Multiples of repunits as sum of powers of ten

Amin Witno *
Department of Basic Sciences, Philadelphia University, 19392 Jordan

Received 30 April 2013; revised 1 September 2013; accepted 7 September 2013
Available online 26 September 2013

Abstract

The sequence $\boldsymbol{P}_{\boldsymbol{k}, \boldsymbol{n}}=1+10^{\boldsymbol{k}}+10^{2 k}+\cdots+10^{(n-1) \boldsymbol{k}}$ can be used to generate infinitely many Smith numbers with the help of a set of suitable multipliers. We prove the existence of such a set, consisting of constant multiples of repunits, that generalizes to any value of $\boldsymbol{k} \geqslant 9$. This fact complements the earlier results which have been established for $\boldsymbol{k} \leqslant 9$.

Keywords: Repunits; Smith numbers
2010 Mathematics Subject Classification: 11A63

1. Introduction

A natural number n is called a Smith number if n is a composite for which the digital sum $S(n)$ equals the p-digit sum $S_{p}(n)$, where $S_{p}(n)$ is given by the digital sum of all the prime factors of n, counting multiplicity. For example, based on the factorization $636=2^{2} \times 3 \times 53$, we have $S_{p}(636)=2+2+3+5+3=15$. Since $S(636)=6+$ $3+6=15$, then $S(636)=S_{p}(636)$ and therefore, 636 is a Smith number.

Smith numbers were first introduced in 1982 by Wilansky [2]. We already know that Smith numbers are infinitely many-a fact first proved in 1987 by McDaniel [1]. In a quite recent publication [3], an alternate method for constructing Smith numbers was introduced, involving the sequence $P_{k, n}$ defined by

$$
P_{k, n}=\sum_{i=0}^{n-1} 10^{k i} .
$$

[^0]Peer review under responsibility of King Saud University.

1319-5166 © 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
http://dx.doi.org/10.1016/j.ajmsc.2013.09.001

The established fact [3, Theorem 9] can be restated as follows.

Theorem 1.1. Let $k \geqslant 2$ be fixed, and let M_{k} be a set of seven natural numbers with two conditions:

1. The set $\left\{S_{p}(t) \mid t \in M_{k}\right\}$ is a complete residue system modulo 7 .
2. Every element $t \in M_{k}$ can be expressed as $t=\sum_{j=1}^{k} 10^{e_{j}}$, where the set $\left\{e_{j} \mid 1 \leqslant j \leqslant k\right\}$ is a complete residue system modulo k.

Then there exist infinitely many values of $n \geqslant 1$ for which the product

$$
9 \times P_{k, n} \times t_{k, n} \times 10^{f_{k, n}}
$$

is a Smith number for some element $t_{k, n} \in M_{k}$ and exponent $f_{k, n} \geqslant 0$.
Following this result, the article continues with the construction of a set M_{k} which satisfies the hypothesis of Theorem 1.1, for each $k=2,3, \ldots, 9$.

This paper is a response to the challenge to continue with the search for such M_{k} for $k>9$. Quite surprisingly we are able to give a relatively clean construction of M_{k}, which consists of seven constant multiples of the repunit $R_{k}=\left(10^{k}-1\right) / 9$, and which is valid for all $k \geqslant 9$ but not for lesser values of k.

2. Main results

Theorem 2.1. Consider the repunit R_{k} and let $m=9 \cdot 10^{a}+9 \cdot 10^{b}+1$, where $k>a>b>0$. Then we can write $m R_{k}=\sum_{j=1}^{k} 10^{e_{j}}$ such that the set $\left\{e_{j} \mid 1 \leqslant j \leqslant k\right\}$ serves as a complete residue system modulo k.

Proof. Since we will be dealing with strings of repeated digits, let us agree on the following notation. By $\left(u_{d}\right)$, where $0 \leqslant u \leqslant 9$, we mean a string of u 's of length d digits. In particular, when $d=1$, we simply write (u) instead of $\left(u_{1}\right)$. We also allow concatenation, e.g., the notation $\left(1_{5}, 0,9_{3}, 0_{2}, 1\right)$ represents the number 111110999001.

