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Abstract. Let M be the group of Möbius transformations on C1 ¼ C [ f1g and

hf iM ¼ ff n; n 2 Zg the cyclic subgroup of M generated by f , for f 2M. If hf iM is

finite of order n, f is called an n-cycle. We prove in the first part that if f is an n-cycle,
then for any a 2 C1, the set ff nðaÞ; n 2 Zg ¼ Of ðaÞ lies on a circle. Furthermore we

characterize with geometric arguments the circles which are invariant under this kind of

transformations.
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1. INTRODUCTION

The most well-known characterization of Möbius transformations is that they are the
only non-constant meromorphic functions on the complex plane C which map circles
onto circles, including straight lines among circles. Furthermore, Möbius transforma-
tions have many important properties. For example: a map is a Möbius transformation
if and only if it preserves cross ratios, (cf [3]). Carathédory [8] proved that any injective
mapping of a domain X of C to C is the restriction of a Möbius transformation if the
image of any circle contained with its interior in X is itself a circle. In [9], Haruki and
Rassias gave a new characterization of Möbius transformations by using Apollonius
quadrilaterals. They proved that if f is meromorphic and if f sends Apollonius quad-
rilaterals to Apollonius quadrilaterals, then f is Möbius. On the other hand, Möbius
transformations are closely related to hyperbolic geometry since they act as isometries
on the hyperbolic space.
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We denote by M the set of Möbius transformations and for any f 2M, we set

h f iM ¼ ff n; n 2 Zg, the cyclic subgroup of M generated by f ( f k ¼ f � f � � � � � f|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k times

is

called the kth iterate of f ). If h f iM is finite of order n, f is called an n-cycle.
In this paper, we study this kind of Möbius transformation and we characterize the

set of circles which are invariant under f . We prove the following theorems:

Theorem 1.1. Let f be an n-cycle and a 2 C1, then the set OfðaÞ ¼ ff nðaÞ; n 2 Zg lies
on the same circle (the same line if 1 2 OfðaÞ and OfðaÞ lie on the same circle if not).
Otherwise if n P 4, for any z 2 C1, the cross-ratio [z, f(z), f 2(z), f 3(z)] is a constant
which depends on n and not on f, for all n-cycles f.

Theorem 1.2. Let f be a 2-cycle such that 1 is not a fixed point. Let a 2 C such that
f(a) =1. Let a be a fixed point of f; C the circle of center a and passing through a,
L1 the straight line (a,a), L2 the straight line orthogonal to L1 and passing through a,
and assume b is symmetric to a with respect to L1. Then the only invariant lines under
f are L1, L2, and the only circles invariant under f are:

(1) The circles which pass through a and b.
(2) The circles which are symmetric with respect to L1 and orthogonal to C.

Theorem 1.3. Let f be a 3-cycle such that 1 is not a fixed point. Then there exists only
one straight line L invariant under f, and L contains the orbit of1. Furthermore the set of
circles invariant under f form a pencil of coaxial axis L0. L is the radical axis of these
invariant circles and L0 contains the fixed points of f.

Theorem 1.4. Let f be an n-cycle, n P 3, such that 1 is not a fixed point. Then there
exists only one straight line L invariant with respect to f, and L contains the orbit of
1. Furthermore the set of circles invariant with respect to f form a pencil of coaxial
circles. L is the radical axis of these invariant circles.

Remark. The results in this paper are proved using geometric arguments. Some of
them can be proved using conjugate transformations and the invariance of the results
under conjugation.
2. GENERALITIES ON MÖBIUS TRANSFORMATIONS

Möbius transformations are the automorphisms of the extended complex plane C1.
Any Möbius transformation f has the form
fðzÞ ¼ azþ b

czþ d
; ð1Þ
where a; b; c; d 2 C and ad � bc „ 0.
Möbius transformations with c = 0 form the subgroup of similarities. Such trans-

formations have the form f (z) = az + b, a; b 2 C and a „ 0. The transformation
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IðzÞ ¼ 1
z
is called an inversion. It is well known that every Möbius transformation f of

the form (1) is a composition of finitely many similarities and inversions.
The group M has the following famous properties: (see for example [1,3–7,10–12]).

