we call that β a small function of f. Let f and g be non-constant meromorphic functions, and let β be a meromorphic small function or constant in $\mathbb{C} \cup\{\infty\}$. We say that f and g share β CM (IM) if f and g have the same β-points with the same multiplicities (ignoring multiplicities). Let k be a positive integer, we denote by $N_{k)}\left(r, \frac{1}{f-\beta}\right)\left(N_{(k}\left(r, \frac{1}{f-\beta}\right)\right)$ the counting function of β-points of f with multiplicity $\leq k(>k)$. In the same way we can define $\bar{N}_{k)}\left(r, \frac{1}{f-\beta}\right)$ and $\bar{N}_{(k}\left(r, \frac{1}{f-\beta}\right)$ where in counting the β-points of f we ignore the multiplicities (see [11]).

E-mail address: ameralkhaladi@yahoo.com.
Peer review under responsibility of King Saud University.

http://dx.doi.org/10.1016/j.ajmsc.2014.10.001
1319-5166 © 2014 The Author. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

In 1979, Ruble and Yang [9] proved that if f is entire function and shares two finite values CM with f^{\prime}, then $f \equiv f^{\prime}$. Mues and Steinmetz [6], and Gundersen [3] improved this result and proved the following:

Theorem 1.1. Let f be a non-constant meromorphic function, a and b be two distinct values. If f and f^{\prime} share the values a and $b C M$, then $f \equiv f^{\prime}$.

Frank and Weissenborn [2] improved Theorem 1.1 and proved the following result
Theorem 1.2. Let f be a non-constant meromorphic function. If f and $f^{(k)}$ share two distinct values a and $b C M$, then $f \equiv f^{(k)}$.

Yu [12], Lahiri-Sarkar [5], Zhang [13], Banerjee [1], Zhang-Lü [14], and many other authors have obtained results on the uniqueness problems of meromorphic functions that share one small function with their first or k th derivatives.

In 2003 P . Li [8] introduced the notation $S_{1}(r, f)$ which is defined to be any quantity such that for any positive number ϵ there exists a set $E(\epsilon)$ whose upper logarithmic density is less than ϵ and $S_{1}(r, f)=o(T(r, f))$ as $r \rightarrow \infty, r \notin E$. It is clear that every $S(r, f)$ is $S_{1}(r, f)$. In the same paper he improved Theorem 1.2 and proved the following:

Theorem 1.3 ([8]). Let f be a non-constant meromorphic function, a_{1} and $a_{2}\left(a_{j} \neq \infty\right)$ $(j=1,2)$ be two distinct meromorphic functions satisfying $T\left(r, a_{j}\right)=S_{1}(r, f), j=1,2$ and let $k>1$ be a positive integer. If f and $f^{(k)}$ share a_{1} and $a_{2} C M$, then $f \equiv f^{(k)}$.

Theorem 1.4 ([8]). Let f be a non-constant meromorphic function, a_{1} and $a_{2}\left(a_{j} \neq \infty\right)$ $(j=1,2)$ be two distinct meromorphic functions satisfying $T\left(r, a_{j}\right)=S_{1}(r, f), j=1,2$. If f and f^{\prime} share a_{1} and $a_{2} C M$, and if $f \not \equiv f^{\prime}$, then f can be expressed as $f=\alpha_{2}+\left(\alpha_{2}-\alpha_{1}\right)$ / $(h-1)$, where h is a transcendental meromorphic function satisfying $\bar{N}(r, h)+\bar{N}\left(r, \frac{1}{h}\right)=$ $S_{1}(r, f)$, and $\alpha_{j}\left(\neq a_{j}\right), j=1,2$ are two distinct meromorphic functions satisfying $\alpha_{1}^{\prime}=a_{2}$, $\alpha_{2}^{\prime}=a_{1}, a_{1}-a_{2}=\alpha_{1}-\alpha_{2}$ and $T\left(r, \alpha_{j}\right)=S_{1}(r, f), N\left(r, \frac{1}{f-\alpha_{j}}\right)=S_{1}(r, f), j=1,2$.

It is natural to ask whether the conditions of Theorems 1.3 and 1.4 remain true when f and $f^{(k)}(k \geq 1)$ share only one small function. In the present paper, we shall answer this question and prove the following theorems:

Theorem 1.5. Let f be a non-constant meromorphic function and let β be a small meromorphic function of f such that $\beta \not \equiv 0, \infty$ and let $k \geq 1$ be an integer. If f and $f^{(k)}$ share β $C M$, and if $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, then either $f \equiv f^{(k)}$ or $k=1$ and

$$
\begin{equation*}
f(z)=\frac{\int_{0}^{z} \beta(t) d t+b}{1+c e^{-z}} \tag{1.1}
\end{equation*}
$$

where b and $c \neq 0$ are constants.

Theorem 1.6. Let f be a non-constant meromorphic function and let β be a small meromorphic function of f such that $\beta \not \equiv 0, \infty$ and let $k \geq 1$ be an integer. If f and $f^{(k)}$ share β

IM, and if $\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=S(r, f)$, then either $f \equiv f^{(k)}$ or $k=1, \beta \equiv$ constant and

$$
\begin{equation*}
f(z)=\frac{2 \beta}{1+c e^{-2 z}} . \tag{1.2}
\end{equation*}
$$

where c is a nonzero constant.

2. Some lemmas

Lemma 2.1 ([4]). Let f be a non-constant meromorphic function, and a_{1}, a_{2}, a_{3} be distinct small functions of f. Then

$$
T(r, f) \leq \sum_{j=1}^{3} \bar{N}\left(\frac{1}{f-a_{j}}\right)+S(r, f)
$$

Lemma 2.2. Let $k \geq 1$, f be a non-constant meromorphic function and $\nu \not \equiv \infty$ be a small meromorphic function of f. Then either

$$
\begin{equation*}
f^{(k)}(z)-\nu(z)=c(z+b)^{-(k+1)} \tag{2.1}
\end{equation*}
$$

where b and $c \neq 0$ are constants, or

$$
\begin{equation*}
(k-1) N_{1)}(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f^{(k)}-\nu}\right)+2 \bar{N}_{(2}(r, f)+S(r, f) \tag{2.2}
\end{equation*}
$$

