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Abstract. We establish some results on the existence of multiple nontrivial solutions

for a class of p(x)-Laplacian elliptic equations. Our approach relies on the variable

exponent theory of generalized Lebesgue–Sobolev spaces, combined with adequate var-

iational methods and a variant of the Mountain Pass lemma.
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1. INTRODUCTION

Consider the p(x)-Laplacian Dirichlet problem
ðPÞ
�DpðxÞu ¼ fðx; uÞ in X;

u ¼ 0 on @X;

�

where X is a bounded smooth domain in RN (N P 1), p 2 CðXÞ with

1 < p� ¼ inf

x2X
pðxÞ 6 pþ ¼ sup

x2X
pðxÞ <1;
Dp(x)=div(Œ�uŒp(x)�2�u) is the p(x)-Laplacian operator, which becomes p-Laplacian
when p(x) ” p (a constant) and f : X� R! R is a Carathéodory function satisfying
the subcritical growth condition
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(F0)
jfðx; tÞj 6 cð1þ jtjqðxÞ�1Þ; 8t 2 R; a:e: x 2 X;
for some c > 0; q 2 CðXÞ and 1 < qðxÞ < p�ðxÞ;8x 2 X, where
p�ðxÞ ¼
NpðxÞ
N�pðxÞ ; if pðxÞ < N;

1; if pðxÞP N:

(

The study of differential and partial differential involving variable exponent condi-
tions is a new and an interesting topic. The interest in studying such problems was stim-
ulated by their applications in elastic mechanics, fluid dynamics etc. . . These physical
problems were facilitated by the development of Lebesgue and Sobolev spaces with
variable exponent.

Recall that the weak solutions of ðPÞ are the critical points of the associated energy
functional U, given by
UðuÞ ¼
Z

X

1

pðxÞ jruj
pðxÞ

dx�
Z

X
Fðx; uÞ dx;
acting on the generalized Sobolev space W
1;pðxÞ
0 ðXÞ, where Fðx; tÞ ¼

R t

0
fðx; sÞ ds. It is

well known that under (F0), U is well defined and is a C1 functional with derivative gi-
ven by
hU0ðuÞ; vi ¼
Z

X
jrujpðxÞ�2rurv dx�

Z
X
fðx; uÞv dx;
for all u; v 2W
1;pðxÞ
0 ðXÞ.

If f(x,0) = 0 for a.e. x 2 X, the constant function u = 0 is a trivial solution of prob-
lem ðPÞ. In this case, the key point is proving the existence of nontrivial solutions for
ðPÞ. For this purpose, we need to introduce a condition that gives us information about
the behaviors of the perturbed function f(x,t) or its primitive F(x,t) near infinity and
near zero.

The existence and multiplicity of solutions of p(x)-Laplacian problems have been
studied by several authors, see for example [2,3,7–10,12–15] and the references therein.

More recently, in [10], the authors investigated the eigenvalues of the p(x)-Laplacian
Dirichlet problem. They showed that K, the set of eigenvalues, is a nonempty infinite
set such that supK = +1. Moreover, they proved that if there is a vector l 2 RN n f0g
such that for any x 2 X,p(x + tl) is monotone for t 2 Ix = {tŒx + tl 2 X}, then
k� ¼ infK > 0: ð1:1Þ
In [13], the authors studied the existence and multiplicity of solutions of the
p(x)-Laplacian operator in the particular case f(x,t) = k(tc�1 � tb�1) with 1 < b <
c < infx2XpðxÞ and t P 0. They proved the existence of at least two distinct non-

negative, nontrivial weak solutions, provided that k > 0 is large enough.
In this paper, we start by proving the existence of at least one nontrivial solution

under the following conditions.
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(F1)
lim
jtj!1

Fðx; tÞ � ðp
�Þ2

ðpþÞ3
k�jtjp

�

 !
¼ �1 uniformly for a:e: x 2 X;
where k* is given in (1.1).
(F2) There exist l 2 [1,p�) and c > 0, such that
0 < lFðx; tÞ 6 tfðx; tÞ; for a:e: x 2 X; 0 < jtj 6 c:
The main result reads as follows.

Theorem 1.1. Assume that (F0), (F1) and (F2) are satisfied, then the problemðPÞ has at
least one nontrivial solution.

The second purpose of this paper is to show the existence of at least two nontrivial
solutions of problem ðPÞ under the following assumptions.

