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Abstract.  We establish some results on the existence of multiple nontrivial solutions
for a class of p(x)-Laplacian elliptic equations. Our approach relies on the variable
exponent theory of generalized Lebesgue—Sobolev spaces, combined with adequate var-
iational methods and a variant of the Mountain Pass lemma.
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1. INTRODUCTION

Consider the p(x)-Laplacian Dirichlet problem

—Ayu =f(x,u) in Q,
(P){ u=20 on 0Q,

where Q is a bounded smooth domain in RV (N > 1), p € C(Q) with

l<p = in(flp(x) < pt = supp(x) < oo,
X& xeQ
Ap(x):divd Vil P72Vy) s the p(x)-Laplacian operator, which becomes p-Laplacian
when p(x)=p (a constant) and /: Q x R — R is a Carathéodory function satisfying
the subcritical growth condition
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(Fo)
fx, )] < e(1+ "7, VieR, ae xeQ

for some ¢ > 0,¢ € C(Q) and 1 < ¢(x) < p*(x),Vx € Q, where

p*(x): %a lfp(x)<N7
00, if p(x) = N.

The study of differential and partial differential involving variable exponent condi-
tions is a new and an interesting topic. The interest in studying such problems was stim-
ulated by their applications in elastic mechanics, fluid dynamics etc... These physical
problems were facilitated by the development of Lebesgue and Sobolev spaces with
variable exponent.

Recall that the weak solutions of (P) are the critical points of the associated energy
functional @, given by

O(u) 2/91%|Vu|p(x) dx—/QF(x, u) dx,

acting on the generalized Sobolev space W ( ), where F(x,1) fo x,s) ds. It is
well known that under (F), @ is well deﬁned and isa C' functlonal with derivative gi-
ven by

(@ (u) /|Vu|”(A *VuVy dx — /f x,u)v dx,

for all u,v € W™ (Q).

If f(x,0) = 0 for a.e. x € Q, the constant function u = 0 is a trivial solution of prob-
lem (P). In this case, the key point is proving the existence of nontrivial solutions for
(P). For this purpose, we need to introduce a condition that gives us information about
the behaviors of the perturbed function f{(x,#) or its primitive F(x,f) near infinity and
near zero.

The existence and multiplicity of solutions of p(x)-Laplacian problems have been
studied by several authors, see for example [2,3,7-10,12—15] and the references therein.

More recently, in [10], the authors investigated the eigenvalues of the p(x)-Laplacian
Dirichlet problem. They showed that A, the set of eigenvalues, is a nonempty infinite
set such that supA = + oco. Moreover, they proved that if there is a vector / € RY \ {0}
such that for any x € Qp(x + t/) is monotone for 1 € I, = {d x + t/ € Q}, then

. =infA > 0. (1.1)

In [13], the authors studied the existence and multiplicity of solutions of the
p(x)-Laplacian operator in the particular case f(x,r) = A(/’~' — #~') with 1 < p <
7 <inf gp(x) and ¢t > 0. They proved the existence of at least two distinct non-
negative, nontrivial weak solutions, provided that A > 0 is large enough.

In this paper, we start by proving the existence of at least one nontrivial solution
under the following conditions.
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(F1)

N2
lim | F(x,t) — U )} Ztf" | = —oo uniformly for a.e. x € Q,
|t]—o00 (p*)y

where A« is given in (1.1).

(F>) There exist € [l,p7) and y > 0, such that

0 < uF(x,1) < tfix, 1), forae. x€Q, 0<|tf] <.

The main result reads as follows.

Theorem 1.1. Assume that (Fy), (F;) and (F>) are satisfied, then the problem(P) has at
least one nontrivial solution.

The second purpose of this paper is to show the existence of at least two nontrivial
solutions of problem (P) under the following assumptions.

(F3) There exist 0 > p* and M > 0 such that
[t| = M =0 < 0F(x,1) < tf(x,1)

for a.e. x € Q and e+ach reR.
(Fy) f(x,1) = o(|tf” ") as 1 — 0 and uniformly for x € Q, with ¢~ > p™*.

We can state the following result.