Proof. We consider the following meromorphic function:

$$
\begin{equation*}
W=\left(\frac{f^{(k+1)}-\nu^{\prime}}{f^{(k)}-\nu}\right)^{2}-(k+1)\left(\frac{f^{(k+1)}-\nu^{\prime}}{f^{(k)}-\nu}\right)^{\prime} . \tag{2.3}
\end{equation*}
$$

From Nevanlinna's fundamental estimate of logarithmic derivative we obtain

$$
\begin{equation*}
m(r, W)=S(r, f) \tag{2.4}
\end{equation*}
$$

Let z_{∞} be a simple pole of f and $\nu\left(z_{\infty}\right) \neq 0, \infty$. By a simple calculation on the local expansion we see that

$$
\begin{equation*}
W(z)=O\left(\left(z-z_{\infty}\right)^{k-1}\right) . \tag{2.5}
\end{equation*}
$$

In the following we shall treat two cases $W \equiv 0$ and $W \not \equiv 0$ separately.
Case i. $W \equiv 0$. We rewrite (2.3) in the form

$$
\left(\frac{f^{(k+1)}-\nu^{\prime}}{f^{(k)}-\nu}\right)^{-2}\left(\frac{f^{(k+1)}-\nu^{\prime}}{f^{(k)}-\nu}\right)^{\prime}=\frac{1}{k+1} .
$$

Integrating twice, we get (2.1).

Case ii. $W \not \equiv 0$. Then we deduce from (2.5), (2.4) and (2.3) that

$$
\begin{aligned}
(k-1) N_{1)}(r, f) & \leq N\left(r, \frac{1}{W}\right)+S(r, f) \leq T(r, W)+S(r, f) \\
& \leq N(r, W)+m(r, W)+S(r, f) \leq N(r, W)+S(r, f) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f^{(k)}-\nu}\right)+2 \bar{N}_{(2}(r, f)+S(r, f)
\end{aligned}
$$

This is (2.2).
Lemma 2.3. Let $k \geq 1, f$ be a non-constant meromorphic function and $\nu \not \equiv 0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share $\nu I M$, then only (2.2) holds.

Proof. If (2.1) holds, then $\nu \equiv$ constant. Integrating (2.1) k times we deduce that

$$
f(z)-\nu=\frac{(-1)^{k} c+(z+b)\left[\left(z^{k}-k!\right) \nu+k!P_{k-1}\right]}{k!(z+b)}
$$

where P_{k-1} is a polynomial of degree at most $k-1$. Since f and $f^{(k)}$ share $\nu \mathrm{IM}$, we must have $\left(z^{k}-k!\right) \nu+k!P_{k-1} \equiv 0$. This implies that $\nu=0$, which contradicts with assumption of Lemma 2.3. Thus from Lemma 2.2 we find (2.2) holds.

Lemma 2.4 ([7]). Let f be a meromorphic function and $\Psi=a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots$ $+a_{1} f+a_{0}$, where $a_{n} \not \equiv 0, a_{n-1}, \ldots, a_{1}, a_{0}$ be meromorphic small functions of f. If $\bar{N}\left(r, \frac{1}{\Psi}\right)=S(r, f)$, then three cases are possible
(i) $\Psi=a_{n}\left(f+\frac{a_{n-1}}{n a_{n}}\right)^{n}$;
(ii) There exist a meromorphic small function $\alpha_{0} \not \equiv 0$ and an integer μ such that $n=2 \mu$ and

$$
\Psi=a_{n}\left(f^{2}+2 \frac{a_{n-1}}{n a_{n}} f+\left(\frac{a_{n-1}}{n a_{n}}\right)^{2}+\alpha_{0}\right)^{\mu}
$$

(iii) There exist a meromorphic small function $\alpha_{0} \not \equiv 0$, positive integers μ_{1} and μ_{2}, and distinct complex numbers λ_{1} and λ_{2} such that $\mu_{1}+\mu_{2}=n, \mu_{1} \lambda_{1}+\mu_{2} \lambda_{2}=0$, and

$$
\Psi=a_{n}\left(f+\frac{a_{n-1}}{n a_{n}}-\lambda_{1} \alpha_{0}\right)^{\mu_{1}}\left(f+\frac{a_{n-1}}{n a_{n}}-\lambda_{2} \alpha_{0}\right)^{\mu_{2}} .
$$

3. Proof of Theorem 1.5

If $f \equiv f^{(k)}$, there is nothing to prove, so we assume that $f \not \equiv f^{(k)}$. We distinguish three cases below.

Case 1. $\bar{N}(r, f)=S(r, f)$. From this, $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ and Lemma 2.1 we obtain

$$
\begin{align*}
T(r, f) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-\beta}\right)+\bar{N}(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f-\beta}\right)+S(r, f) \tag{3.1}
\end{align*}
$$

Since f and $f^{(k)}$ share β CM, it follows that

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f-\beta}\right) & \leq N\left(r, \frac{1}{\left(f^{(k)} / f\right)-1}\right) \leq T\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& =N\left(r, \frac{f^{(k)}}{f}\right)+S(r, f) \\
& \leq k\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)\right]+S(r, f)=S(r, f) .
\end{aligned}
$$

Together with (3.1) we have $T(r, f)=S(r, f)$ which is a contradiction.
Case 2. $\bar{N}\left(r, \frac{1}{f-\beta}\right)=S(r, f)$. Again by Lemma 2.1 we find that $T(r, f)=\bar{N}(r, f)+$ $S(r, f)$ which implies

$$
\begin{equation*}
N_{(2}(r, f)+m(r, f)=S(r, f) \tag{3.2}
\end{equation*}
$$

Hence, employing Lemma 2.3, we find that $T(r, f)=S(r, f)$. This is impossible unless $k=1$. Set

$$
\begin{align*}
\Gamma & =\frac{1}{f}\left[\frac{\left(f^{\prime} / \beta\right)^{\prime}}{\left(f^{\prime} / \beta\right)-1}-2 \frac{(f / \beta)^{\prime}}{(f / \beta)-1}\right] \tag{3.3}\\
& =\frac{1}{\beta}\left[\frac{f^{\prime}}{f}\left(\frac{\left(f^{\prime} / \beta\right)^{\prime}}{\left(f^{\prime} / \beta\right)-1}-\frac{\left(f^{\prime} / \beta\right)^{\prime}}{f^{\prime} / \beta}\right)-2\left(\frac{(f / \beta)^{\prime}}{(f / \beta)-1}-\frac{(f / \beta)^{\prime}}{f / \beta}\right)\right] \tag{3.4}
\end{align*}
$$