Properties 2.1.

(1) Any Möbius transformation has at most 2 fixed points in C1.
(2) Let f be a Möbius transformation which has two fixed points a, b. Then there exists

q 2 C such that
fðzÞ � z1
fðzÞ � z2

¼ q
z� z1
z� z2

:

q ¼ f 0ðz1Þ ¼ 1
f 0ðz2Þ. It follows that for all n 2 N,

f nðzÞ � z1
f nðzÞ � z2

¼ qn
z� z1
z� z2

:

Then

f nðzÞ ¼ zðz1 � qnz2Þ � ð1� qnÞz1z2
ð1� qnÞz� z2 þ qnz1

:

(3) The image of a circle under a Möbius transformation is a circle. In what follows, we
call any circle or straight line a circle in the complex plane.

(4) If a and b are symmetric with respect to circle C, then for any Möbius transforma-
tion f, f(a) and f(b) are symmetric with respect to f ðCÞ.

(5) There is always only one Möbius transformation that maps three given distinct
points z1, z2, z3 onto three given distinct points w1, w2, w3, respectively. This
function is denoted by w(z) = [z,z1, z2, z3]. The number [z,z1, z2, z3] is called
the cross-ratio of the four complex numbers z, z1, z2, z3.

(6) The cross-ratio [z1, z2, z3, z4] of any four complex numbers is invariant under
Möbius transformations;(i.e. [z1, z2, z3, z4] = [h(z1),h(z2),h(z3),h(z4)], for any
Möbius transformation h).

(7) If C is a circle and S is the symmetry with respect to C, then the mappings z#Sð�zÞ
and z#SðzÞ are Möbius transformations.

(8) If C1 and C2 are two circles and S1 (resp S2), is the symmetry with respect to C1

(resp with respect to C2), then S1 � S2 is a Möbius transformation.
(9) Let f be a Möbius transformation, f ðzÞ ¼ azþb

czþd. We can suppose that ad � bc = 1,

and we associate with f the matrix Mf ¼
a b
c d

� �
. This matrix is in SLð2;CÞ,

the special linear group of C2. Inversely if M ¼ a b
c d

� �
in SLð2;CÞ, we associate

the Möbius transformation f ðzÞ ¼ azþb
czþd and the matrix �Mf gives the same Möbius

transformation. Thus we can identify the group of Möbius transformations with the
projective special linear group PSLð2;CÞ, the group of 2 · 2 matrices with complex
coefficients, determinant=1, modulo the equivalence relation A � � A.
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3. PROPERTIES OF THE N CYCLES
Proposition 3.1.

(1) � A Möbius transformation f is an n-cycle, n P 2, if and only if there exists a 2 C1
such that f n(a) = a and f m(a) „ a for all 1 6 m 6 n � 1, which is equivalent that
the cardinal of Of ðaÞ is equal to n.
� For n P 3, any n-cycle f verify that f n = Id and f m „ Id for all 1 6 m 6 n � 1.
� If f is an n-cycle and a 2 C1 which is not invariant under f, then the cardinal of
Of ðaÞ is equal to n.

(2) Let f be an n-cycle, n P 3, such that 1 is not a fixed point, then: If F is a circle
invariant under f, then F does not contain any fixed point of f. Then if C1 and C2

are two different circles invariant under f ; C1 \ C2 ¼ ; and there exists only one
straight line invariant under f. This line contains the orbit of 1.
Proof

(1) Let a, b be the fixed points of f and let w „ a, w „ b.We assume that the cardinal
of the orbit of w is equal to p, with 2 6 p 6 n � 1. The orbit of w is equal to
{w, f (w), . . . , f p�1(w)} and f p(w) = w. It follows that f j(w) are fixed points of f p

for all 1 6 j 6 p � 1. Then f p = I which is a contradiction.
It follows that p = n.We assume that the cardinal of the orbit of a is equal to p,
with 2 6 p 6 n � 1. We remark that if f j(a) = f j+1(a) for 1 6 j 6 p � 1, then
f (a) = a which is in contradiction to the assumption. It follows that the orbit
of a is equal to {a, f (a), . . . , f p�1(a)} and f p(a) = a. It follows that f j(a) are fixed
points of f p and then f p = I which is a contradiction.

