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Abstract Fixed point theory in partially ordered metric spaces has greatly

developed in recent times. In this paper we prove certain fixed point theorems

for multivalued and singlevalued mappings in such spaces. The mappings we

consider here are assumed to satisfy certain metric inequalities in the case where

the arguments of the functions are related by partial order. In one of our

theorems we assume a weak contractive inequality. It is in the line with the

research following the establishing of weak contraction principle in metric spaces

[Rhoades BE. Some theorems on weakly contractive maps. Nonlinear Anal

2001;47(4):2683–93] and subsequently in partially ordered metric spaces [Harjani

J, Sadarangani K. Fixed point theorems for weakly contractive mappings in

partially ordered sets. Nonlinear Anal 2009;71:3403–10]. Two illustrative exam-

ples are also given.
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1. Introduction and mathematical preliminaries

Let ðX; dÞ be a metric space. We denote the class of nonempty and bounded sub-
sets of X by BðXÞ. For A;B 2 BðXÞ, functions DðA;BÞ and dðA;BÞ are defined as
follows:
DðA;BÞ ¼ inffdða; bÞ : a 2 A; b 2 Bg;
dðA;BÞ ¼ supfdða; bÞ : a 2 A; b 2 Bg:
If A ¼ fag, then we write DðA;BÞ ¼ Dða;BÞ and dðA;BÞ ¼ dða;BÞ. Also in addi-
tion, if B ¼ fbg, then DðA;BÞ ¼ dða; bÞ and dðA;BÞ ¼ dða; bÞ. Obviously,
DðA;BÞ 6 dðA;BÞ. For all A;B;C 2 BðXÞ, the definition of dðA;BÞ yields the
following:
dðA;BÞ ¼ dðB;AÞ;

dðA;BÞ 6 dðA;CÞ þ dðC;BÞ;

dðA;BÞ ¼ 0 iff A ¼ B ¼ fag;

dðA;AÞ ¼ diamA ðFisher; 1981; Fisher and Ise’ki; 1983Þ:
Fixed point theory of multivalued functions is a vast chapter of functional analy-
sis. In particular, the function dðA;BÞ has been used in many works in this area.
Some of these works are noted in Choudhury (1996), Fisher (1981) and Fisher and
Ise’ki (1983).

We will use the following relation between two nonempty subsets of a partially
ordered set.

Definition 1.1 (Beg and Butt, 2010). Let A and B be two nonempty subsets of a
partially ordered set ðX; � Þ. The relation between A and B is denoted and defined
as follows: A�1B, if for every a 2 A there exists b 2 B such that a � b.

We will utilize the following control function which is also referred to as Alter-
ing distance function.

Definition 1.2 (Khan et al., 1984). A function w : ½0;1Þ ! ½0;1Þ is called an
Altering distance function if the following properties are satisfied:

(i) w is monotone increasing and continuous,
(ii) wðtÞ ¼ 0 if and only if t ¼ 0.

The above control function has been utilized in a large number of works in met-
ric fixed point theory. Some recent references are Choudhury (2005), Dorić (2009),
Dutta and Choudhury (2008), Naidu (2003) and Sastry and Babu (1999). This
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control function has also been extended and applied to fixed point problems in
probabilistic metric spaces (Choudhury and Das, 2009; Choudhury et al., 2009;
Mihet�, 2009) and fuzzy metric spaces (Choudhury and Dutta, 2005).

The purpose of this paper is to establish the existence of fixed points of
multivalued mappings in partially ordered metric spaces. The mappings are
assumed to satisfy certain inequalities which involve the above mentioned control
function. One of these inequalities, which has been used in Theorem 2.5, is a weak
contractive type inequality. This type of inequality was considered by Alber and
Guerre-Delabriere (1997) in Hilbert spaces where they established the weak
contraction principle. Rhoades established that the weak contraction principle is
also valid in an arbitrary complete metric space (Rhoades, 2001). The importance
of weak contraction is that it is intermediate to a contraction and a non-expansive
mapping. The former has a unique fixed point in a complete metric space whereas
the latter need not have a fixed point. According to the result in Rhoades (2001)
the weak contractions necessarily have fixed points in a complete metric space.
Afterwards, weak contraction and functions satisfying weak contractive type
inequalities have been considered in a large number of papers, some of which
are noted in Chidume et al. (2002), Choudhury and Metiya (2010), Choudhury
and Metiya (2010), Choudhury et al. (2011), Rouhani and Moradi (2010), Zhang
and Song (2009). In particular, in partially ordered metric spaces, there are a
number of such works (Altun and Simsek, 2010; Altun, 2011; Gnana Bhaskar
and Lakshmikantham, 2006; Harjani and Sadarangani, 2009; Lakshmikantham
and Ćirić, 2009; Nieto and Rodr guez-Lpez, 2005; Ran and Reurings, 2004; Samet,
2010; Zhang, 2010). Further we have established that in the corresponding single-
valued cases a partial order condition of the metric space can be omitted if the
function is continuous. Finally, we have concluded our paper with two illustrative
examples.
2. Main results