(F3) There exist h > p+ and M > 0 such that
jtjP M) 0 < hFðx; tÞ 6 tfðx; tÞ

for a.e. x 2 X and each t 2 R.
(F4) f ðx; tÞ ¼ oðjtjp

þ�1Þ as t fi 0 and uniformly for x 2 X, with q�> p+.

We can state the following result.

Theorem 1.2. Suppose (F0), (F3), (F4) and f(x,0) = 0 for a.e. x 2 X. Then the
problemðPÞ has at least two nontrivial solutions, in which one is non-negative and one is
non-positive.

Remark 1.3. By Theorem 4.3 in [9], problem ðPÞ has at least a weak solution. How-
ever, the proof in [9] does not state the fact that solution is nontrivial in the case when
f(x,0) = 0.

We point out that our results are inspired by [1], where a related property is proved
in the case of the p-Laplace operators. We point out that the extension from p-Laplace
operator to p(x)-Laplace operator is not trivial, since the p(x)-Laplacian has a more
complicated structure than the p- Laplace operator, for example, it is inhomogeneous.

This paper contains three sections. We will first introduce some basic preliminary
results and lemmas in Section 2. In Section 3, we will give the proofs of our main
results.

2. PRELIMINARY RESULTS

We recall in this section some definitions and basic properties of the variable exponent
Lebesgue–Sobolev spaces Lp(x)(X) and W

1;pðxÞ
0 ðXÞ, where X is a bounded domain in RN.

Throughout this paper, we assume that pðxÞ > 1; pðxÞ 2 C0;aðXÞ with a 2 (0,1).
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Set
CþðXÞ ¼ fh; h 2 CðXÞ; hðxÞ > 1 for all x 2 Xg:

For any h 2 CþðXÞ, we define
hþ ¼ max
x2X

hðxÞ and h� ¼ min
x2X

hðxÞ:
For any pðxÞ 2 CþðXÞ, we define the variable exponent Lebesgue space
LpðxÞðXÞ ¼ u : X! R measurable and

Z
X
juðxÞjpðxÞ dx <1

� �
:

We define a norm, the so-called Luxemburg norm, on this space by the formula
jujpðxÞ ¼ inf l > 0;

Z
X
j uðxÞ

l
jpðxÞ dx 6 1

� �
:

Variable exponent Lebesgue space resembles classical Lebesgue space in many respects:
they are Banach spaces, the Hölder inequality holds, they are reflexive if and only if
1 < p� 6 p+ <1 and continuous functions are dense, if p+ <1. The inclusion
between Lebesgue spaces also generalizes naturally: if 0 < ŒX Œ <1 and p1, p2 are
variable exponents so that p1(x) 6 p2(x) almost everywhere in X then there exists the

continuous embedding Lp2ðxÞðXÞ,!Lp1ðxÞðXÞ.
We denote by Lq(x)(X)the conjugate space of Lp(x)(X), where 1

pðxÞ þ 1
qðxÞ ¼ 1. For any

u 2 Lp(x)(X) and v 2 Lq(x)(X), the Hölder type inequality
Z
X
uv dx

����
���� 6 1

p�
þ 1

q�

� �
jujpðxÞjvjqðxÞ;
holds true. For more details, we can refer to [11].
An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the Modular of the Lp(x)(X) space, which is the mapping J : LpðxÞðXÞ ! R

defined by
JðuÞ ¼
Z

X
jujpðxÞ dx:
If (un),u 2 Lp(x)(X) and p+ <1 then the following relations hold true
jujpðxÞ > 1) jujp
�

pðxÞ 6 JðuÞ 6 jujp
þ

pðxÞ; ð2:1Þ

jujpðxÞ < 1) jujp
þ

pðxÞ 6 JðuÞ 6 jujp
�

pðxÞ; ð2:2Þ
jun � ujpðxÞ ! 0() Jðun � uÞ ! 0; ð2:3Þ
jujpðxÞ < 1ðresp: ¼ 1;> 1Þ () JðuÞ < 1ðresp: ¼ 1;> 1Þ: ð2:4Þ
Spaces with p+ =1 have been studied by [6].
Next, we define W

1;pðxÞ
0 ðXÞ as the closure of C10 ðXÞ under the norm
kuk ¼ jrujpðxÞ: ð2:5Þ
The Space ðW1;pðxÞ
0 ðXÞ; k:kÞ is a separable and reflexive Banach space. We note that if

q 2 CþðXÞ and q(x) < p*(x) for all x 2 X, then the embedding W
1;pðxÞ
0 ðXÞ,!LqðxÞðXÞ
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is compact and continuous. We refer to [11,4,5] for further properties of variable expo-
nent Lebesgue–Sobolev spaces.