Theorem 1.2. Suppose (F,), (F3), (Fy) and f(x,0) = 0 for a.e. x€ Q. Then the
problem(P) has at least two nontrivial solutions, in which one is non-negative and one is
non-positive.

Remark 1.3. By Theorem 4.3 in [9], problem (P) has at least a weak solution. How-
ever, the proof in [9] does not state the fact that solution is nontrivial in the case when

f(x,0) = 0.

We point out that our results are inspired by [1], where a related property is proved
in the case of the p-Laplace operators. We point out that the extension from p-Laplace
operator to p(x)-Laplace operator is not trivial, since the p(x)-Laplacian has a more
complicated structure than the p- Laplace operator, for example, it is inhomogeneous.

This paper contains three sections. We will first introduce some basic preliminary
results and lemmas in Section 2. In Section 3, we will give the proofs of our main
results.

2. PRELIMINARY RESULTS

We recall in this section some definitions and basic properties of the variable exponent
Lebesgue—Sobolev spaces L”(Q) and W,” ™(Q), where Qs a bounded domain in R".
Throughout this paper, we assume that p(x) > 1, p(x) € C**(Q) with o € (0,1).
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Set
C.(Q) = {h;h € C(Q),h(x) > 1 for all x € Q}.
For any h € C,(Q), we define
h™ = maxh(x) and A~ = minh(x).

xeQ xeQ

For any p(x) € C,(Q), we define the variable exponent Lebesgue space
L’'Y(Q) = {u : Q — R measurable and / |u(x) ™ dx < oo}.
Q

We define a norm, the so-called Luxemburg norm, on this space by the formula

|ua] ) 1nf{,u>0 /| |”(‘ dx < 1}

Variable exponent Lebesgue space resembles classical Lebesgue space in many respects:
they are Banach spaces, the Holder inequality holds, they are reflexive if and only if
1 <p <p" < oo and continuous functions are dense, if p* < oo. The inclusion
between Lebesgue spaces also generalizes naturally: if 0 < | Q| < co and py, p, are
variable exponents so that p;(x) < pz(x) almost everywhere in Q then there exists the
continuous embedding L™ (Q)— L7 (Q).

We denote by L(Q)the conjugate space of L"“(Q), where ( 7+ % = 1. For any
ue L7Y(Q) and v € L1(Q), the Holder type inequality

11
uv dx| < +>Iul,\.IVI
/Q \<p 7 ) "o Ve

holds true. For more details, we can refer to [11].

An important role in manipulating the generalized Lebesgue—Sobolev spaces is
played by the Modular of the L”*(Q) space, which is the mapping J : L™ (Q) — R
defined by

:/\u|p(x) dx
0

If (u,)u € L7(Q) and p* < oo then the following relations hold true

Uy > 1= ulhy < J(w) < July,, 2.1
N -
|l < 1= Jul) o < J(u) < ulyy, (2.2)
|ty — ul ) — 0 <= J(u, —u) — 0, (2.3)
|ul ) < 1(resp. = 1;> 1) <= J(u) < I(resp. = ;> 1). (2.4)
Spaces with p ™ = oo have been studied by [6].
Next, we define W, (Q) as the closure of C¥(Q) under the norm
[lul| = |Vu|p<x (2.5)
The Space (W “(Q) I]l) is a separable and reflexive Banach space. We note that if

g€ CL(Q) and g(x) < p (x) for all x € Q, then the embedding Wé”’m (Q)— L1 (Q)
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is compact and continuous. We refer to [11,4,5] for further properties of variable expo-
nent Lebesgue—Sobolev spaces.
Now, we consider the eigenvalues of the p(x)-Laplacian Dirichlet problem

—Apu = Aul 0 in Q,
u=20 on 0Q.