Theorem 2.1. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! BðXÞ be a
multivalued mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that fx0g�1Tx0,

(ii) for x; y 2 X ; x � y implies Tx�1Ty,

(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,

(iv) wðdðTx; TyÞÞ 6 aw max dðx; yÞ;Dðx; TxÞ;Dðy; TyÞ; Dðx;TyÞþDðy;TxÞ
2

n o� �
, for all

comparable x; y 2 X , where 0 < a < 1 and w is an altering distance function.

Then T has a fixed point.
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Proof. By the assumption (i), there exists x1 2 Tx0 such that x0 � x1. By the
assumption (ii), Tx0�1Tx1. Then there exists x2 2 Tx1 such that x1 � x2. Contin-
uing this process we construct a monotone increasing sequence fxng in X such that
xnþ1 2 Txn, for all n P 0. Thus we have x0 � x1 � x2 � x3 � � � � � xn �
xnþ1 � � � �

If there exists a positive integer N such that xN ¼ xNþ1, then xN is a fixed point
of T. Hence we shall assume that xn – xnþ1, for all n P 0.

Using the monotone property of w and the condition (iv), we have for all n P 0,
wðdðxnþ1; xnþ2ÞÞ 6 wðdðTxn;Txnþ1ÞÞ

6 aw max dðxn; xnþ1Þ;Dðxn;TxnÞ;Dðxnþ1;Txnþ1Þ;
Dðxn;Txnþ1Þ þDðxnþ1;TxnÞ

2

� �� �

6 aw max dðxn; xnþ1Þ; dðxn; xnþ1Þ; dðxnþ1; xnþ2Þ;
dðxn; xnþ2Þ þ dðxnþ1; xnþ1Þ

2

� �� �
:

Since dðxn;xnþ2Þ
2
6 maxfdðxn;xnþ1Þ; dðxnþ1; xnþ2Þg, it follows that
wðdðxnþ1;xnþ2ÞÞ 6 awðmaxfdðxn; xnþ1Þ; dðxnþ1;xnþ2ÞgÞ: ð2:1Þ

Suppose that dðxn;xnþ1Þ 6 dðxnþ1; xnþ2Þ, for some positive integer n.

Then from (2.1), we have
wðdðxnþ1;xnþ2ÞÞ 6 awðdðxnþ1; xnþ2ÞÞ;

which implies that dðxnþ1;xnþ2Þ ¼ 0, or that xnþ1 ¼ xnþ2, contradicting our
assumption that xn – xnþ1, for each n.

Therefore, dðxnþ1;xnþ2Þ < dðxn; xnþ1Þ, for all n P 0 and fdðxn; xnþ1Þg is a
monotone decreasing sequence of nonnegative real numbers. Hence there exists an
r P 0 such that
dðxn; xnþ1Þ ! r as n!1: ð2:2Þ

Taking the limit as n!1 in (2.1) and using the continuity of w, we have
wðrÞ 6 awðrÞ;

which is a contradiction unless r ¼ 0.
Hence lim
n!1

dðxn;xnþ1Þ ¼ 0: ð2:3Þ
Next we show that fxng is a Cauchy sequence. If otherwise, there exists an � > 0
for which we can find two sequences of positive integers fmðkÞg and fnðkÞg such
that for all positive integers k; nðkÞ > mðkÞ > k and dðxmðkÞ;xnðkÞÞP �.

Assuming that nðkÞ is the smallest such positive integer, we get
nðkÞ > mðkÞ > k;

dðxmðkÞ;xnðkÞÞP � and

dðxmðkÞ;xnðkÞ�1Þ < �:
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Now,
� 6 dðxmðkÞ;xnðkÞÞ 6 dðxmðkÞ;xnðkÞ�1Þ þ dðxnðkÞ�1; xnðkÞÞ;

that is, � 6 dðxmðkÞ;xnðkÞÞ < �þ dðxnðkÞ�1; xnðkÞÞ.