Then from Nevanlinna's fundamental estimate of the logarithmic derivative we have

$$
\begin{equation*}
m(r, \Gamma)=S(r, f) \tag{3.5}
\end{equation*}
$$

It follows from (3.3) that if z_{∞} is a pole of f of order $p \geq 1$, then

$$
\Gamma(z)= \begin{cases}O\left(\left(z-z_{\infty}\right)\right) & \text { if } p=1 \tag{3.6}\\ O\left(\left(z-z_{\infty}\right)\right)^{p-1} & \text { if } p \geq 2\end{cases}
$$

From the hypotheses of Theorem 1.5, (3.4) and (3.6) we deduce that

$$
\begin{equation*}
N(r, \Gamma) \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-\beta}\right)+S(r, f)=S(r, f) \tag{3.7}
\end{equation*}
$$

If $\Gamma \equiv 0$, then from (3.3) we obtain by integrating once,

$$
\begin{equation*}
(f-\beta)^{2}=c \beta\left(f^{\prime}-\beta\right) \tag{3.8}
\end{equation*}
$$

where c is a nonzero constant. We have thus derived the result

$$
2 N\left(r, \frac{1}{f-\beta}\right)=N\left(r, \frac{1}{f^{\prime}-\beta}\right)+S(r, f)
$$

Because of f and f^{\prime} share $\beta \mathrm{CM}$,

$$
\begin{equation*}
N\left(r, \frac{1}{f-\beta}\right)=S(r, f) \tag{3.9}
\end{equation*}
$$

(3.8) can be rewritten as

$$
\frac{\beta^{\prime}-\beta}{f-\beta}=\frac{1}{c \beta}(f-\beta)-\frac{(f-\beta)^{\prime}}{f-\beta}
$$

If $\beta \not \equiv \beta^{\prime}$, from (3.2) we see that

$$
m\left(r, \frac{1}{f-\beta}\right) \leq m(r, f)+S(r, f)=S(r, f)
$$

Combining with (3.9) we get $T(r, f)=S(r, f)$ a contradiction. Therefore $\beta \equiv \beta^{\prime}$ and so $\beta=b e^{z}$ for some nonzero constant b. Thus (3.8) becomes

$$
(f-\beta)^{-2}(f-\beta)^{\prime}=\frac{1}{c b} e^{-z}
$$

By integration once,

$$
(f-\beta)^{-1}=\frac{1}{c \beta}+d
$$

where d is a constant. This gives the contradiction $T(r, f)=S(r, f)$. If $\Gamma \not \equiv 0$, then from (3.6), (3.5) and (3.7) we have

$$
\begin{aligned}
\bar{N}(r, f) & \leq N\left(r, \frac{1}{\Gamma}\right)+S(r, f) \leq T(r, \Gamma)+S(r, f) \\
& =N(r, \Gamma)+m(r, \Gamma)+S(r, f)=S(r, f)
\end{aligned}
$$

This is impossible.
Case 3. $\bar{N}(r, f) \neq S(r, f)$ and $\bar{N}\left(r, \frac{1}{f-\beta}\right) \neq S(r, f)$, Let Λ be the function defined by

$$
\begin{equation*}
\Lambda=\frac{1}{f}\left[\frac{\left(f^{(k)} / \beta\right)^{\prime}}{\left(f^{(k)} / \beta\right)-1}-\frac{(f / \beta)^{\prime}}{(f / \beta)-1}\right] \tag{3.10}
\end{equation*}
$$

Similarly as the formula (3.3) we obtain

$$
\begin{equation*}
m(r, \Lambda)=S(r, f) \tag{3.11}
\end{equation*}
$$

From (3.10) it can be seen that if z_{∞} is a pole of f of order $p \geq 1$, then z_{∞} is possible a zero of Λ of order $p-1$. i.e.

$$
\begin{equation*}
\Lambda(z)=O\left(\left(z-z_{\infty}\right)^{p-1}\right) \tag{3.12}
\end{equation*}
$$

Let z_{0} be a zero of $f-\beta$ and $\beta\left(z_{0}\right) \neq 0, \infty$. In view of f and $f^{(k)}$ share $\beta \mathrm{CM}$, from (3.10)

$$
\begin{equation*}
\Lambda\left(z_{0}\right)=O(1) \tag{3.13}
\end{equation*}
$$

We can also conclude from (3.10) that if z_{1} is a zero of f of order $n \geq 1$, then z_{1} is a zero of Λ of order at most $n+1+s$. i.e.

$$
\begin{equation*}
\Lambda(z)=O\left(\left(z-z_{1}\right)^{-k-1+s}\right) \tag{3.14}
\end{equation*}
$$

where $\beta(z)=O\left(\left(z-z_{1}\right)^{s}\right)$ and s is an integer number. Thus, from (3.12)-(3.14) and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ we deduce that

$$
N(r, \Lambda) \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+N(r, \beta)+N\left(r, \frac{1}{\beta}\right)=S(r, f) .
$$

Combining with (3.11) we get

$$
\begin{equation*}
T(r, \Lambda)=S(r, f) \tag{3.15}
\end{equation*}
$$

If $\Lambda \equiv 0$, then from integration of (3.10) we find $f-\beta=c\left(f^{(k)}-\beta\right)$. Hence $\bar{N}(r, f)$ $=S(r, f)$ which is impossible. Therefore, we must have $\Lambda \not \equiv 0$. Writing (3.10) as

$$
f=\frac{1}{\Lambda}\left[\frac{\left(f^{(k)} / \beta\right)^{\prime}}{\left(f^{(k)} / \beta\right)-1}-\frac{(f / \beta)^{\prime}}{(f / \beta)-1}\right] .
$$

Consequently, from (3.15),

$$
\begin{equation*}
m(r, f) \leq m\left(r, \frac{1}{\Lambda}\right)+S(r, f) \leq T(r, \Lambda)+S(r, f)=S(r, f) \tag{3.16}
\end{equation*}
$$