(2) The number of connected components of F n fa1; . . . ; ang is n. f is univalent, and
F is invariant under f , therefore the image of any connected component of
F n fa1; . . . ; ang is a connected component, therefore f cannot have an invariant
point on F . h
Lemma 3.2. Let f be a Möbius transformation and A be the matrix of f. If z 2 C1 and z,
f(z), f 2(z) and f 3(z) are different, then the cross ratio [z, f(z), f 2(z), f 3(z)] is constant
and we have the following:

� If A has two different eigenvalues, then
½z; fðzÞ; f 2ðzÞ; f 3ðzÞ� ¼ 1þ detA

ðtrAÞ2 � detA
:

� If A has only one eigenvalue, then
½z; fðzÞ; f 2ðzÞ; f 3ðzÞ� ¼ 4

3
:

Proof

� If A has two different eigenvalues a and b, then there exists a Möbius transformation
g, such that f = g�1�h�g, with hðzÞ ¼ a

b z. Since the cross ratio is invariant by Möbius
transformation, we have
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½z; fðzÞ; f 2ðzÞ; f 3ðzÞ� ¼ ½z; g�1 � h � gðzÞ; g�1 � h2 � gðzÞ; g�1 � h3 � gðzÞ�

¼ ½w; hðwÞ; h2ðwÞ; h3ðwÞ� ¼ b2 � a2

b3 � a3
:
b2 � a2

b� a

¼ 1þ ab

ðaþ bÞ2 � ab
¼ 1þ detA

ðtrAÞ2 � detA
with w = g(z).
� If A has only one eigenvalue a, then there exists a Möbius transformation g, such
that f = g�1�h�g, with hðzÞ ¼ zþ b

a. From the assumption b „ 0, the result is easily
deduced. h

Corollary 3.3. Let f and g be two Möbius transformations such that their matrices are
equivalent, then [z, f(z), f 2(z), f 3(z)] = [z,g(z),g2(z),g3(z)], for all z 2 C1 such that
z, f(z), f 2(z) and f 3(z) are different.

Theorem 3.4. Let f be an n-cycle, n P 3, and let z 2 C1, then the set
OfðzÞ ¼ ff nðzÞ; n 2 Zg lies on the same straight line if 1 2 OfðzÞ and OfðzÞ lies on
the same circle if not. Otherwise if n P 4, for any z 2 C1, the cross-ratio [z, f(z),
f 2(z), f 3(z)] is constant which depends on n and not on f, for all n-cycle f.

Proof. The result is obvious if n = 3, so we take n P 4. To prove the result it suffices to
prove that [z, f (z), f 2(z), f 3(z)] is real. We associate with f a matrix A 2 SLð2;CÞ such
that An = Id. Then A is diagonalizable. There exist P;D 2 GLð2;CÞ such that

A= P�1DP, with D ¼ a 0
0 b

� �
; a; b 2 C and wn ¼ an

bn ¼ 1. Then from Lemma 3.2
½z; fðzÞ; f 2ðzÞ; f 3ðzÞ� ¼ ð1þ wÞ2

1þ wþ w2
¼ 1þ w

1þ wþ w2
¼ 1þ 1

1þ wþ �w

¼ 1þ 1

1þ 2 cos 2p
n

� � ;

which is real, and independent of f , [z, f (z), f 2(z), f 3(z)] = 2 if n = 4. h

Proposition 3.5. Let f be an n-cycle, n P 3. We assume that 1 is not a fixed point.
We denote by:

� a, b the fixed points of f,
� fa1; a2; . . . ; an�1;1g the orbit of 1,
� Ck the circle of center ak and passing through the fixed points a, b
� Sk the symmetry with respect to circle Ck, with 0 6 k 6 n � 1.