Taking the limit as k!1 in the above inequality and using (2.3), we have
lim
k!1

dðxmðkÞ;xnðkÞÞ ¼ �: ð2:4Þ
Again
dðxmðkÞ; xnðkÞÞ 6 dðxmðkÞ; xmðkÞþ1Þ þ dðxmðkÞþ1;xnðkÞþ1Þ þ dðxnðkÞþ1; xnðkÞÞ

and
dðxmðkÞþ1;xnðkÞþ1Þ 6 dðxmðkÞþ1;xmðkÞÞ þ dðxmðkÞ; xnðkÞÞ þ dðxnðkÞ;xnðkÞþ1Þ:

Taking the limit as k!1 in the above inequalities and using (2.3) and (2.4), we
have
lim
k!1

dðxmðkÞþ1; xnðkÞþ1Þ ¼ �: ð2:5Þ
Again,
dðxmðkÞ; xnðkÞÞ 6 dðxmðkÞ; xnðkÞþ1Þ þ dðxnðkÞþ1;xnðkÞÞ

and
dðxmðkÞ; xnðkÞþ1Þ 6 dðxmðkÞ;xnðkÞÞ þ dðxnðkÞ; xnðkÞþ1Þ:

Letting k!1 in the above inequalities and using (2.3) and (2.4), we have
lim
k!1

dðxmðkÞ;xnðkÞþ1Þ ¼ �: ð2:6Þ
Similarly, we have that
lim
k!1

dðxnðkÞ; xmðkÞþ1Þ ¼ �: ð2:7Þ
For each positive integer k;xmðkÞ and xnðkÞ are comparable. Then using the mono-
tone property of w and the condition (iv), we have
wðdðxmðkÞþ1;xnðkÞþ1ÞÞ 6 wðdðTxmðkÞ;TxnðkÞÞÞ

6 aw max dðxmðkÞ;xnðkÞÞ;DðxmðkÞ;TxmðkÞÞ;DðxnðkÞ;TxnðkÞÞ;
DðxmðkÞ;TxnðkÞÞ þDðxnðkÞ;TxmðkÞÞ

2

� �� �

6 aw max dðxmðkÞ;xnðkÞÞ; dðxmðkÞ;xmðkÞþ1Þ; dðxnðkÞ;xnðkÞþ1Þ;
dðxmðkÞ;xnðkÞþ1Þ þ dðxnðkÞ;xmðkÞþ1Þ

2

� �� �
:

Letting k!1 in above inequality, using (2.3)–(2.7) and using the continuity of w,
we have
wð�Þ 6 awð�Þ;

which is a contradiction by virtue of a property of w.

Hence fxng is a Cauchy sequence. From the completeness of X, there exists a
z 2 X such that
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xn ! z as n!1: ð2:8Þ

By the assumption (iii), xn � z, for all n.

Then by the monotone property of w and the condition (iv), we have
wðdðxnþ1;TzÞÞ 6 wðdðTxn;TzÞÞ

6 aw max dðxn; zÞ;Dðxn;TxnÞ;Dðz;TzÞ;
Dðxn;TzÞ þDðz;TxnÞ

2

� �� �

6 aw max dðxn; zÞ; dðxn;xnþ1Þ;Dðz;TzÞ;
Dðxn;TzÞ þ dðz;xnþ1Þ

2

� �� �
:

Taking the limit as n!1 in the above inequality, using (2.3) and (2.8) and the
continuity of w, we have
wðdðz;TzÞÞ 6 awðDðz;TzÞÞ 6 awðdðz;TzÞÞ;

which implies that dðz;TzÞ ¼ 0, or that fzg ¼ Tz. Moreover, z is a fixed point of
T. �

Taking w an identity function in Theorem 2.1, we have the following result.

Corollary 2.2. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! BðXÞ be a
multivalued mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that fx0g�1Tx0,

(ii) for x; y 2 X ; x � y implies Tx�1Ty,

(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,

(iv) dðTx; TyÞ 6 amax dðx; yÞ;Dðx; TxÞ;Dðy; TyÞ; Dðx;TyÞþDðy;TxÞ
2

n o
, for all comparable

x; y 2 X , where 0 < a < 1.