Further, it follows from (3.12) and (3.15) that

$$
\begin{align*}
N_{(2}(r, f)-\bar{N}_{(2}(r, f) & \leq N\left(r, \frac{1}{\Lambda}\right)+S(r, f) \\
& \leq T(r, \Lambda)+S(r, f)=S(r, f) \tag{3.17}
\end{align*}
$$

and we may therefore conclude that

$$
\begin{equation*}
N_{(2}(r, f)=S(r, f) \tag{3.18}
\end{equation*}
$$

We next define

$$
\begin{equation*}
\Omega=\frac{\left(f^{(k)} / \beta\right)^{\prime}}{\left(f^{(k)} / \beta\right)-1}-\frac{(f / \beta)^{\prime}}{(f / \beta)-1}-k \frac{f^{\prime}}{f} \tag{3.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
m(r, \Omega)=S(r, f) \tag{3.20}
\end{equation*}
$$

If z_{∞} is a simple pole of f, then from (3.19) we find that Ω is holomorphic at z_{∞}. Thus from this, the assumptions of Theorem 1.5 and (3.18) we conclude

$$
N(r, \Omega) \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}(r, f)+S(r, f)=S(r, f) .
$$

Together with (3.20) we have

$$
\begin{equation*}
T(r, \Omega)=S(r, f) \tag{3.21}
\end{equation*}
$$

Eliminating $\frac{\left(f^{(k)} / \beta\right)^{\prime}}{\left(f^{(k)} / \beta\right)-1}-\frac{(f / \beta)^{\prime}}{(f / \beta)-1}$ between (3.19) and (3.10) leads to

$$
\begin{equation*}
k f^{\prime}=\Lambda f^{2}-\Omega f \tag{3.22}
\end{equation*}
$$

Suppose that z_{∞} is a simple pole of f and $\beta\left(z_{\infty}\right) \neq 0, \infty$. In the neighborhood of z_{∞}, the function f has the following Laurent expansion

$$
f(z)=\frac{a_{-1}}{z-z_{\infty}}+a_{0}+O\left(\left(z-z_{\infty}\right)\right)
$$

where $a_{-1} \neq 0$ is the residue of f at z_{∞}. By a simple computing, we find that Λ and Ω have the following expansions:

$$
\begin{equation*}
\Lambda(z)=\frac{-k}{a_{-1}}+\frac{(k-1) a_{0}+\beta}{a_{-1}^{2}}\left(z-z_{\infty}\right)+O\left(\left(z-z_{\infty}\right)^{2}\right) \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega(z)=\frac{\beta-(k+1) a_{0}}{a_{-1}}+O\left(\left(z-z_{\infty}\right)\right) \tag{3.24}
\end{equation*}
$$

Differentiating (3.23) once,

$$
\begin{equation*}
\Lambda^{\prime}(z)=\frac{(k-1) a_{0}+\beta}{a_{-1}^{2}}+O\left(\left(z-z_{\infty}\right)\right) \tag{3.25}
\end{equation*}
$$

If we now eliminate a_{0} and a_{-1} among (3.23)-(3.25) we arrive at

$$
\begin{equation*}
\Omega(z)=\frac{-2}{k-1} \Lambda(z) \beta(z)+\frac{k(k+1)}{k-1} \frac{\Lambda^{\prime}(z)}{\Lambda(z)}+O\left(\left(z-z_{\infty}\right)\right) \tag{3.26}
\end{equation*}
$$

provided that $k>1$. If $\Omega \not \equiv \frac{-2}{k-1} \Lambda \beta+\frac{k(k+1)}{k-1} \frac{\Lambda^{\prime}}{\Lambda}$, then from (3.18), (3.26), (3.21) and (3.15) we see

$$
\begin{aligned}
\bar{N}(r, f)=N_{1)}(r, f)+S(r, f) & \leq N\left(r, \frac{1}{\Omega+\frac{2}{k-1} \Lambda \beta-\frac{k(k+1)}{k-1} \frac{\Lambda^{\prime}}{\Lambda}}\right)+S(r, f) \\
& \leq T(r, \Omega)+3 T(r, \Lambda)+S(r, f)=S(r, f)
\end{aligned}
$$

a contradiction. Therefore

$$
\begin{equation*}
\Omega \equiv \frac{-2}{k-1} \Lambda \beta+\frac{k(k+1)}{k-1} \frac{\Lambda^{\prime}}{\Lambda}, \tag{3.27}
\end{equation*}
$$

provided that $k>1$. If we next eliminate Ω between (3.27) and (3.22) gives

$$
\begin{equation*}
k f^{\prime}=\Lambda f^{2}+\left(\frac{2}{k-1} \Lambda \beta-\frac{k(k+1)}{k-1} \frac{\Lambda^{\prime}}{\Lambda}\right) f \tag{3.28}
\end{equation*}
$$

Since $\bar{N}\left(r, \frac{1}{f^{(k)}-\beta}\right)=\bar{N}\left(r, \frac{1}{f-\beta}\right)$, we may obtain from Lemma 2.3 and (3.18),

$$
(k-1) N_{1)}(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f-\beta}\right)+S(r, f)
$$

That is $(k-1) T(r, f) \leq 2 T(r, f)+S(r, f)$, so that $k \leq 3$. Let

$$
\begin{equation*}
F=\frac{f^{(k)}-\beta}{f-\beta} \tag{3.29}
\end{equation*}
$$

which, in view of f and $f^{(k)}$ share $\beta \mathrm{CM}$, leads to

$$
\begin{equation*}
N\left(r, \frac{1}{F}\right) \equiv 0 \tag{3.30}
\end{equation*}
$$

In the following we shall treat three cases only $k=3, k=2$ and $k=1$ respectively.
Case 3.1. $k=3$. Differentiating (3.28) three times we arrive at

$$
\begin{equation*}
f^{\prime \prime \prime}=(2 / 9) \Lambda^{3} f^{4}+\left((4 / 9) \Lambda^{3} \beta-2 \Lambda \Lambda^{\prime}\right) f^{3}+\alpha_{1} f^{2}+\alpha_{2} f, \tag{3.31}
\end{equation*}
$$

where α_{1} and α_{2} are small functions of f. Because of f and $f^{\prime \prime \prime}$ share $\beta \mathbf{C M}$, it follows from (3.31) that

$$
\begin{equation*}
(2 / 9) \Lambda^{3} \beta^{3}+\left((4 / 9) \Lambda^{3} \beta-2 \Lambda \Lambda^{\prime}\right) \beta^{2}+\alpha_{1} \beta+\alpha_{2} \equiv 1 . \tag{3.32}
\end{equation*}
$$

