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Abstract. The sequence Pk,n = 1+ 10k + 102k + � � �+ 10(n�1)k can be used to

generate infinitely many Smith numbers with the help of a set of suitable multipliers.

We prove the existence of such a set, consisting of constant multiples of repunits, that

generalizes to any value of k P 9. This fact complements the earlier results which have

been established for k 6 9.
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1. INTRODUCTION

A natural number n is called a Smith number if n is a composite for which the digital
sum S(n) equals the p-digit sum Sp(n), where Sp(n) is given by the digital sum of all the
prime factors of n, counting multiplicity. For example, based on the factorization
636 = 22 · 3 · 53, we have Sp(636) = 2 + 2 + 3 + 5 + 3 = 15. Since S(636) = 6 +
3 + 6 = 15, then S(636) = Sp(636) and therefore, 636 is a Smith number.

Smith numbers were first introduced in 1982 by Wilansky [2]. We already know that
Smith numbers are infinitely many––a fact first proved in 1987 by McDaniel [1]. In a
quite recent publication [3], an alternate method for constructing Smith numbers
was introduced, involving the sequence Pk,n defined by
Pk;n ¼
Xn�1

i¼0
10ki:
62 6 479 9000x2228.
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The established fact [3, Theorem 9] can be restated as follows.

Theorem 1.1. Let k P 2 be fixed, and let Mk be a set of seven natural numbers with two
conditions:

1. The set {Sp(t) Œ t 2Mk} is a complete residue system modulo 7.
2. Every element t 2Mk can be expressed as t ¼

Pk
j¼1 10ej , where the set {ej Œ1 6 j 6 k}

is a complete residue system modulo k.

Then there exist infinitely many values of n P 1 for which the product
9� Pk;n � tk;n � 10fk;n
is a Smith number for some element tk,n 2Mk and exponent fk,n P 0.

Following this result, the article continues with the construction of a set Mk which
satisfies the hypothesis of Theorem 1.1, for each k= 2, 3, . . . , 9.

This paper is a response to the challenge to continue with the search for such Mk for
k> 9. Quite surprisingly we are able to give a relatively clean construction of Mk,
which consists of seven constant multiples of the repunit Rk = (10k � 1)/9, and which
is valid for all k P 9 but not for lesser values of k.

2. MAIN RESULTS
Theorem 2.1. Consider the repunit Rk and let m = 9 Æ 10a + 9 Æ 10b + 1, where
k> a > b > 0. Then we can write mRk ¼

Pk
j¼1 10ej such that the set {ej Œ1 6 j 6 k}

serves as a complete residue system modulo k.

Proof. Since we will be dealing with strings of repeated digits, let us agree on the
following notation. By (ud), where 0 6 u 6 9, we mean a string of u’s of length d digits.
In particular, when d = 1, we simply write (u) instead of (u1). We also allow concate-
nation, e.g., the notation (15,0,93,02,1) represents the number 111110999001.

Now let A = 9 Æ 10a Æ Rk and B = 9 Æ 10b Æ Rk, hence mRk = A + B + Rk. In order
to help visualize how the addition B + Rk is performed, we right-align the two strings
and add columnwise, right to left, as follows.
Rk ¼ ð1kÞ ¼ ð1k�b; 1bÞ;
B ¼ ð9k; 0bÞ ¼ ð9b; 9k�b; 0bÞ;

Bþ Rk ¼ ð1; 0b; 1k�b�1; 0; 1bÞ:

Now with A = (9k,0a), we prepare the addition operation for mRk = A+ (B + Rk) in
a similar way:
Bþ Rk ¼ ð1; 0b; 1k�a; 1a�b�1; 0; 1bÞ;
A ¼ ð9a�b�1; 9; 9b; 9k�a; 0a�b�1; 0; 0bÞ;

mRk ¼ ð1; 0a�b�1; 1; 0b; 1k�a�1; 0; 1a�b�1; 0; 1bÞ:

(Note that in the case a � b � 1 = 0, each string of length a � b � 1 appearing above is
simply nonexistent, and similarly for k � a � 1 if equals 0.)
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We see that the digits in mRk are but zeros and ones, where the 1’s (as read from
right to left) precisely correspond to the powers 10e, with
Table

m

991

90,09

99,00

900,9

9,900

900,0
e 2 f0; . . . ; b� 1; bþ 1; . . . ; a� 1; aþ 1; . . . ; k� 1; kþ b; kþ ag;

which is a complete residue system modulo k. h

Theorem 2.2. Let Rk represent the k-th repunit, and let the set M be given by
M ¼ f1; 991; 90091; 99001; 900901; 9900001; 900090001g:

Then the set Mk = {mRk Œm 2M} satisfies the hypothesis of Theorem 1.1 for all k P 9.