For any u € W,"™(Q), define F, G : W,"(Q) — R by

1 ; 1
Flu :/—Vupm dx; G(u :/—up(x) dx.
(u) Qp(x)| | (u) A |ul

For any ¢ > 0, define
M, =G (1) ={ue Wy (Q): Gu) =1},
then M, is a C' submanifold of W,”"(Q) since ¢ is a regular value of G. Put,

S ={HCM,:H=—H;y(H) > n},

tn

where y(H) is the genus of H.
Define

By[10], the Dirichlet problem (2.6) has infinitely many eigenpair sequences {(u(,, ), A(n.0)}
such that

G(:l:u(n,t)) =1, F(:l:u(n,t)) = Cny)s
F(u U,
;L(n.,t) = < /( ("J))v ( J>> — 00, as n — Q.
(G (”(n,t))a “(n,r)>
Define
(x)
5= Jo IVul” dx

wyr@ngo) Jo lul”™ dx
p(x)

Jo p(%)|Vu|’ dx

b

W(I].p(,\»)&)\{o} fglﬁ|u|p(x) dx

/x = inf A where A = {1 € R : Ais an eigenvalue of(2.6)}.
So we obtain the following lemma.

Lemma 2.1.

N\ 2 4\ 2

Proof. First, we prove the following claim.
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Claim: For all + > 0, let 1, be an eigenfunction associated with /; , of the problem
(2.6). Then

Fluy) = ¢y = inf{F(u) :u € M,}.

Indeed, let b, = inf{F(u):u € M,}. Obviously b, < ¢ . Since the functional F: W(l)”’(x>
(Q) — R is coercive and weakly lower semi-continuous and M, is weakly closed subset
of W,"™(Q), there exists us € M, such that F(+us) = b, Let H = { + ux}, then
y(H) = 1 and ¢(; 5 < b,. Thus the claim follows.

Second, we have

— x)
P JolVuol™ dx _ Fuw) _ . {F(u)

P "™ dx  Gluo) Glu) }

and from this it follows that &2 ) < inf{g4|u € M,}.
Then,

- . F

p_}wgmf ﬂ‘UEM, Vs> 0.
r* G(u)

So, ;%i* < u, and consequently A, < 5; I,

Now, let u, ;) be the eigenfunction associated with 4, ,, we haved, , > £ Fltnn)

B i FG(M(II.I))
every n € N and ¢ > 0. It result that A, , > 1%;1* and hence, A, > f;,u*. Finally,

for

Eop <A, <E
o e S A 7 Hye

4

<L p,. Thus the lemma

On the other hand, it is easy to see that i—;ﬂ* < S5

follows. O

*

Now, we consider the truncated problem

(Pi){ —Apyu = fi(x,u) inQ,

u=20 on 0Q,
where
flx,t) ifxt =0,
fu = {110
0 otherwise.
We denote by u" = max(u,0) and ¥~ = max(—u,0) the positive and negative parts
of u.

We need the following lemmas.

Lemma 2.2.

() If u € Wy(Q) then u*,u~ € Wy"™(Q) and

Vu, if [u> 0], B 0, if [u = 0],
Vu" = u =
0, if [u<0], Vu, if [u<0].

(ii) The mappings u ' u™ are continuous on Wy (Q).
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Proof. The first assertion has been proved in [13, Lemma 3.3].

Now, we will show the second assertion. Indeed, since u* = 1 (|u| + ), it suffices to
prove that the mapping u+|u| is continuous on W(l)’mx)(Q) ie. u, — u implies
lu, | = lul. Wehavelu,| —=lul in L7¥(Q) and | u, | is bounded in W(I)'p(x) (Q). Thus,

from reflexivity of W,” @), lu,| —z in wy"™(Q) for a subsequence. Hence
z=1|ul and |u,| —lul for the whole sequence. On the other hand, we have

Vlul = sgn(u)Vu a.e. and || u | = ||u|. By uniform convexity of W™ (Q) it follows
that [w, | —lul in w” ™ (Q). Thus, the lemma follows. [

Lemma 2.3. All solutions of (P, )(resp.(P_)) are non-negative (resp. non-positive) solu-
tions of (P).

Proof. Define @, : W,"(Q) — R,
1
D (u :/—Vupmdx—/F X, u) dx
s = [ vl [ P

|
:/ —— |V’ dx—/F(x,ui) dx,
a P(x) Q

where F.(x,s) = [, fi(x,) dr. Itis well known that from Lemma 2.2 and the condition
(Fo),®. is well defined on W,” “(Q), weakly lower semi-continuous and C'-
functionals.