Substituting (3.31) into (3.29) and then using (3.32), we arrive at

$$
\begin{equation*}
F=(2 / 9) \Lambda^{3} f^{3}+\left((2 / 3) \Lambda^{3} \beta-2 \Lambda \Lambda^{\prime}\right) f^{2}+\alpha_{3} f+1 \tag{3.33}
\end{equation*}
$$

where α_{3} is a small function of f. Applying Lemma 2.4 to (3.33) we shall have the following three cases:

Case 3.1.1. F can be expressed as

$$
\begin{equation*}
F=(2 / 9) \Lambda^{3}\left(f+\beta-3 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)^{3} \tag{3.34}
\end{equation*}
$$

From this and (3.33) we see that $\left(\Lambda \beta-3 \frac{\Lambda^{\prime}}{\Lambda}\right)^{3}=9 / 2$. This implies that

$$
\begin{equation*}
\Lambda \beta-3 \frac{\Lambda^{\prime}}{\Lambda}=A \tag{3.35}
\end{equation*}
$$

where A is a constant and $A^{3}=\frac{9}{2}$. If we next eliminate $\Lambda \beta$ between (3.35) and (3.27) (when $k=3$) we obtain $\Omega=3 \frac{\Lambda^{\prime}}{\Lambda}-A$. Integration of each members of this and (3.19) yields the following $F=c \Lambda^{3} e^{-A z} f^{3}$, where c is a nonzero constant. By using (3.33), a contradiction occurs.

Case 3.1.2. Since the power of f is three in (3.33) which contradicts with $3=2 \mu$ in Lemma 2.4(ii).

Case 3.1.3. F can be expressed as

$$
\begin{equation*}
F=(2 / 9) \Lambda^{3}\left(f+\theta_{1}\right)^{\mu_{1}}\left(f+\theta_{2}\right)^{\mu_{2}} \tag{3.36}
\end{equation*}
$$

where $\theta_{1}=\beta-3 \frac{\Lambda^{\prime}}{\Lambda^{2}}-\lambda_{1} \alpha_{0}, \theta_{2}=\beta-3 \frac{\Lambda^{\prime}}{\Lambda^{2}}-\lambda_{2} \alpha_{0}$ and $\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{2}, \alpha_{0}$ have the same meaning as in Lemma 2.4 from which, (3.36) and (3.33) it follows readily that $\theta_{1} \not \equiv \theta_{2}$, $\theta_{1} \not \equiv 0, \theta_{2} \not \equiv 0$ and

$$
\bar{N}\left(r, \frac{1}{\theta_{1}}\right)+\bar{N}\left(r, \frac{1}{\theta_{2}}\right)=S(r, f) .
$$

Combining this with $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ and Lemma 2.1 we get $T(r, f)=S(r, f)$ a contradiction.

Case 3.2. $k=2$. Differentiating (3.28) (when $k=2$) twice, we obtain

$$
f^{\prime \prime}=(1 / 2) \Lambda^{2} f^{3}+(1 / 2)\left(3 \Lambda^{2} \beta-8 \Lambda^{\prime}\right) f^{2}+\alpha_{4} f
$$

where $\alpha_{4}=2 \Lambda \beta-6 \frac{\Lambda^{\prime}}{\Lambda}$. Similarly as Case 3.1, we arrive at the conclusion

$$
\begin{equation*}
F=(1 / 2) \Lambda^{2} f^{2}+2\left(\Lambda^{2} \beta-2 \Lambda^{\prime}\right) f+1 \tag{3.37}
\end{equation*}
$$

That is

$$
\begin{equation*}
F f=(1 / 2) \Lambda^{2} f^{3}+2\left(\Lambda^{2} \beta-2 \Lambda^{\prime}\right) f^{2}+f \tag{3.38}
\end{equation*}
$$

Obviously,

$$
\bar{N}\left(r, \frac{1}{F f}\right) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)
$$

By Lemma 2.4, only three cases are possible.
Case 3.2.1. $F f=(1 / 2) \Lambda^{2}\left(f+(4 / 3)\left(\beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)\right)^{3}$ which contradicts with (3.38).
Case 3.2.3. Similarly as Case 3.1.2, we will arrive at the same contradiction.
Case 3.2.3. $F f$ can be expressed as

$$
\begin{align*}
F f= & (1 / 2) \Lambda^{2}\left(f+(4 / 3)\left(\beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)-\lambda_{1} \alpha_{0}\right)^{\mu_{1}} \\
& \times\left(f+(4 / 3)\left(\beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)-\lambda_{2} \beta_{0}\right)^{\mu_{2}} \tag{3.39}
\end{align*}
$$

where $\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{2}, \alpha_{0}$ have the same meaning as in Lemma 2.4. Without loss of generality, we can assume that $\mu_{1}=1$ and $\mu_{2}=2$. It can be obtained from (3.39) and (3.38) that $(4 / 3)\left(\beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)-\lambda_{1} \alpha_{0} \equiv 0$. From this, (3.39) and $\lambda_{1}+2 \lambda_{2}=0$ we deduce that $F=(1 / 2) \Lambda^{2}\left(f+2\left(\beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)\right)^{2}$. This and (3.37) imply that $\left(\Lambda \beta-2 \frac{\Lambda^{\prime}}{\Lambda^{2}}\right)^{2} \equiv 1 / 2$. Using an argument similar to that in the proof of Case 3.1.1, we have $F=c \Lambda^{2} e^{-2 b z} f^{2}$, where b and $c \neq 0$ are constants and $b^{2}=1$. By (3.37) this is a contradiction again.