Now, we consider the eigenvalues of the p(x)-Laplacian Dirichlet problem
�DpðxÞu ¼ kjujpðxÞ�2u in X;

u ¼ 0 on @X:

(
ð2:6Þ
For any u 2W
1;pðxÞ
0 ðXÞ, define F;G : W

1;pðxÞ
0 ðXÞ ! R by
FðuÞ ¼
Z

X

1

pðxÞ jruj
pðxÞ

dx; GðuÞ ¼
Z

X

1

pðxÞ juj
pðxÞ

dx:
For any t> 0, define
Mt ¼ G�1ðtÞ ¼ fu 2W
1;pðxÞ
0 ðXÞ : GðuÞ ¼ tg;
then Mt is a C1 submanifold of W
1;pðxÞ
0 ðXÞ since t is a regular value of G. Put,
X

t;n

¼ fH �Mt : H ¼ �H; cðHÞP ng;
where c(H) is the genus of H.
Define
cðn;tÞ ¼ inf
H2
P

t;n

sup
u2H

FðuÞ; n ¼ 1; 2; . . .
By [10] , the Dirichlet problem (2.6) has infinitely many eigenpair sequences {(u(n,t),k(n,t))}
such that
Gð�uðn;tÞÞ ¼ t;Fð�uðn;tÞÞ ¼ cðn;tÞ;

kðn;tÞ ¼
hF0ðuðn;tÞÞ; uðn;tÞi
hG0ðuðn;tÞÞ; uðn;tÞi

! 1; as n!1:
Define
�l� ¼ inf
W

1;pðxÞ
0

ðXÞnf0g

R
X jruj

pðxÞ
dxR

X juj
pðxÞ

dx
;

l� ¼ inf
W

1;pðxÞ
0

ðXÞnf0g

R
X

1
pðxÞ jruj

pðxÞ
dxR

X
1

pðxÞ juj
pðxÞ

dx
;

k* = inf K where K ¼ fk 2 R : kis an eigenvalue ofð2:6Þg.
So we obtain the following lemma.

Lemma 2.1.
p�

pþ

� �2

�l� 6 k� 6
pþ

p�

� �2

�l�:
Proof. First, we prove the following claim.
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Claim: For all t > 0, let u0 be an eigenfunction associated with k(1,t) of the problem
(2.6). Then
Fðu0Þ ¼ cð1;tÞ ¼ inffFðuÞ : u 2Mtg:
Indeed, let bt = inf{F(u):u 2Mt}. Obviously bt 6 c(1,t). Since the functional F : W
1;pðxÞ
0

ðXÞ ! R is coercive and weakly lower semi-continuous and Mt is weakly closed subset
of W

1;pðxÞ
0 ðXÞ, there exists u* 2Mt such that F(±u*) = bt. Let H = { ± u*}, then

c(H) = 1 and c(1,t) 6 bt. Thus the claim follows.
Second, we have
p�

pþ

R
X jru0j

pðxÞ
dxR

X ju0j
pðxÞ

dx
6

Fðu0Þ
Gðu0Þ

6 inf
FðuÞ
GðuÞ ju 2Mt

� �
and from this it follows that p�

pþ kð1;tÞ 6 inffFðuÞ
GðuÞ ju 2Mtg.

Then,
p�

pþ
k� 6 inf

FðuÞ
GðuÞ ju 2Mt

� �
8t > 0:
So, p�

pþ k� 6 l� and consequently k� 6
pþ

p� l�.
Now, let u(n,t) be the eigenfunction associated with k(n,t), we havekðn;tÞ P p�

pþ
Fðuðn;tÞÞ
Gðuðn;tÞÞ for

every n 2 N and t > 0. It result that kðn;tÞ P p�

pþ l� and hence, k� P p�

pþ l�. Finally,

p�

pþ l� 6 k� 6
pþ

p� l�.

On the other hand, it is easy to see that p�

pþ �l� 6 l� 6
pþ

p� �l�. Thus the lemma
follows. h

Now, we consider the truncated problem
ðP�Þ
�DpðxÞu ¼ f�ðx; uÞ in X;

u ¼ 0 on @X;

�

where
f�ðx; tÞ ¼
fðx; tÞ if� t P 0;

0 otherwise:

�

We denote by u+ = max(u,0) and u�= max(�u,0) the positive and negative parts
of u.