Let u be a solution of (P.), or equivalently, u be a critical point of ®, . Taking
v=1u in

@gwwzlﬁwMWmew—ﬁmmwwza

shows that J(Vu~) = [,(|Vu ') dx = 0. In view of (2.1) and (2.2) we have [lu"| = 0,
sou” = 0and u = u" is also a critical point of ® with critical value ®(u) = @ ().
Similarly, nontrivial critical points of ®_ are non-positive solutions of (P). O

3. PROOF OF MAIN RESULTS
3.1. Proof of Theorem 1.1
Before to present the proof of Theorem 1.1, we start with the following auxiliary result.
Lemma 3.1. @ is coercive on W(l)’p(x)(Q).

Proof. Put

ﬂnOZHmﬂ—ggM”V.
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Then, from (F;) we conclude that, for every M > 0, there is Ry, > 0 such that
G(x,t) < —M,V|t| = Ry, ae xeQ. (3.1
By contradiction, let K € R and (u,) C W,"™(Q) be such that
llun]] = 00 and @(u,) < K.

Putting v, = one has ||v,| = 1. For a subsequence, we may assume that for some

H H’
vo € Wy ) (Q), we have v, — v, weakly in W(l)”’ NQ), v, — vy strongly in LFY(Q),
v,(x) = vo(x) a.e. in Q.

Now, using (3.1) and (2.1) it follows that

K > O(u, :/ Vu,|"™) dv—/ X, u,) dx
(u4n) e )| | Fx, uy)
%/|Vun|p /\un|1) dx — / G(x,u,) dx
1 . - .
—+<||un|f’ - (’U’—) A / e dx> s (32
o

where M, € R. )
Dividing (3.2) by ||u,||” and passing to the limit, we conclude

p1+< (P ) ;b*/\vov’ dA) <0,

Consequently, vo#0. Let Qy = {x € Qivg(x)# 0}, via the result above we have
|QJ > 0and

|u,(x)] — 400, a.e. x € Q.

Thus, from (F;) and Lemma 2.1 we deduce that

K = ®(u,) = L/ <|Vun|”(x) Ao, |” ) dx — /G X, Uy) dx
o Q

p+

! w (P

— [Vu, [P — (p_) . u,l|’” /G (x, uy)
pt /Q + Q

G(x,u,) dx — +o0.
Q

This is a contradiction. Hence @ is coercive on Wl o (Q) O

Lemma 3.2. Under (Fy) and (F5), zero is local maximum for the functional ®(su),s € R,
for u#0.

Proof. From the condition (F5), there exists a constant ¢, > 0 such that

F(x,1) = colt]", for x € Q,|1] < 7. (3.3)



Multiplicity of solutions for a general p(x)-Laplacian Dirichlet problem 213

From (Fy) and | 1| > 7, there exists ¢; > 0 such that
|F(x, )| < a]]™™, xeQ >
Using the preceding inequality and (3.3), we get
Fx, 1) = colt] =i, xeQ, r1eR (3.4)

for some ¢~ = inf.cqq(x) > p* and ¢; > 0.

Then, for u € W(IJ’I'('x)(Q), u#0 and s > 0, we have

O (su) :/ —\sVu|p dx—/F(x7su) dx
ol 0

p(x)
s ()
<—/|vu|f’ dx—/( olsul" — c1lsul?™) dx
p=
s” (x) + (x)
<—_/|Vu|”' dx — cost||ul|u + c157 /|u|q dx
P Ja Q

Since u < p*" < ¢, there exists a 5o = so(u) > 0 such that

D(su) <0, forall 0 <s<s. O (3.5)

Proof of Theorem 1.1. By Lemma 3.1, ® is coercive on W, (Q). Since ® is weakly
lower semi-continuous, ® has a global minimizer u, on W1 7(Q). Because ®(0) = 0,
then, in order to prove ug # 0, it is sufficient to show that <D(u0) < 0. Hence, the The-
orem 1.1 follows from Lemma 3.2. [

3.2. Proof of Theorem 1.2

To apply the mountain pass theorem, we will do separate studies of the compactness of
@, and its geometry.