(1) f ¼ Skþ1 � Sk.
(2) Any circle invariant under f contains in its interior a fixed point of f.
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(If F is the circle which contains the orbit of1, then the circle Ck of center ak and passing
through the fixed point a passes through the fixed point b because a and b are symmetric
with respect to F . Indeed it suffices to remark that S � f � S and f are equal, where S is
the symmetry with respect to F .)

Proof

(1) Skþ1 � Sk is a Möbius transform and a, b are fixed points. Moreover
Skþ1 � SkðakÞ ¼ Skþ1ð1Þ ¼ akþ1 ¼ f ðakÞ. Then f ¼ Skþ1 � Sk.

(2) Let C be a circle invariant under f . Since the straight line which contain the orbit
of1 does not cut C, then the closed disc D with boundary C is a convex compact
subset and f : D! D is continuous. Then from Brouwer’s theorem, f has a fixed
point in D. The fixed point cannot be on C, then this fixed point in an interior
point of D. h
4. CONSTRUCTION OF THE INVARIANT CIRCLES OF A 2-CYCLE

We refer the reader to the paper [2] for some results on 2-cycles.
In this section, f is a 2-cycle such that 1 is not a fixed point. Let a 2 C such that

f (a) =1. Let a be a fixed point of f , L1 the straight line (a,a) and L2 the straight line
orthogonal to L1 and passing through a. (cf Fig. 1) It is obvious that L1 is invariant
under f . Moreover the image of L2 by f is a straight line passing through a and orthog-
onal to L1, then L2 is invariant under f . Hence L1 and L2 are invariant under f .

Proposition 4.1. Let S1 be the symmetry with respect to straight line L1; S2 the
symmetry with respect to straight line L2 and b ¼ S2ðaÞ. We denote by C the circle with
center a and passing through a, and S the symmetry with respect to C. Then
Figure 1 The circles which pass through a and b are invariant.
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� b is a fixed point of f.
� Circle C is invariant under f.
� f ¼ S � S1 ¼ S1 � S.

Proof

� Since f is a Möbius transformation, then f ðbÞ ¼ f ðS2ðaÞÞ ¼ S2ðf ðaÞÞ ¼ S2ðaÞ ¼ b.
� The image by f of circle C passes through a and b and it is orthogonal to L2. Then it
is invariant under f .
� S � S1 and S1 � S are Möbius transformations and a and b are fixed points for these
two transformations. S � S1ðaÞ ¼ 1 ¼ f ðaÞ and S1 � SðaÞ ¼ 1 ¼ f ðaÞ. Then
f ¼ S � S1 ¼ S1 � S. h

Our goal now is to characterize all circles which are invariant under f .

Theorem 4.2. Let O be a circle invariant under f and different from C; L1 and L2.

(1) O is a circle and O
T
C – ;.

(2) Circle O passes through a and b, or the center of circle O lies on L1.
(3) If the center of circle O lies on L1, then O is orthogonal to C.

Proof. Let D = D(a, Œa � aŒ) be the disc of center a and of radius Œa � aŒ.

(1) If O is a line, then a 2 O and O intersects C in two points, A and B. Then A, B are
fixed points and then O ¼ L1 or f (A) = B and f (B) = A and then O ¼ L2. It
follows that O is a circle.Since f (a) =1 and C is invariant under f , then if
O � Dc, then f ðOÞ � D and if O � D, then f ðOÞ � Dc. This contradicts that O

is invariant under f . It follows that O
T
C – ;.

(2) Let fz1; z2g ¼ O \ C. Since f ¼ S � S1 ¼ S1 � S, then z1, z2 are the fixed points of
f or z1 ¼ S1ðz2Þ. If z1 ¼ S1ðz2Þ, the center of circle O lies on L1 and O is
symmetric with respect to L1.