We need the following lemmas.

Lemma 2.2.

(i) If u 2 W 1;pðxÞ
0 ðXÞ then uþ; u� 2 W 1;pðxÞ

0 ðXÞ and
ruþ ¼
ru; if ½u > 0�;
0; if ½u 6 0�;

�
ru� ¼

0; if ½u P 0�;
ru; if ½u < 0�:

�

(ii) The mappings u ´ u±are continuous on W 1;pðxÞ
0 ðXÞ.
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Proof. The first assertion has been proved in [13, Lemma 3.3].

Now, we will show the second assertion. Indeed, since u� ¼ 1
2 ðjuj � uÞ, it suffices to

prove that the mapping u ´ Œu Œ is continuous on W
1;pðxÞ
0 ðXÞ i.e. un fi u implies

Œun Œ fi Œu Œ. We have Œun Œ fi Œu Œ in Lp(x)(X) and Œun Œ is bounded in W
1;pðxÞ
0 ðXÞ. Thus,

from reflexivity of W
1;pðxÞ
0 ðXÞ, Œun Œ N z in W

1;pðxÞ
0 ðXÞ for a subsequence. Hence

z = Œu Œ and Œun Œ N Œu Œ for the whole sequence. On the other hand, we have

�Œu Œ = sgn(u)�u a.e. and iŒu Œi = iui. By uniform convexity of W
1;pðxÞ
0 ðXÞ it follows

that Œun Œ fi Œu Œ in W
1;pðxÞ
0 ðXÞ. Thus, the lemma follows. h

Lemma 2.3. All solutions ofðPþÞ(resp.ðP�Þ) are non-negative (resp. non-positive) solu-
tions ofðPÞ.

Proof. Define U� : W
1;pðxÞ
0 ðXÞ ! R,
U�ðuÞ ¼
Z

X

1

pðxÞ jruj
pðxÞ

dx�
Z

X
F�ðx; uÞ dx

¼
Z

X

1

pðxÞ jruj
pðxÞ

dx�
Z

X
Fðx; u�Þ dx;
where F�ðx; sÞ ¼
R s

0
f�ðx; tÞ dt. It is well known that from Lemma 2.2 and the condition

(F0),U± is well defined on W
1;pðxÞ
0 ðXÞ, weakly lower semi-continuous and C1-

functionals.
Let u be a solution of ðPþÞ, or equivalently, u be a critical point of U+. Taking

v = u� in
hU0þðuÞ; vi ¼
Z

X
ðjrujpðxÞ�2rurv dx� fþðx; uÞvÞ dx ¼ 0;
shows that Jðru�Þ ¼
R

Xðjru�j
pðxÞ

dx ¼ 0. In view of (2.1) and (2.2) we have iu�i = 0,
so u�= 0 and u = u+ is also a critical point of U with critical value U(u) = U+(u).

Similarly, nontrivial critical points of U- are non-positive solutions of ðPÞ. h
3. PROOF OF MAIN RESULTS

3.1. Proof of Theorem 1.1

Before to present the proof of Theorem 1.1, we start with the following auxiliary result.

Lemma 3.1. U is coercive on W
1;pðxÞ
0 ðXÞ.

Proof. Put
Gðx; tÞ ¼ Fðx; tÞ � ðp
�Þ2

ðpþÞ3
k�jtjp

�
:
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Then, from (F1) we conclude that, for every M > 0, there is RM > 0 such that
Gðx; tÞ 6 �M; 8jtjP RM; a:e: x 2 X: ð3:1Þ

By contradiction, let K 2 R and ðunÞ �W

1;pðxÞ
0 ðXÞ be such that
kunk ! 1 and UðunÞ 6 K:
Putting vn ¼ un
kunk, one has ivni = 1. For a subsequence, we may assume that for some

v0 2W
1;pðxÞ
0 ðXÞ, we have vn N v0 weakly in W

1;pðxÞ
0 ðXÞ; vn ! v0 strongly in Lp(x)(X),

vn(x) fi v0(x) a.e. in X.
Now, using (3.1) and (2.1) it follows that
K P UðunÞ ¼
Z