Lemma 3.3. Under (Fy) and (F3), the functional @, satisfies the (PS) condition.
Proof. Let (u,), be a (PS) sequence for the functional ®: ®, (u, bounded and

@' (u,) — 0. Let us show that (u,), is bounded in W(')"’<"')(Q). Using the hypothesis
(F3), since @ (u,) is bounded, we have

1
C = / —|Vu,,\p(x) a’x—/F(x,u;) dx
o p(x) Q

1
>FJ(V1’{")_/ ”f( X, ”)dX—FCz,

where C, and C, are two constants. Note that
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@) = [ 1V e [ s}
Q Q

= [ 19l = [ ) v
Q Q

which implies

Cr = (= 9T+ 0, () + Co (36

Suppose, by contradiction that (u,), unbounded in Wy”")(Q), so |lu,]| = 1 for rather
large values of n and it results that
H”n”f < J(Vu,) < [Ju])”

for rather large values of n. Furthermore, @' (u,) — 0 assure that there exists C3 > 0
such that

= Cfuan]| < (P, () ttn) < Cfuan|

for rather large values of n. Consequently,

1 1 - C
G > (=5 )l = Gl + €5

Since p~ > 1 and (% — é) > 0, we have

P
I 1 - C
(F‘g)”“n”] _F3||un|| + €, — +o0 as n — 400,

what is a contradiction. So (u,), is a bounded sequence in W(l)’” ("')(Q). The proof of
Lemma 3.3 is complete. [

Lemma 3.4. There exist r > 0 and o > 0 such that ®, (u) = o, for allu € W(l)’p(x>(§2)-
with ||ul| = .

Proof. The conditions (Fy) and (Fy) assure that

\F(x,0)] < i’ + C(e)|1]"™  for all (x,7) € Q x R.

For ||u/| small enough, we have
1
D, (u) = —J(Vu) —/F(xm*) dx

p Q
1 + +

> L) —g/|u+|ﬂ dx—C(e)/ 1
p Q Q
T

> —|Jull” ,8/ lul”" dx — C(g)/ | dx. (3.7)
p Q Q

By the condition (Fj), it follows

p<p<pt<q <qlx)<p
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then
W@ c (@) and WY (Q) C L9(Q),

with a continuous and compact embedding, what implies the existence of C4,Cs5 > 0
such that

[ull = < Callull - and ful,y < Csllul

for all u € W™ (Q). Since || is small enough, we deduce
) < ulg, < ol

Replacing in (3.7), it results that
1

+ + + -
®M>FMV%@WW—WM%

with C; are positives constants. Let us choose ¢ > 0 such that gCZ+ < 2#, we obtain

1 + - + 1 -t
®.0) 2 gl = Gl > (555 - Gl ). (8

Since p* < ¢, the function t — (2# — C7t‘17"’+> is strictly positive in a neighborhood
of zero. It follows that there exist » > 0 and o« > 0 such that

O (1) = aVue Wy Q) : lul|=r. O

Proof of Theorem 1.2. In order to apply the Mountain Pass Theorem, we must prove
that

D, (su) — —oo0 as s — +o00,

for a certain u € Wy"™(Q). From the condition (F3), we obtain
F(x,1) = c|t|’ for all (x,7) € Q x R.

Let u € W™ (Q) and s > 1 we have

P(x)
(I)+(Su) = /(; ;(x) |V]/[|17(") dx — /(;F(x, (Su)+) dX,

o .
<P / —— [V’ dx—csv/ lut|” dx.
a P(X) Q

The fact 0 > p™, gives that

@, (su) — —o0 as § — +oo.

It follows that there exists e € W™ (Q) such that |l¢]| > r and @ (¢) < 0.
According to the Mountain Pass Theorem, ® admits a critical value ¢ > « which
is characterized by

w = infsup @, (h(r))

heA e [0,1]
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where
A={he c([o, 1], W(])"”(x)(Q)) - h(0) = 0 and A(1) = e).

Then, the functional @ has a critical point ™ with ® (") > o. But, ®,(0) = 0,
thatis, u" # 0. Therefore, the problem (P, ) has a nontrivial solution which, by Lemma
2.3, is a non-negative solution of the problem (P).

Similarly, using ®_, we show that there exists furthermore a non-positive solution.
The proof of Theorem 1.2 is now complete. [
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