(3) If the center of O is on L1, we suppose that a, b are not on O. Let fz;wg ¼ O \ L1.
Since f ðOÞ ¼ O and f (L1) = L1, then f (z) = w.The power of a with respect to O

is pða;OÞ ¼ jz� ajja� wj. Furthermore f ¼ S � S1, then w is symmetric to z with
respect to C, then Œz � aŒ Œa � wŒ = Œa � aŒ2. Then the two circles C and O are
orthogonal. h

Corollary 4.3. The only lines invariant under f are L1 and L2, and the only circles
invariant under f are:

(1) The circles which pass through a and b.
(2) The circles symmetric with respect to L1 and orthogonal to C.
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Proof

(1) If C1 is a circle passing through a and b, then the center of the circle lies on L2, (cf
Fig. 1). To prove that this circle is invariant under f , it is sufficient to prove that for
all z on C1; w ¼ S � S1ðzÞ lies on C1.In this situation, L1 is the radical axis of C and
C1, then pða; CÞ ¼ pða; C1Þ, where pða; CÞ (resp pða; C1Þ) is the power of awith respect
to C (resp with respect to C1).Let z1 be symmetric to zwith respect toL1, and let z2 be
symmetric to z with respect to L2. Since w ¼ S � S1ðzÞ, we have ða� z1Þ
ða� wÞ ¼ ja� aj2. But (a � z1) = �(a � z2), then ða� z2Þða� wÞ ¼ �ja� aj2
¼ pða; CÞ ¼ pða; C1Þ. It follows that w 2 C1 and then C1 is invariant under f.

(2) Let C2 be a circle symmetric with respect to L1 and orthogonal to C. Let
fz;wg ¼ L1 \ C2, (cf Fig. 2). Then C2 is the circle of diameter [z,w], since C and
C2 are orthogonal, then w ¼ SðzÞ, therefore w 2 C2. To prove that circle C2 is
invariant under f, it is sufficient to prove that for all z1 on this
circle; z2 ¼ Sðz1Þ 2 C2. Moreover, C and C2 are orthogonal, then
pða; C2Þ ¼ ja� z1j ja� z2j ¼ ja� aj2, and therefore z2 2 C2.Let now C3 be a circle
with center on L1, and invariant under f . Let fz;wg ¼ L1 \ C2, then using the
same argument, C3 is the circle of diameter [z,w] and f (z) = w. Thus
f ðzÞ ¼ w ¼ SðzÞ, therefor C and C3 are orthogonal. h
From the previous construction, we can deduce a construction of the invariant
circles under a Möbius transformation with a 4-cycle. We have the following result:

Let f be a 4-cycle such that 1 is not a fixed point of f , and let a, b, c in C be such
that
fðaÞ ¼ b; fðbÞ ¼ c; fðcÞ ¼ 1; fð1Þ ¼ a: ð2Þ

Let L2 be the straight line orthogonal to L1 and passing through b, and C be the circle
with diameter (a,c).

Proposition 4.4.

(1) b is the mid point of [a,c] or [c,a].
(2) The intersection of C \ L2 are the fixed points of f.
Figure 2 The circles symmetric to L1 and orthogonal to C are invariant.
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(3) f ¼ S � S1, where S is the symmetry with respect to circle C, and S1 is the
symmetry with respect to circle C1 of center a and passing through the fixed points
a, b of f.
Proof

(1) Since the cross-ratio is invariant under any Möbius transformation, then
[a,b,c,1] = [b,c,1,a], which is equivalent to a�c

a�b ¼
a�c
b�c, hence b ¼ aþc

2
, and then

b is the mid point of [a,c] or [c,a].
(2) It is straight forward to prove that f (L1) = L1, f ðCÞ ¼ L2 and f ðL2Þ ¼ C. Then

the two points a, b of C \ L2 are the fixed points of f .
(3) S � S1ðaÞ ¼ b ¼ f ðaÞ and a, b are the fixed points of f , and S � S1 is a Möbius

transformation, then f ¼ S � S1. h
5. CONSTRUCTION OF THE INVARIANT CIRCLES AND LINES BY A MÖBIUS TRANSFORMATION WITH