Then T has a fixed point.

The following corollary is a special case of Theorem 2.1 when T is a singleval-
ued mapping.

Corollary 2.3. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! X be a
mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that x0 � Tx0,
(ii) for x; y 2 X ; x � y implies Tx � Ty,
(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,
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(iv) wðdðTx; TyÞÞ 6 aw max dðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TyÞþdðy;TxÞ
2

n o� �
, for all

comparable x; y 2 X , where 0 < a < 1 and w is an altering distance function.

Then T has a fixed point.

In the following theorem we replace condition (iii) of the above corollary by
requiring T to be continuous.

Theorem 2.4. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! X be a
continuous mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that x0 � Tx0,

(ii) for x; y 2 X ; x � y implies Tx � Ty,

(iii) wðdðTx; TyÞÞ 6 aw max dðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TyÞþdðy;TxÞ
2

n o� �
, for all

comparable x; y 2 X , where 0 < a < 1 and w is an altering distance function.

Then T has a fixed point.

Proof. We can treat T as a multivalued mapping in which case Tx is a singleton set
for every x 2 X. Then we consider the same sequence fxng as in the proof of The-
orem 2.1. Arguing exactly as in the proof of Theorem 2.1, we have that fxng is a
Cauchy sequence and limn!1xn ¼ z. Then, the continuity of T implies that
z ¼ lim
n!1

xnþ1 ¼ lim
n!1

Txn ¼ Tz
and this proves that z is a fixed point of T. h

Theorem 2.5. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! BðXÞ be a
multivalued mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that fx0g�1Tx0,

(ii) for x; y 2 X ; x � y implies Tx�1Ty,

(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,

(iv) wðdðTx; TyÞÞ 6 w max dðx; yÞ;Dðx; TxÞ;Dðy; TyÞ; Dðx;TyÞþDðy;TxÞ
2

n o� �
� / maxð

dðx; yÞ; dðy; TyÞf gÞ,for all comparable x; y 2 X , where w is an altering distance

function and / : ½0;1Þ ! ½0;1Þ is any continuous function with /ðtÞ ¼ 0 if

and only if t ¼ 0.

Then T has a fixed point.
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Proof. We take the same sequence fxng as in the proof of Theorem 2.1. If there
exists a positive integer N such that xN ¼ xNþ1, then xN is a fixed point of T. Hence
we shall assume that xn–xnþ1, for all n P 0.

Using the monotone property of w and the condition (iv), we have for all n P 0,

wðdðxnþ1; xnþ2ÞÞ 6 wðdðTxn;Txnþ1ÞÞ

6 w max dðxn; xnþ1Þ;Dðxn;TxnÞ;Dðxnþ1;Txnþ1Þ;
Dðxn;Txnþ1Þ þDðxnþ1;TxnÞ

2

� �� �
� / max dðxn; xnþ1Þ; dðxnþ1;Txnþ1Þf gð Þ

6 w max dðxn; xnþ1Þ; dðxn;xnþ1Þ; dðxnþ1;xnþ2Þ;
dðxn; xnþ2Þ þ dðxnþ1;xnþ1Þ

2

� �� �
� / max dðxn; xnþ1Þ; dðxnþ1; xnþ2Þf gð Þ:
Since dðxn;xnþ2Þ
2
6 maxfdðxn;xnþ1Þ; dðxnþ1; xnþ2Þg, it follows that
wðdðxnþ1;xnþ2ÞÞ 6 wðmaxfdðxn;xnþ1Þ; dðxnþ1; xnþ2ÞgÞ
� /ðmaxfdðxn; xnþ1Þ; dðxnþ1;xnþ2ÞgÞ: ð2:9Þ
Suppose that dðxn;xnþ1Þ 6 dðxnþ1; xnþ2Þ, for some positive integer n.
Then from (2.9), we have
wðdðxnþ1;xnþ2ÞÞ 6 wðdðxnþ1;xnþ2ÞÞ � /ðdðxnþ1;xnþ2ÞÞ;

that is, /ðdðxnþ1;xnþ2ÞÞ 6 0, which implies that dðxnþ1; xnþ2Þ ¼ 0, or that
xnþ1 ¼ xnþ2, contradicting our assumption that xn – xnþ1, for each n.