Case 3.3. $k=1$. Since f and f^{\prime} share the β CM, we conclude from (3.15), (3.21) and (3.22) that

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f-\beta}\right) & \leq N\left(r, \frac{1}{\beta \Lambda-\Omega-1}\right)+S(r, f) \\
& \leq T(r, \Lambda)+T(r, \Omega)+T(r, \beta)+S(r, f)=S(r, f)
\end{aligned}
$$

Thus, we have a contradiction and it follows that $\beta \Lambda-\Omega \equiv 1$. From this, (3.10), (3.19) and (3.29) we can show that $F^{\prime} /(F-1)-F^{\prime} / F=1$. Integration of each member of this yields $F=\frac{1}{1-c e^{z}}$, where c is a nonzero constant. Together with (3.29) we find that $\left[f\left(\frac{1-c e^{z}}{e^{z}}\right)\right]^{\prime}=-\beta c$. By integration we get (1.1). This proves Theorem 1.5.

4. Proof of Theorem 1.6

Consider the following function

$$
\begin{equation*}
H=\frac{\left(f^{(k)} / \beta\right)^{\prime}[(f / \beta)-1]}{\left(f^{(k)} / \beta\right)\left[\left(f^{(k)} / \beta\right)-1\right]}=\left[\frac{\left(f^{(k)} / \beta\right)^{\prime}}{\left(f^{(k)} / \beta\right)-1}-\frac{\left(f^{(k)} / \beta\right)^{\prime}}{f^{(k)} / \beta}\right][(f / \beta)-1] \tag{4.1}
\end{equation*}
$$

By lemma of logarithmic derivative, we get

$$
\begin{equation*}
m(r, H) \leq m(r, f)+S(r, f) \tag{4.2}
\end{equation*}
$$

Similar to Case 1 and Case 2 in the proof of Theorem 1.5, we can prove that $\bar{N}(r, f)=$ $S(r, f)$ is impossible, and if $\bar{N}\left(r, \frac{1}{f-\beta}\right)=S(r, f)$, then we have only (3.8), which may also be written

$$
c \beta f^{\prime}=[f+\beta(i \sqrt{c}-1)][f-\beta(i \sqrt{c}+1)]
$$

From this, $\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$ and Lemma 2.1 we find $T(r, f)=S(r, f)$ which is a contradiction. Therefore in the following, we assume that $\bar{N}\left(r, \frac{1}{f-\beta}\right) \neq S(r, f)$ and $\bar{N}(r, f) \neq S(r, f)$. It follows from (4.1) that if z_{∞} is a pole of f of order $p \geq 1$ and $\beta\left(z_{\infty}\right) \neq 0, \infty$, then

$$
\begin{equation*}
H(z)=O\left(\left(z-z_{\infty}\right)^{k-1}\right) \tag{4.3}
\end{equation*}
$$

Since f and $f^{(k)}$ share β IM, we deduce from (4.1) that if z_{0} is a zero of $f-\beta$ of order $q \geq 1$ and $\beta\left(z_{\infty}\right) \neq 0, \infty$, then

$$
\begin{equation*}
H(z)=O\left(\left(z-z_{0}\right)^{q-1}\right) \tag{4.4}
\end{equation*}
$$

Thus from (4.1), (4.3), (4.4) and $\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=S(r, f)$, we find

$$
N(r, H) \leq \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)=S(r, f)
$$

Together with (4.2) we have

$$
\begin{equation*}
T(r, H) \leq m(r, f)+S(r, f) \tag{4.5}
\end{equation*}
$$

Obviously, $H \not \equiv 0$. By (4.3)-(4.5) we see that

$$
\begin{align*}
(k-1) \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{f-\beta}\right) & \leq N\left(r, \frac{1}{H}\right)+S(r, f) \\
& \leq T(r, H)+S(r, f) \\
& \leq m(r, f)+S(r, f) \tag{4.6}
\end{align*}
$$

By using the same methods as those in the proof of Theorem 1.5,

$$
T(r, \Lambda) \leq \bar{N}_{(2}\left(r, \frac{1}{f-\beta}\right)+\bar{N}_{(2}\left(r, \frac{1}{f^{(k)}-\beta}\right)+S(r, f)
$$

and

$$
m(r, f)+N_{(2}(r, f)-\bar{N}_{(2}(r, f) \leq N\left(r, \frac{1}{\Lambda}\right)+m\left(r, \frac{1}{\Lambda}\right)+S(r, f)
$$

Combining these two inequalities, (4.6) and $\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=S(r, f)$ yields

$$
\begin{aligned}
(k-1) \bar{N}(r, f)+N_{(2}(r, f) & \leq \bar{N}_{(2}\left(r, \frac{1}{f^{(k)}-\beta}\right)+\bar{N}_{(2}(r, f)+S(r, f) \\
& \leq N_{(2}\left(r, \frac{1}{f^{(k+1)} / f^{(k)}-\beta^{\prime} / \beta}\right)+\bar{N}_{(2}(r, f)+S(r, f) \\
& \leq T\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+\bar{N}_{(2}(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}(r, f)+\bar{N}_{(2}(r, f)+S(r, f) \\
& =\bar{N}(r, f)+\bar{N}_{(2}(r, f)+S(r, f)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(k-2) \bar{N}(r, f)+N_{(2}(r, f) \leq \bar{N}_{(2}(r, f)+S(r, f) \tag{4.7}
\end{equation*}
$$

This is impossible unless $k \leq 2$. If $k=2$, from (4.7) we have $N_{(2}(r, f)=S(r, f)$. This, $\bar{N}\left(r, \frac{1}{f^{\prime \prime}}\right)=S(r, f)$ and Lemma 2.2 (with $\nu \equiv 0$) give a contradiction. Hence, $k=1$. In view of (3.3) in the proof of Theorem 1.5 we can consider two cases.