A 3-CYCLE

Let f be a 3-cycle such that 1 is not a fixed point. We denote by L the straight line
which contain the orbit of1, then there exist two different complex numbers a, b such
that
fðaÞ ¼ b; fðbÞ ¼ 1; fð1Þ ¼ a: ð3Þ

Then L = (a,b).
fðzÞ ¼ az� ða2 þ b2 � abÞ
z� b

: ð4Þ
Let C1 be the circle of center b and passing through a; C2 be the circle of center a and
passing through b, a and b the intersection of C1 and C2;L1 the line (a,b), and L2 the
line passing through a and b (see Fig. 3).
Figure 3 The two fixed points of a 3-cycle.
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Proposition 5.1.

(1) f(L1) = L1.
(2) f ðC1Þ ¼ C2; f ðC2Þ ¼ L2 and f ðL2Þ ¼ C1.
(3) a, b are the two fixed points of f.

Proof

(1) Since f (a) = b, f (b) =1 and f (1) = a, then f (L1) = L1.
(2) f ðC1Þ is a circle passing through b. b and1 are symmetric with respect to C1, so

f (b) =1 and f (1) = a are symmetric with respect to f ðC1Þ, hence f ðC1Þ ¼ C2.C2

is a circle orthogonal to L1 and f ðC2Þ is a straight line, so f ðC2Þ is a straight line
orthogonal to L1. a and 1 are symmetric with respect to C2, so f (a) = b and
f (1) = a are symmetric with respect to f ðC2Þ, hence f ðC2Þ ¼ L2. L2 is the bisec-
tor of [a,b] and passes through a and b.The pole of f is not on L2, therefore f (L2)
is a circle. Since a and b are symmetric with respect to L2, so f (a) = b and
f (b) =1 are symmetric with respect to f ðC2Þ, hence f ðL2Þ ¼ C1.

(3) a and b are symmetric with respect to L1, and fa; bg ¼ C1

T
C2

T
L2, so f (a) = a

or f (a) = b, but f 3 = Id, therefore f (a) = a and f (b) = b. Hence a and b are the
two fixed points of f. h

Theorem 5.2. Let f be a 3-cycle such that1 is not a fixed point, then the set of invariant
circles by f which are different from L1 form a pencil of coaxial circles. L1 is the radical
axis of each two of these circles.

Proof. We denote by S1 the symmetry with respect to circle C1 and S2 the symmetry
with respect to circle C2. Let c be the middle point of [a,b], and d is symmetric to c with
respect to C2. It is easy to prove the following properties:

f (c) = d and f ¼ S1 � S2.

Let z be any point on L2 different from a, b and c (see Fig. 4). Since L2 is the radical
axis of C1 and C2, the power of z with respect to C1 is
pðz; C1Þ ¼ ðz� aÞðz� z1Þ ¼ ðz� bÞðz� z2Þ ¼ jz� aj2 � R2;
with R = Œa � bŒ. It follows that ðz� aÞðz1 � aÞ ¼ R2, then z1 is the symmetric of z
with respect to C2, and z2 is the symmetric of z with respect to C1. Furthermore,
f ¼ S1 � S2, then f (z) = z1 and fðz1Þ ¼ S1 � S2ðz1Þ ¼ S1ðzÞ ¼ z2.

Let C be the circle which passes through z, z1, z2, and w 2 C, then the cross ratio
[w,z, f (z), f 2(z)] is real. Since the cross ratio is invariant under any Möbius
transformation, [w,z, f (z), f 2(z)] = [f (w), f (z), f 2(z),z], which means that fðwÞ 2 C. Then
C is invariant under f and contains the orbit of z. We remark that the power of a with
respect to circle C is equal to Œz � aŒŒz1 � aŒ = R2. Furthermore, the power of b with
respect to circle C is also equal to R2. The straight line L2 is the radical axis of the
invariant circles of f .