Therefore, dðxnþ1;xnþ2Þ < dðxn; xnþ1Þ, for all n P 0 and fdðxn; xnþ1Þg is a
monotone decreasing sequence of non-negative real numbers. Hence there exists
an r P 0 such that
lim
n!1

dðxn; xnþ1Þ ¼ r: ð2:10Þ
In view of the above facts, from (2.9) we have for all n P 0,
wðdðxnþ1;xnþ2ÞÞ 6 wðdðxn; xnþ1ÞÞ � /ðdðxn;xnþ1ÞÞ:

Taking the limit as n!1 in the above inequality, using (2.10) and the continu-
ities of / and w, we have
wðrÞ 6 wðrÞ � /ðrÞ;

which is a contradiction unless r ¼ 0.

Hence
lim
n!1

dðxn; xnþ1Þ ¼ 0: ð2:11Þ
Next we show that fxng is a Cauchy sequence. If fxng is not a Cauchy sequence,
then using an argument similar to that given in Theorem 2.1, we can find two se-
quences of positive integers fmðkÞg and fnðkÞg for which
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lim
k!1

dðxmðkÞ; xnðkÞÞ ¼ �; ð2:12Þ

lim
k!1

dðxmðkÞþ1;xnðkÞþ1Þ ¼ �; ð2:13Þ

lim
k!1

dðxmðkÞ; xnðkÞþ1Þ ¼ �; ð2:14Þ

lim
k!1

dðxnðkÞ; xmðkÞþ1Þ ¼ �: ð2:15Þ
For each positive integer k; xmðkÞ and xnðkÞ are comparable. Then using the mono-
tone property of w and the condition (iv), we have
wðdðxmðkÞþ1; xnðkÞþ1ÞÞ 6 wðdðTxmðkÞ;TxnðkÞÞÞ

6 w max

�
dðxmðkÞ; xnðkÞÞ;DðxmðkÞ;TxmðkÞÞ;DðxnðkÞ;TxnðkÞÞ

�
DðxmðkÞ;TxnðkÞÞ þDðxnðkÞ;TxmðkÞÞ

2

��
� / max dðxmðkÞ; xnðkÞÞ; dðxnðkÞ;TxnðkÞÞgÞ;

�	
6 wðmax

�
dðxmðkÞ; xnðkÞÞ; dðxmðkÞ; xmðkÞþ1Þ; dðxnðkÞ; xnðkÞþ1Þ;

dðxmðkÞ; xnðkÞþ1Þ þ dðxnðkÞ;TxmðkÞþ1Þ
2

��
� / max dðxmðkÞ; xnðkÞÞ; dðxnðkÞ; xnðkÞþ1Þ

� 
	 �
:

Letting k!1 in the above inequality, using (2.11)–(2.15) and the continuities of
w and /, we have
wð�Þ 6 wð�Þ � /ð�Þ;

which is a contradiction by virtue of a property of /.

Hence fxng is a Cauchy sequence. From the completeness of X, there exists a
z 2 X such that
xn ! z as n!1: ð2:16Þ

By the assumption (iii), xn � z, for all n.

Then by the monotone property of w and the condition (iv), we have
wðdðxnþ1;TzÞÞ 6 wðdðTxn;TzÞÞ

6 w max dðxn; zÞ;Dðxn;TxnÞ;Dðz;TzÞ;
Dðxn;TzÞ þDðz;TxnÞ

2

� �� �
� / max dðxn; zÞ; dðz;TzÞf gð Þ

6 w max dðxn; zÞ; dðxn; xnþ1Þ;Dðz;TzÞ;
Dðxn;TzÞ þ dðz; xnþ1Þ

2

� �� �
� / max dðxn; zÞ; dðz;TzÞf gð Þ:
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Taking the limit as n!1 in the above inequality, using (2.11) and (2.16) and the
continuities of w and /, we have
wðdðz;TzÞÞ 6 wðDðz;TzÞÞ � /ðdðz;TzÞÞ;

which implies that
wðdðz;TzÞÞ 6 wðdðz;TzÞÞ � /ðdðz;TzÞÞ;

which is a contradiction unless dðz;TzÞ ¼ 0, or that fzg ¼ Tz; that is, z is a fixed
point of T. h

Taking w an identity function in Theorem 2.5, we have the following result.