Case I. $\Gamma \not \equiv 0$. Denote by $\bar{N}_{(1,2)}\left(r, \frac{1}{f-\beta}\right)$ is the counting function of those zeros of $f-\beta$ of order one and zeros of $f^{\prime}-\beta$ of order two, each zero in this counting function is counted only once. From (3.3) and (3.6) it is easy to conclude that

$$
\begin{align*}
N(r, f)-\bar{N}_{(2}(r, f) \leq & N\left(r, \frac{1}{\Gamma}\right)+S(r, f) \leq T(r, \Gamma)-m\left(r, \frac{1}{\Gamma}\right)+S(r, f) \\
\leq & \bar{N}\left(r, \frac{1}{f-\beta}\right)-\bar{N}_{(1,2)}\left(r, \frac{1}{f-\beta}\right)-m\left(r, \frac{1}{\Gamma}\right) \\
& +S(r, f) . \tag{4.8}
\end{align*}
$$

Writing (3.3) as

$$
f=\frac{1}{\Gamma}\left[\frac{\left(f^{\prime} / \beta\right)^{\prime}}{\left(f^{\prime} / \beta\right)-1}-2 \frac{(f / \beta)^{\prime}}{(f / \beta)-1}\right]
$$

Hence

$$
m(r, f) \leq m\left(r, \frac{1}{\Gamma}\right)+S(r, f)
$$

Combining with (4.8) we obtain

$$
m(r, f)+N(r, f)+\bar{N}_{(1,2)}\left(r, \frac{1}{f-\beta}\right) \leq \bar{N}\left(r, \frac{1}{f-\beta}\right)+\bar{N}_{(2}(r, f)+S(r, f)
$$

Because of f and f^{\prime} share $\beta \mathrm{IM}$ and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$,

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f-\beta}\right) & \leq N\left(r, \frac{1}{\left(f^{\prime} / f\right)-1}\right)+S(r, f) \leq T\left(r, \frac{f^{\prime}}{f}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f)=\bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Combining these two inequalities, we find

$$
m(r, f)+N(r, f)+\bar{N}_{(1,2)}\left(r, \frac{1}{f-\beta}\right) \leq \bar{N}_{(2}(r, f)+\bar{N}(r, f)+S(r, f)
$$

Hence

$$
\begin{equation*}
m(r, f)+N_{(3}(r, f)+\bar{N}_{(1,2)}\left(r, \frac{1}{f-\beta}\right)=S(r, f) \tag{4.9}
\end{equation*}
$$

From (4.1) we deduce that if z_{∞} is a pole of f of order $p \geq 1$ and $\beta\left(z_{\infty}\right) \neq 0, \infty$,

$$
\begin{equation*}
H\left(z_{\infty}\right)=1+\frac{1}{p} \tag{4.10}
\end{equation*}
$$

If $p=1$ and $H \not \equiv 2$, then from (4.10), (4.5) and (4.9) we see

$$
\begin{equation*}
N_{1)}(r, f) \leq N\left(r, \frac{1}{H-2}\right)+S(r, f) \leq T(r, H)+S(r, f)=S(r, f) \tag{4.11}
\end{equation*}
$$

If $p=2$ and $H \not \equiv 3 / 2$, then again from (4.10), (4.5) and (4.9) we get

$$
\begin{equation*}
\bar{N}_{2)}(r, f)-N_{1)}(r, f) \leq N\left(r, \frac{1}{H-3 / 2}\right)+S(r, f)=S(r, f) . \tag{4.12}
\end{equation*}
$$

Then from (4.9), (4.11) and (4.12) we have a contradiction $\bar{N}(r, f)=S(r, f)$. Therefore either $H \equiv 2$ or $H \equiv 3 / 2$. If $H \equiv 2$, from this, (4.12) and (4.1) we obtain

$$
\begin{equation*}
\bar{N}_{(2}(r, f)+N_{(2}\left(r, \frac{1}{f-\beta}\right)=S(r, f) . \tag{4.13}
\end{equation*}
$$

From (2.3) we obtain by putting $k=1$ and $\nu \equiv 0$ the function

$$
\begin{equation*}
W_{1}=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-2\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime} \tag{4.14}
\end{equation*}
$$

By using the same methods as those in the proof of Lemma 2.2, we get

$$
T\left(r, W_{1}\right) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f)
$$

Combining with $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$ and (4.13) we find

$$
\begin{equation*}
T\left(r, W_{1}\right)=S(r, f) \tag{4.15}
\end{equation*}
$$

If z_{0} is a zero of $f^{\prime}-\beta$ of order $p \geq 3$ and $\beta\left(z_{0}\right) \neq 0, \infty$, then

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f^{\prime}}=\frac{\beta^{\prime}}{\beta}+O\left(\left(z-z_{0}\right)^{p-1}\right) . \tag{4.16}
\end{equation*}
$$

Substituting (4.16) into (4.14), W_{1} is changed to

$$
\begin{equation*}
W_{1}=\left(\frac{\beta^{\prime}}{\beta}\right)^{2}-2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}+O\left(\left(z-z_{0}\right)^{p-2}\right) \tag{4.17}
\end{equation*}
$$

If $W_{1} \equiv\left(\beta^{\prime} / \beta\right)^{2}-2\left(\beta^{\prime} / \beta\right)^{\prime}$, then (4.14) becomes

$$
\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\beta^{\prime}}{\beta}\right)\left(\frac{f^{\prime \prime}}{f^{\prime}}+\frac{\beta^{\prime}}{\beta}\right)=2\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\beta^{\prime}}{\beta}\right)^{\prime} .
$$

Hence $\left(f^{\prime \prime} / f^{\prime}\right)-\left(\beta^{\prime} / \beta\right)=O(1)$, which contradicts with (4.16). Therefore $W_{1} \not \equiv\left(\beta^{\prime} / \beta\right)^{2}-$ $2\left(\beta^{\prime} / \beta\right)^{\prime}$, and so, from (4.17) and (4.15) we see

$$
\begin{aligned}
N_{(3}\left(r, \frac{1}{f^{\prime}-\beta}\right) & \leq 3 N\left(r, \frac{1}{W_{1}-\left(\beta^{\prime} / \beta\right)^{2}+2\left(\beta^{\prime} / \beta\right)^{\prime}}\right) \\
& \leq 3 T\left(r, W_{1}\right)+S(r, f)=S(r, f)
\end{aligned}
$$

Together with (4.9) and (4.13) we have $N_{(2}\left(r, \frac{1}{f^{\prime}-\beta}\right)=S(r, f)$. Thus by this and (4.13),

$$
\begin{aligned}
N\left(r, \frac{1}{f-\beta}\right) & =N_{1)}\left(r, \frac{1}{f-\beta}\right)+S(r, f)=N_{1)}\left(r, \frac{1}{f^{\prime}-\beta}\right)+S(r, f) \\
& =N\left(r, \frac{1}{f^{\prime}-\beta}\right)+S(r, f)
\end{aligned}
$$

which, in view of f and f^{\prime} share the value IM, leads to f and f^{\prime} share β CM "at most". Using an argument similar to that in the proof of Theorem 1.5, we arrive at the conclusion (1.1). From this it is easy to see that $\bar{N}\left(r, \frac{1}{f^{\prime}}\right) \neq S(r, f)$, a contradiction. If $H \equiv 3 / 2$, from this and (4.11) we find

$$
\begin{equation*}
\bar{N}_{1)}(r, f)+N_{(2}\left(r, \frac{1}{f-\beta}\right)=S(r, f) \tag{4.18}
\end{equation*}
$$