Möbius transformations with n-cycles geometric viewpoint 31
It is easy to prove that if C and C0 are invariant under f , then C ¼ C0 or C \ C0 ¼ ;.
Then the theorem is proved. h
6. CONSTRUCTION OF THE CIRCLES INVARIANT UNDER N-CYCLES, N > 4

Lemma 6.1. Let f be an n-cycle, then there exists a Möbius transformation g and a
rotation h such that f = g�1�h�g.

Proof. We associate with f a matrix A 2 SLð2;CÞ such that An = Id. Then A is
diagonalizable. There exist P;D 2 GLð2;CÞ such that A = P�1DP, with

D ¼ a 0
0 b

� �
; a; b 2 C and an = bn = 1.

We associate with P a Möbius transformation g and with D the rotation h defined
by: hðzÞ ¼ a

b z. h

Theorem 6.2. Let f be an n-cycle such that1 is not a fixed point and let L be the straight
line which contains the orbit of 1. Then the general circles invariant under f which are
different from L form a pencil of coaxial circles and L is their radical axis (i.e. each
two of these circles have L as radical axis). If f is an n-cycle and1 is a fixed point, then
f(z) = wz + a, with w „ 1 and w a n-root of the unity. In this case f has only one finite
fixed point a and the circles of center a are the only fixed circles of f.

Proof. Let g and h be as in Lemma 6.1. The invariant circles under h are the circles of
center 0.
Figure 4 The invariant circles of a 3-cycles.
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We define

� a; b; c 2 C such that g(a) =1, g(b) = 0 and g(1) = c,
� C the circle of center 0 passing through c,
� straight line L ¼ g�1ðCÞ,
� a 2 C the intersection of L and the straight line (a,b).Then
� Since 0 and 1 are the fixed points of h, then a and b are fixed points of f .
� 0 and1 are symmetric with respect to C, then a and b are symmetric with respect to
L.
� �c is the intersection of C and (0,c), then a is the intersection of L ¼ g�1ðCÞ.
Furthermore the straight line (a,b) = g�1(0,c), then a = g�1(�c).
� The invariant circles under f are the image of the circles of center 0 by g�1. Except
the circle L , these circles have their center on the line (a,b) and are disjoint.Now we
will prove that the circles which are different from L form a pencil of coaxial cir-
cles.Let C1 be an orbit of h, (C1 is a circle of center 0 and radius r). We denote by
z and w the intersection of g�1ðC1Þ with the straight line (a,b). Then g(z) and
�g(z) are the intersection of C1 with the straight line (0,c) (cf Figs. 6 and 5).To prove
the theorem, it suffices to prove that the power of a with respect to g�1ðC1Þ is inde-
pendent of C1, which is equivalent to proving that ða� zÞða� wÞ is independent of z
and w.Since the cross-ratio is invariant under Möbius transformation
a� z

a� z
¼ ða; a; z;1Þ ¼ ðgðaÞ; gðaÞ; gðzÞ; gð1ÞÞ ¼ ð�c;1; gðzÞ; cÞ ¼ gðzÞ þ c

2c
:

a� z

a� b
¼ ða;1; z; bÞ ¼ ðgðaÞ; gð1Þ; gðzÞ; gðbÞÞ ¼ ð1; c; gðzÞ; 0Þ ¼ c

c� gðzÞ :

a� w

a� w
¼ c� gðzÞ

2c
;

a� w

a� b
¼ c

cþ gðzÞ :
Figure 5 g�1ðCÞ intersects the line (a,b) in z and w.



Figure 6 C1 intersects the line (0,c) in g(z) and �g(z).
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Then
ða� zÞða� wÞ ¼ ða� bÞcðgðzÞ þ cÞða� bÞcðc� gðzÞÞ
4ccðc� gðzÞÞðcþ gðzÞÞ

¼ ja� bj2

4
:

This completes the proof. h
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