Corollary 2.6. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! BðXÞ be a
multivalued mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that fx0g�1Tx0,

(ii) for x; y 2 X ; x � y implies Tx�1Ty,

(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,

(iv) dðTx; TyÞ 6 max dðx; yÞ;Dðx; TxÞ;Dðy; TyÞ; Dðx;TyÞþDðy;TxÞ
2

n o
� / max dðx; yÞ;fð

dðy; TyÞgÞ, for all comparable x; y 2 X , where / : ½0;1Þ ! ½0;1Þ is any con-
tinuous function with /ðtÞ ¼ 0 if and only if t ¼ 0. Then T has a fixed point.

The following corollary is a special case of Theorem 2.5 when T is a singleval-
ued mapping.

Corollary 2.7. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! X be a
mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that x0 � Tx0,

(ii) for x; y 2 X ; x � y implies Tx � Ty,

(iii) if xn ! x is a nondecreasing sequence in X, then xn � x, for all n,

(iv) wðdðTx;TyÞÞ6w max dðx;yÞ;dðx;TxÞ;dðy;TyÞ;dðx;TyÞþdðy;TxÞ
2

n o� �
�/ðmaxfdðx;yÞ;

dðy; TyÞgÞ,for all comparable x; y 2 X , where w is an altering distance function

and / : ½0;1Þ ! ½0;1Þ is any continuous function with /ðtÞ ¼ 0 if and only if

t ¼ 0.

Then T has a fixed point.
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In the following theorem we replace condition (iii) of the above corollary by
requiring T to be continuous.

Theorem 2.8. Let ðX; � Þ be a partially ordered set and suppose that there exists a
metric d in X such that ðX; dÞ is a complete metric space. Let T : X! X be a
continuous mapping such that the following conditions are satisfied:

(i) there exists x0 2 X such that x0 � Tx0,

(ii) for x; y 2 X ; x � y implies Tx � Ty,

(iii) wðdðTx; TyÞÞ 6 w max dðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TyÞþdðy;TxÞ
2

n o� �
�/ max dðx; yÞ; dðy; TyÞf gð Þ, for all comparable x; y 2 X , where w is an altering
distance function and / : ½0;1Þ ! ½0;1Þ is any continuous function with
/ðtÞ ¼ 0 if and only if t ¼ 0.

Then T has a fixed point.

Proof. We can treat T as a multivalued mapping in which case Tx is a singleton set
for every x 2 X. Then we consider the same sequence fxng as in the proof of The-
orem 2.5. Arguing exactly as in the proof of Theorem 2.5, we have that fxng is a
Cauchy sequence and lim

n!1
xn ¼ z. Then, the continuity of T implies that
z ¼ lim
n!1

xnþ1 ¼ lim
n!1

Txn ¼ Tz
and this proves that z is a fixed point of T. h

Remark 2.1. The Corollary 2.7 and Theorem 2.8 are the corresponding results in
partially ordered metric spaces of Theorem 3.1 in Choudhury et al. (2011).

Example 1. Let X ¼ ð0; 0Þ; ð0;� 1
5
Þ; � 1

8
; 0

	 �� 

be a subset of R2 with the order �

defined as: for ðx1; y1Þ; ðx2; y2Þ 2 X; ðx1; y1Þ � ðx2; y2Þ if and only if
x1 6 x2; y1 6 y2. Let d : X� X! R be given as
dðx; yÞ ¼ maxfjx1 � x2j; jy1 � y2jg; for x ¼ ðx1; y1Þ; y ¼ ðx2; y2Þ 2 X:
Then ðX; dÞ is a complete metric space with the required properties of Theorems
2.1 and 2.5.

Let T : X! BðXÞ be defined as follows:
Tx ¼
fð0; 0Þg; if x ¼ ð0; 0Þ;
ð0; 0Þ; � 1

8
; 0

	 �� 

; if x ¼ 0;� 1

5

	 �
;

fð0; 0Þg; if x ¼ � 1
8
; 0

	 �
:

8><
>:
Then T has the properties mentioned in Theorems 2.1 and 2.5.
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Let w : ½0;1Þ ! ½0;1Þ and / : ½0;1Þ ! ½0;1Þ be defined respectively as
follows:
wðtÞ ¼ t2 and /ðtÞ ¼ t3:
Then w and / have the properties mentioned in Theorems 2.1 and 2.5.
Without loss of generality, we assume that x � y and discuss the following

cases.