Now let $A=9 \cdot 10^{a} \cdot R_{k}$ and $B=9 \cdot 10^{b} \cdot R_{k}$, hence $m R_{k}=A+B+R_{k}$. In order to help visualize how the addition $B+R_{k}$ is performed, we right-align the two strings and add columnwise, right to left, as follows.

$$
\begin{array}{r}
R_{k}=\left(1_{k}\right)=\left(1_{k-b}, 1_{b}\right), \\
B=\left(9_{k}, 0_{b}\right)=\left(9_{b}, 9_{k-b}, 0_{b}\right), \\
B+R_{k}=\left(1,0_{b}, 1_{k-b-1}, 0,1_{b}\right) .
\end{array}
$$

Now with $A=\left(9_{k}, 0_{a}\right)$, we prepare the addition operation for $m R_{k}=A+\left(B+R_{k}\right)$ in a similar way:

$$
\begin{array}{r}
B+R_{k}=\left(1,0_{b}, 1_{k-a}, 1_{a-b-1}, 0,1_{b}\right), \\
A=\left(9_{a-b-1}, 9,9_{b}, 9_{k-a}, 0_{a-b-1}, 0,0_{b}\right), \\
m R_{k}=\left(1,0_{a-b-1}, 1,0_{b}, 1_{k-a-1}, 0,1_{a-b-1}, 0,1_{b}\right) .
\end{array}
$$

(Note that in the case $a-b-1=0$, each string of length $a-b-1$ appearing above is simply nonexistent, and similarly for $k-a-1$ if equals 0 .)

We see that the digits in $m R_{k}$ are but zeros and ones, where the l's (as read from right to left) precisely correspond to the powers 10^{e}, with

$$
e \in\{0, \ldots, b-1, b+1, \ldots, a-1, a+1, \ldots, k-1, k+b, k+a\}
$$

which is a complete residue system modulo k.
Theorem 2.2. Let R_{k} represent the k-th repunit, and let the set M be given by

$$
M=\{1,991,90091,99001,900901,9900001,900090001\}
$$

Then the set $M_{k}=\left\{m R_{k} \mid m \in M\right\}$ satisfies the hypothesis of Theorem 1.1 for all $k \geqslant 9$.
Proof. We will first prove that the seven elements of M_{k} as stated in Theorem 2.2 have distinct p-digit sums modulo 7. It suffices to show that the set M has this same property, and this can be routinely checked from the prime factors of the elements $m \in M$ given in Table 1. Note that $m=1$ is not included in the table, about which by convention we shall agree that $S_{p}(1)=0$.

Table 1 The p-digit sums and the factorizations of the elements $m \in M$.

m	Factorization of m	$S_{p}(m)$	$S_{p}(m) \bmod 7$
991	991	19	5
90,091	23×3917	25	4
99,001	$7 \times 14,143$	20	6
900,901	163×5527	29	1
$9,900,001$	$17 \times 449 \times 1297$	44	2
$900,090,001$	$421 \times 2,137,981$	38	3

To complete the proof of Theorem 2.2, we need to show that for each $m \in M$, the number $m R_{k}$ can be expressed as the sum of k powers of 10 satisfying the condition described in Theorem 1.1. The case $m=1$ is of course trivial, while the remaining six readily follow from Theorem 2.1.

As a further remark, we point out that the condition of being "a complete residue system modulo k " demanded by Theorem 1.1 is actually equivalent to the sum of the powers of 10 being a multiple of R_{k}. Although the necessity part is already claimed [3, Remark 8], we shall now write a complete proof for this fact.

Theorem 2.3. Let $t=\sum_{j=1}^{k} 10^{e_{j}}$, where the exponents e_{j} are not assumed distinct. Then the set $C=\left\{e_{j} \mid l \leqslant j \leqslant k\right\}$ is a complete residue system modulo k if and only if t is a multiple of R_{k}.