X

1

pðxÞ jrunj
pðxÞ

dx�
Z

X
Fðx; unÞ dx

P
1

pþ

Z
X
jrunjpðxÞ dx�

ðp�Þ2

ðpþÞ3
k�

Z
X
junjp

�
dx�

Z
X
Gðx; unÞ dx

P
1

pþ
kunkp

�
� p�

pþ

� �2

k�

Z
X
junjp

�
dx

 !
þM1; ð3:2Þ
where M1 2 R.
Dividing (3.2) by kunkp

�
and passing to the limit, we conclude
1

pþ
1� p�

pþ

� �2

k�

Z
X
jv0jp

�
dx

 !
6 0;
Consequently, v0 „ 0. Let X0 = {x 2 X:v0(x) „ 0}, via the result above we have
ŒX0Œ > 0 and
junðxÞj ! þ1; a:e: x 2 X0:
Thus, from (F1) and Lemma 2.1 we deduce that
K P UðunÞP
1

pþ

Z
X
jrunjpðxÞ �

p�

pþ

� �2

k�junjp
�

 !
dx�

Z
X
Gðx; unÞ dx

P
1

pþ

Z
X
jrunjpðxÞ �

p�

pþ

� �2

k�junjpðxÞ
 !

dx�
Z

X
Gðx; unÞ dx

P �
Z

X
Gðx; unÞ dx! þ1:
This is a contradiction. Hence U is coercive on W
1;pðxÞ
0 ðXÞ. h

Lemma 3.2. Under (F0) and (F2), zero is local maximum for the functional UðsuÞ; s 2 R,
for u „ 0.

Proof. From the condition (F2), there exists a constant c0 > 0 such that
Fðx; tÞP c0jtjl; for x 2 X; jtj 6 c: ð3:3Þ
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From (F0) and Œt Œ > c, there exists c1 > 0 such that
jFðx; tÞj 6 c1jtjqðxÞ; x 2 X; jtj > c:
Using the preceding inequality and (3.3), we get
Fðx; tÞP c0jtjl � c1jtjqðxÞ; x 2 X; t 2 R ð3:4Þ
for some q�= infx2Xq(x) > p+ and c1 > 0.

Then, for u 2W
1;pðxÞ
0 ðXÞ; u–0 and s > 0, we have
UðsuÞ ¼
Z

X

1

pðxÞ jsruj
pðxÞ

dx�
Z

X
Fðx; suÞ dx

6
sp
þ

p�

Z
X
jrujpðxÞ dx�

Z
X
ðc0jsujl � c1jsujqðxÞÞ dx

6
sp
þ

p�

Z
X
jrujpðxÞ dx� c0s

lkuklLl þ c1s
qþ
Z

X
jujqðxÞ dx:
Since l < p+ < q+, there exists a s0 = s0(u) > 0 such that
UðsuÞ < 0; for all 0 < s < s0: � ð3:5Þ
Proof of Theorem 1.1. By Lemma 3.1, U is coercive on W
1;pðxÞ
0 ðXÞ. Since U is weakly

lower semi-continuous, U has a global minimizer u0 on W
1;pðxÞ
0 ðXÞ. Because U(0) = 0,

then, in order to prove u0 „ 0, it is sufficient to show that U(u0) < 0. Hence, the The-
orem 1.1 follows from Lemma 3.2. h
3.2. Proof of Theorem 1.2

To apply the mountain pass theorem, we will do separate studies of the compactness of
U± and its geometry.

Lemma 3.3. Under (F0) and (F3), the functional U+satisfies the (PS) condition.

Proof. Let (un)n be a (PS) sequence for the functional U+: U+(un) bounded and
U0þðunÞ ! 0. Let us show that (un)n is bounded in W

1;pðxÞ
0 ðXÞ. Using the hypothesis

(F3), since U+(un) is bounded, we have
C1 P
Z

X

1

pðxÞ jrunj
pðxÞ

dx�
Z

X
Fðx; uþn Þ dx

P
1

pþ
JðrunÞ �

Z
X

uþn
h
fðx; uþn Þ dxþ C2;
where C1 and C2 are two constants. Note that
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hU0þðunÞ; uni ¼
Z

X
jrunjpðxÞ dx�

Z
X
f x; uþn
� �

un dx

¼
Z

X
jrunjpðxÞ dx�

Z
X
f x; uþn
� �

uþn dx;
which implies
C1 P
1

pþ
� 1

h

� �
JðrunÞ þ

1

h
hU0þðunÞ; uni þ C2: ð3:6Þ
Suppose, by contradiction that (un)n unbounded in W
1;pðxÞ
0 ðXÞ, so iuni P 1 for rather

large values of n and it results that
kunkp
�
6 JðrunÞ 6 kunkp

þ

for rather large values of n. Furthermore, U0þðunÞ ! 0 assure that there exists C3 > 0
such that
�C3kunk 6 hU0þðunÞ; uni 6 C3kunk
for rather large values of n. Consequently,
C1 P
1

pþ
� 1

h

� �
kunkp

�
� C3

h
kunk þ C2:
Since p�> 1 and 1
pþ � 1

h

	 