(i) If x ¼ ð0;� 1
5
Þ and y ¼ ð0; 0Þ, then dðTx; TyÞ ¼ 1

8
,

max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �
¼ 1

5
and

max dðx; yÞ; dðy;TyÞf g ¼ 1

5
:

(ii) If x ¼ � 1
8
; 0

	 �
and y ¼ ð0; 0Þ, then dðTx; TyÞ ¼ 0,
max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �
¼ 1

8
and

maxfdðx; yÞ; dðy;TyÞg ¼ 1

8
:

(iii) If x ¼ ð0; 0Þ and y ¼ ð0; 0Þ, then dðTx; TyÞ ¼ 0,
max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �
¼ 0 and

maxfdðx; yÞ; dðy;TyÞg ¼ 0:
(iv) If x ¼ ð0;� 1
5
Þ and y ¼ 0;� 1

5

	 �
, then dðTx; TyÞ ¼ 1

8
,

max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �
¼ 1

5
and

maxfdðx; yÞ; dðy;TyÞg ¼ 1

5
:

(v) If x ¼ � 1
8
; 0

	 �
and y ¼ � 1

8
; 0

	 �
, then dðTx; TyÞ ¼ 0,
max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �
¼ 1

8
and

maxfdðx; yÞ; dðy;TyÞg ¼ 1

8
:

In above all cases, clearly,
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wðdðTx;TyÞÞ 6 aw max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �� �

for a ¼ 1

2
;

and
wðdðTx;TyÞÞ 6 w max dðx; yÞ;Dðx;TxÞ;Dðy;TyÞ;Dðx;TyÞ þDðy;TxÞ
2

� �� �
� /ðmaxfdðx; yÞ; dðy;TyÞgÞ:
Hence the conditions of Theorems 2.1 and 2.5 are satisfied and it is seen that ð0; 0Þ
is a fixed point of T.

Remark 2.2. The above example does not satisfy the Corollary 2.2 when a ¼ 1
2
.

Hence Theorem 2.1 is a generalization of Corollary 2.2.

Remark 2.3. The condition (iv) of Corollary 2.7 or, alternately, the condition (iii)
of Theorem 2.8 implies the condition (iv) of Corollary 2.3 and the condition (iii) of
Theorem 2.4. For explanation, we start with the condition (iv) of Corollary 2.3
wðdðTx;TyÞÞ 6 aw max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; dðx;TyÞ þ dðy;TxÞ
2

� �� �

¼ w max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; dðx;TyÞ þ dðy;TxÞ
2

� �� �

� ð1� aÞw max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; dðx;TyÞ þ dðy;TxÞ
2

� �� �

6 w max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; dðx;TyÞ þ dðy;TxÞ
2

� �� �
� ð1� aÞwðmaxfdðx; yÞ; dðy;TyÞgÞ;
which is the special case of the condition (iv) of Corollary 2.7 or, alternately, the
condition (iii) of Theorem 2.8 when / defined by /ðtÞ ¼ ð1� aÞwðtÞ. Hence the
Corollary 2.6 and Theorem 2.8 are more general than Corollary 2.3 and Theorem
2.4, respectively. The following example demonstrate that the generalizations are
actual.

Example 2. Let X ¼ f0; 1; 2; 3; . . .g with the usual order 6 be a partially ordered
set. Let d : X� X! R be given as
dðx; yÞ ¼
xþ y; if x – y;

0; if x ¼ y:

�
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Then ðX; dÞ is a complete metric space with the required properties of Corollary
2.7 and Theorem 2.8.

Let w : ½0;1Þ ! ½0;1Þ and / : ½0;1Þ ! ½0;1Þ be defined respectively as
follows:
wðtÞ ¼ t2 and /ðtÞ ¼
t2

2
; if t 6 1;

1
2
; if t > 1:

(

Then w and / have the properties mentioned in Corollary 2.7 and Theorem 2.8.
Let T : X! X be defined as
Tx ¼
x� 1; if x – 0;

0; if x ¼ 0:

�

Then T has the properties mentioned in Corollary 2.7 and Theorem 2.8.
We discuss following cases for x; y 2 X.