We set

$$
\begin{equation*}
\Phi=2 \frac{f^{\prime \prime}}{f^{\prime}}-3 \frac{f^{\prime}}{f} \tag{4.19}
\end{equation*}
$$

Then it is clear that $m(r, \Phi)=S(r, f)$ and if z_{∞} is a pole of f of order 2 , from (4.19) we see that Φ is holomorphic at z_{∞}. Thus, from (4.18), (4.9) and $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$,

$$
\begin{equation*}
T(r, \Phi) \leq N_{1)}(r, f)+\bar{N}_{(3}(r, f)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f) \tag{4.20}
\end{equation*}
$$

Similarly according to the above discussion, we arrive at the result either $\Phi \not \equiv 2 \frac{\beta^{\prime}}{\beta}-3$, and so

$$
\begin{aligned}
\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-\beta}\right) & \leq \bar{N}\left(r, \frac{1}{\Phi-2 \frac{\beta^{\prime}}{\beta}+3}\right)+S(r, f) \\
& \leq T(r, \Phi)+S(r, f)=S(r, f)
\end{aligned}
$$

From this, (4.18), (3.12) and (3.15) we reach the contradiction $\bar{N}(r, f)=S(r, f)$. Or $\Phi \equiv 2 \frac{\beta^{\prime}}{\beta}-3$. Combining with (4.19) we obtain $2\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\beta^{\prime}}{\beta}\right) \equiv 3 \frac{f^{\prime}}{f}-3$. Hence, by direct integration, we have $f^{\prime 2}=c \beta^{2} e^{-3 z} f^{3}$, where c is a nonzero constant. Because of f and f^{\prime} share β IM and $\bar{N}\left(r, \frac{1}{f-\beta}\right) \neq S(r, f)$, the last equation becomes $f^{-3 / 2} f^{\prime}=\beta^{-1 / 2}$, where $\beta=\frac{e^{z}}{\sqrt[3]{c}}$. Then by integration, we conclude the contradiction $T(r, f)=S(r, f)$.

Case II. $\Gamma \equiv 0$. From (3.8) we know that $2 T(r, f)=T\left(r, f^{\prime}\right)+S(r, f)$. From this it is easy to see that $m(r, f)+N_{(2}(r, f)=S(r, f)$. It follows from this and (4.11) that $H \equiv 2$. We write (4.1) in the form $2 \equiv\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\beta^{\prime}}{\beta}\right)\left(\frac{f-\beta}{f^{\prime}-\beta}\right)$, and eliminating $f^{\prime}-\beta$ between this and (3.8) gives

$$
\begin{equation*}
2(f-\beta) f^{\prime}=c\left(f^{\prime \prime} \beta-\beta^{\prime} f^{\prime}\right) \tag{4.21}
\end{equation*}
$$

Differentiating (3.8) and then using (4.21), we arrive at $\beta^{\prime} f \equiv 0$, which results in $\beta^{\prime} \equiv 0$, so that β is a constant and rewrite (3.8) as

$$
\begin{equation*}
f^{\prime}=\frac{1}{c \beta}[f+\beta(i \sqrt{c}-1)][f-\beta(i \sqrt{c}+1)] \tag{4.22}
\end{equation*}
$$

and so, from $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$,

$$
\bar{N}\left(r, \frac{1}{f+\beta(i \sqrt{c}-1)}\right)+\bar{N}\left(r, \frac{1}{f-\beta(i \sqrt{c}+1)}\right)=S(r, f)
$$

Hence, employing Lemma 2.1 and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ we find $T(r, f)=S(r, f)$. This is impossible unless $c=-1$. Thus (4.22) reads $\frac{f^{\prime}}{f-2 \beta}-\frac{f^{\prime}}{f}=-2$. By integration once, we conclude (1.2) and the required result is proved.

ACKNOWLEDGMENT

I am grateful to the referee for valuable comments.

References

[1] A. Banerjee, Weighted sharing of a small function by a meromorphic function and its derivative, Comput. Math. Appl. 53 (2007) 1750-1761.
[2] G. Frank, G. Weissenborn, Meromorphe Funktionen, die mit einer ihrer Ableitungen Werte teilen, Complex Variables 7 (1986) 33-43.
[3] G.G. Gundersen, Meromorphic functions that share two finite values with their derivative, Pacific J. Math. 105 (1983) 299-309.
[4] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[5] I. Lahiri, A. Sarkar, Uniqueness of meromorphic function and its derivative, J. Inequal. Pure Appl. Math. 5 (1) (2004) Art. 20.
[6] E. Mues, N. Steinmetz, Meromorphe Funktionen, die mit einer ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979) 195-206.
[7] E. Mues, N. Steinmetz, The theorem of Tumura-Clunie for meromorphic function, J. Lond. Math. Soc. 23 (1981) 113-122.
[8] L. Ping, Unicity of meromorphic functions and their derivatives, J. Math. Anal. Appl. 285 (2003) 651-665.
[9] L.A. Rubel, C.C. Yang, Values Shared by an Entire Functions and its Derivative, in: Lecture Notes in Math., vol. 599, Springer, Berlin, 1977, pp. 101-103.
[10] L. Yang, Value Destribution Theory, Springer, Berlin, Heidelberg, New York, 1993.
[11] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer, Dordrecht, 2004.
[12] K.W. Yu, On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl. Math. 4 (1) (2003) Art. 21.
[13] Q.C. Zhang, Meromorphic function that shares one small function with its derivative, J. Inequal. Pure Appl. Math. 6 (4) (2005) Art. 116.
[14] T. Zhang, W. Lü, Notes on a meromorphic function sharing one small function with its derivative, Complex Var. Elliptic Equ. 53 (2008) 857-867.