Proof. We will first prove that the seven elements of Mk as stated in Theorem 2.2 have
distinct p-digit sums modulo 7. It suffices to show that the set M has this same
property, and this can be routinely checked from the prime factors of the elements
m 2M given in Table 1. Note that m = 1 is not included in the table, about which
by convention we shall agree that Sp(1) = 0.
1 The p-digit sums and the factorizations of the elements m 2M.

Factorization of m Sp(m) Sp(m) mod 7

991 19 5

1 23 · 3917 25 4

1 7 · 14,143 20 6

01 163 · 5527 29 1

,001 17 · 449 · 1297 44 2

90,001 421 · 2,137,981 38 3
To complete the proof of Theorem 2.2, we need to show that for each m 2M, the
number mRk can be expressed as the sum of k powers of 10 satisfying the condition
described in Theorem 1.1. The case m= 1 is of course trivial, while the remaining six
readily follow from Theorem 2.1. h

As a further remark, we point out that the condition of being ‘‘a complete residue
system modulo k’’ demanded by Theorem 1.1 is actually equivalent to the sum of the
powers of 10 being a multiple of Rk. Although the necessity part is already claimed [3,
Remark 8], we shall now write a complete proof for this fact.

Theorem 2.3. Let t ¼
Pk

j¼1 10ej , where the exponents ej are not assumed distinct. Then
the set C = {ej Œ1 6 j 6 k} is a complete residue system modulo k if and only if t is a
multiple of Rk.

Proof. We note that 10k ” 1 (mod Rk), so that 10ej � 10ej mod k (mod Rk). Set
t0 ¼

Pk
j¼1 10ej mod k, and we have t0 ” t (mod Rk).
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As a first case, suppose that among the numbers e1 mod k, . . . ,ek mod k, at most 9 of
them can be identical. Then t0 6 9Rk, and it follows that Rk divides t0 if and only if
t0 = hRk for some h in the range 1 6 h 6 9. The fact that S(t0) = k leads us to conclude
that t0 = hRk if and only if h = 1 and {e1 mod k, . . . ,ek mod k} = {0,1, . . . ,k � 1}.
Thus Rk divides t if and only if C is a complete residue system modulo k.

Assume now that there exist more than 9 identical items among the numbers
e1 mod k, . . . ,ek mod k. Clearly in this case, C is not a complete residue system
modulo k. Observe that evaluating t0 by adding the k summands 10ej mod k will
involve carries and as a result, we have S(t0) < k.

If it happens that t0 6 9Rk, then as before, we see that Rk divides t0 if and only if
t0 = hRk with 1 6 h 6 9––this would be impossible since S(t0) < k. Hence, neither does
Rk divide t in this case.

We next consider the subcase t0 P 10k. For this let us write t0 = q Æ 10k + r, where
r = t0 mod 10k, and let t00 = q + r. Note that t00 ” t0 (mod Rk) and that
S(t00) 6 S(q) + S(r) = S(t0) < k. We will claim that t00 6 9Rk, so that once again we
conclude that t00 is not a multiple of Rk, and neither is t.

The remainder of the proof is therefore showing that t00< 10k. By contradiction,
suppose that q + r P 10k. We note that t0 6 k Æ 10k�1, and so q 6 k

10. It follows that the
number q is composed of at most ºlog kß digits. Since 10k has k+ 1 digits, the
inequality q + r P 10k implies that r has at least k digits and also that at least
k � ºlog kß � 1 left-most digits in r must be all 9’s. With the fact that
S(r) = S(t0) � S(q) < k, we derive the inequality
9ðk� blog kc � 1Þ < k;
which is equivalent to
8

9
k� blog kc � 1 < 0:
This is a contradiction, because the quantity 8
9
k� blog kc � 1 increases with k and is

positive for all k P 2. h
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