(i) If x > y and y – 0, then
wðdðTx;TyÞÞ ¼ wðdðx� 1; y� 1ÞÞ ¼ wðxþ y� 2Þ ¼ ðxþ y� 2Þ2;

wðmaxfdðx; yÞ; dðx;TxÞ; dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�gÞ

¼ w max xþ y; 2x� 1; 2y� 1;xþ y� 1 or
xþ y� 1

2

� �� �

¼ ð2x� 1Þ2
(since 1
2
½dðx;TyÞ þ dðy;TxÞ� ¼ xþ y� 1 or xþy�1

2
, according as y – Tx or y ¼ TxÞ

and
/ðmaxfdðx; yÞ; dðy;TyÞgÞ ¼ /ðmaxfxþ y; 2y� 1gÞ ¼ 1

2
:

(ii) If y > x and x – 0, then
wðdðTx;TyÞÞ ¼ wðdðx� 1; y� 1ÞÞ ¼ wðxþ y� 2Þ ¼ ðxþ y� 2Þ2;

w max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�

� �� �

¼ w max xþ y; 2x� 1; 2y� 1; xþ y� 1 or
xþ y� 1

2

� �� �
¼ ð2y� 1Þ2
(Since 1
2
½dðx;TyÞ þ dðy;TxÞ� ¼ xþ y� 1 or xþy�1

2
, according as x – Ty or x ¼ TyÞ

and
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/ðmaxfdðx; yÞ; dðy;TyÞgÞ ¼ /ðmaxfxþ y; 2y� 1gÞ ¼ 1

2
:

(iii) If x > y and y ¼ 0, then
wðdðTx;TyÞÞ ¼ wðdðx� 1; 0ÞÞ ¼ wðx� 1Þ

¼ ðx� 1Þ2;w max dðx; yÞ; dðx;TxÞ; dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�

� �� �

¼ w max dðx; 0Þ; dðx;TxÞ; dð0; 0Þ; 1
2
½dðx; 0Þ þ dð0;TxÞ�

� �� �

¼ w max x; 2x� 1; 0; x� 1

2

� �� �
¼ ð2x� 1Þ2 and / max ðdðx; yÞ; dðy;TyÞÞf gð Þ

¼ /ðmaxfdðx; 0Þ; dð0; 0ÞgÞ ¼ /ðxÞ ¼ 1

2
:

(iv) If y > x and x ¼ 0, then
wðdðTx;TyÞÞ ¼ wðdð0; y� 1ÞÞ ¼ wðy� 1Þ

¼ ðy� 1Þ2;w max dðx; yÞ;dðx;TxÞ;dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�

� �� �

¼ w max dð0;yÞ;dð0; 0Þ;dðy;TyÞ; 1
2
½dð0;TyÞ þ dðy;0Þ�

� �� �

¼ w max y;0;2y� 1; y� 1

2

� �� �
¼ ð2y� 1Þ2 and /ðmaxfdðx;yÞ; dðy;TyÞgÞ

¼ /ðmaxfdð0; yÞ;dðy;TyÞgÞ ¼ /ðmaxfy; 2y� 1gÞ ¼ 1

2
:

(v) x ¼ y, then
wðdðTx;TyÞÞ ¼ 0;wðmaxfdðx; yÞ; dðx;TxÞ; dðy;TyÞ; 1
2
½dðx;TyÞ

þ dðy;TxÞ�gÞ

¼ 0 or ð2x� 1Þ2;

according as x ¼ y ¼ 0 or x ¼ y – 0 and /ðmaxfdðx; yÞ; dðy;TyÞgÞ ¼ 0 or 1

2
,

according as x ¼ y ¼ 0 or x ¼ y – 0.

In all the above cases, the condition (iv) of Corollary 2.7 or, alternately, the con-
dition (iii) of Theorem 2.8 is satisfied. Hence required conditions of Corollary 2.7
and Theorem 2.8 are satisfied and it is seen that 0 is a fixed point of T.

Note: In the above example, we set x ¼ nþ 1 and y ¼ n, where n is a positive
integer. Then according to the case (i), wðdðTx;TyÞÞ ¼ ð2n� 1Þ2 and
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wðmaxfdðx; yÞ; dðx;TxÞ; dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�gÞ ¼ ð2nþ 1Þ2. Then,

wðdðTx;TyÞÞ ¼ anwðmaxfdðx;yÞ;dðx;TxÞ;dðy;TyÞ; 1
2
½dðx;TyÞ þ dðy;TxÞ�gÞ, where

an ¼ ð2n�12nþ1 Þ
2
.

Since an ! 1 as n!1, condition (iv) of Corollary 2.3 or, alternately, the
condition (iii) of Theorem 2.4 does not hold for all comparable x; y 2 X. This
shows that Corollary 2.7 and Theorem 2.8 are more general than Corollary 2.3
and Theorem 2.4, respectively.
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