> 0, we have
1

pþ
� 1

h

� �
kunkp

�
� C3

h
kunk þ C2 ! þ1 as n! þ1;
what is a contradiction. So (un)n is a bounded sequence in W
1;pðxÞ
0 ðXÞ. The proof of

Lemma 3.3 is complete. h

Lemma 3.4. There exist r > 0 and a > 0 such that U+(u) P a, for allu 2W
1;pðxÞ
0 ðXÞ-

with iui = r.

Proof. The conditions (F0) and (F4) assure that
jFðx; tÞj 6 ejtjp
þ
þ CðeÞjtjqðxÞ for all ðx; tÞ 2 X� R:
For iui small enough, we have
UþðuÞP
1

pþ
JðruÞ �

Z
X
Fðx; uþÞ dx

P
1

pþ
kukp

þ
� e
Z

X
juþjp

þ
dx� CðeÞ

Z
X
juþjqðxÞ dx

P
1

pþ
kukp

þ
� e
Z

X
jujp

þ
dx� CðeÞ

Z
X
jujqðxÞ dx: ð3:7Þ
By the condition (F0), it follows
p� 6 p 6 pþ < q� 6 qðxÞ < p�
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then
W
1;pðxÞ
0 ðXÞ � LpþðXÞ and W

1;pðxÞ
0 ðXÞ � LqðxÞðXÞ;
with a continuous and compact embedding, what implies the existence of C4,C5 > 0
such that
kuk
Lpþ 6 C4kuk and jujqðxÞ 6 C5kuk
for all u 2W
1;pðxÞ
0 ðXÞ. Since iui is small enough, we deduce
Z

X
jujqðxÞ 6 jujq

�

qðxÞ 6 C6kukq
�
:

Replacing in (3.7), it results that
UþðuÞP
1

pþ
kukp

þ
� eCpþ

4 kuk
pþ � C7kukq

�
;

with Ci are positives constants. Let us choose e > 0 such that eCpþ

4 6
1

2pþ, we obtain
UþðuÞP
1

2pþ
kukp

þ
� C7kukq

�
P kukp

þ 1

2pþ
� C7kukq

��pþ
� �

: ð3:8Þ
Since p+ < q�, the function t! 1
2pþ � C7t

q��pþ
	 


is strictly positive in a neighborhood

of zero. It follows that there exist r > 0 and a > 0 such that
UþðuÞP a 8u 2W
1;pðxÞ
0 ðXÞ : kuk ¼ r: �
Proof of Theorem 1.2. In order to apply the Mountain Pass Theorem, we must prove
that
UþðsuÞ ! �1 as s! þ1;

for a certain u 2W

1;pðxÞ
0 ðXÞ. From the condition (F3), we obtain
Fðx; tÞP cjtjh for all ðx; tÞ 2 X� R:
Let u 2W
1;pðxÞ
0 ðXÞ and s> 1 we have
UþðsuÞ ¼
Z

X

spðxÞ

pðxÞ jruj
pðxÞ

dx�
Z

X
Fðx; ðsuÞþÞ dx;

6 sp
þ
Z

X

1

pðxÞ jruj
pðxÞ

dx� csh
Z

X
juþjh dx:
The fact h > p+, gives that
UþðsuÞ ! �1 as s! þ1:

It follows that there exists e 2W

1;pðxÞ
0 ðXÞ such that iei > r and U+(e) < 0.

According to the Mountain Pass Theorem, U+ admits a critical value l P a which
is characterized by
l ¼ inf
h2K

sup
t2½0;1�

UþðhðtÞÞ
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where
K ¼ fh 2 C ½0; 1�;W1;pðxÞ
0 ðXÞ

	 

: hð0Þ ¼ 0 and hð1Þ ¼ eg:
Then, the functional U+ has a critical point u+ with U+(u+) P a. But, U+(0) = 0,
that is, u+ „ 0. Therefore, the problem ðPþÞ has a nontrivial solution which, by Lemma
2.3, is a non-negative solution of the problem ðPÞ.

Similarly, using U-, we show that there exists furthermore a non-positive solution.
The proof of Theorem 1.2 is now complete. h
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