Proof. We note that $10^{k} \equiv 1\left(\bmod R_{k}\right)$, so that $10^{e_{j}} \equiv 10^{e_{j} \bmod k}\left(\bmod R_{k}\right)$. Set $t^{\prime}=\sum_{j=1}^{k} 10^{e_{j} \bmod k}$, and we have $t^{\prime} \equiv t\left(\bmod R_{k}\right)$.

As a first case, suppose that among the numbers $e_{1} \bmod k, \ldots, e_{k} \bmod k$, at most 9 of them can be identical. Then $t^{\prime} \leqslant 9 R_{k}$, and it follows that R_{k} divides t^{\prime} if and only if $t^{\prime}=h R_{k}$ for some h in the range $1 \leqslant h \leqslant 9$. The fact that $S\left(t^{\prime}\right)=k$ leads us to conclude that $t^{\prime}=h R_{k}$ if and only if $h=1$ and $\left\{e_{1} \bmod k, \ldots, e_{k} \bmod k\right\}=\{0,1, \ldots, k-1\}$. Thus R_{k} divides t if and only if C is a complete residue system modulo k.

Assume now that there exist more than 9 identical items among the numbers $e_{1} \bmod k, \ldots, e_{k} \bmod k$. Clearly in this case, C is not a complete residue system modulo k. Observe that evaluating t^{\prime} by adding the k summands $10^{e_{j} \bmod k}$ will involve carries and as a result, we have $S\left(t^{\prime}\right)<k$.

If it happens that $t^{\prime} \leqslant 9 R_{k}$, then as before, we see that R_{k} divides t^{\prime} if and only if $t^{\prime}=h R_{k}$ with $1 \leqslant h \leqslant 9$-this would be impossible since $S\left(t^{\prime}\right)<k$. Hence, neither does R_{k} divide t in this case.

We next consider the subcase $t^{\prime} \geqslant 10^{k}$. For this let us write $t^{\prime}=q \cdot 10^{k}+r$, where $r=t^{\prime} \bmod 10^{k}$, and let $t^{\prime \prime}=q+r$. Note that $t^{\prime \prime} \equiv t^{\prime}\left(\bmod R_{k}\right)$ and that $S\left(t^{\prime \prime}\right) \leqslant S(q)+S(r)=S\left(t^{\prime}\right)<k$. We will claim that $t^{\prime \prime} \leqslant 9 R_{k}$, so that once again we conclude that $t^{\prime \prime}$ is not a multiple of R_{k}, and neither is t.

The remainder of the proof is therefore showing that $t^{\prime \prime}<10^{k}$. By contradiction, suppose that $q+r \geqslant 10^{k}$. We note that $t^{\prime} \leqslant k \cdot 10^{k-1}$, and so $q \leqslant \frac{k}{10}$. It follows that the number q is composed of at most $\lfloor\log k\rfloor$ digits. Since 10^{k} has $k+1$ digits, the inequality $q+r \geqslant 10^{k}$ implies that r has at least k digits and also that at least $k-\lfloor\log k\rfloor-1$ left-most digits in r must be all 9's. With the fact that $S(r)=S\left(t^{\prime}\right)-S(q)<k$, we derive the inequality

$$
9(k-\lfloor\log k\rfloor-1)<k,
$$

which is equivalent to

$$
\frac{8}{9} k-\lfloor\log k\rfloor-1<0
$$

This is a contradiction, because the quantity $\frac{8}{9} k-\lfloor\log k\rfloor-1$ increases with k and is positive for all $k \geqslant 2$.

Acknowledgments

The author is grateful to the anonymous referee for the valuable suggestions and corrections toward revising this manuscript.

References

[^1]
[^0]: * Tel.: +962 6479 9000x2228.

 E-mail address: awitno@gmail.com

[^1]: [1] W.L. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci Quart. 25 (1987) 76-80.
 [2] A. Wilansky, Smith numbers, Two-Year College Math. J. 13 (1982) 21.
 [3] A. Witno, A family of sequences generating Smith numbers, J. Integer Seq. 16 (2013). Art. 13.4.6.

