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1. Introduction and statement of the main results

One of the main problems in the theory of differential equations is the study of
their periodic orbits, their existence, their number and their stability. As usual,
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a limit cycle of a differential equation is a periodic orbit isolated in the set of all
periodic orbits of the differential equation.

The objective of this paper is to study the periodic solutions of the sixth-order
differential equation

XO+ (1 +p + )X+ + ¢+ )i+ pg’x
= SF(t’ x’ x’ x7x7x7x)’ (1)

where p and ¢ are rational numbers different from —1, 0, 1, and p#gq, ¢ is a
small real parameter, and F is a nonlinear non-autonomous periodic
function.

There are many papers studying the periodic orbits of sixth-order differential
equations, see for instance in [2-6,7-9,10]. But our main tool for studying the
periodic orbits of Eq. (1) is completely different from the tools of the mentioned
papers, and consequently the results obtained are distinct and new. We shall use
the averaging theory, more precisely Theorem 4. Many of the quoted papers
dealing with the periodic orbits of sixth-order differential equations use Schauder’s
or Leray—Schauder’s fixed point theorem, the non-local reduction method or
variational methods.

Our main results on the periodic solutions of the sixth-order differential Eq. (1)
are the following.

Theorem 1. Assume that p, q are rational numbers different from 1,0, —1 and p # q,
in differential Eq. (1). Let

F1(Xo, Yo, Zo, Uy, Vo, Wy M fo sint F(t,a(t),b(t),c(1),d(1),e(t),f(¢))dt
Fo(Xo, Yo, Zo, Uy, Vo, Wo) = — 5 oznk cost F(t,a(1),b(1),c(1),d(1),e(1),/(1))dt

)=
)
F3(Xo, Yo, Zo, Uy, Vo, Wo) =5 027[/( cos (2 )F(l a(t),b(1),c(t),d(1),e(1),/(1))dt,
) (
)
)

Fa(Xo, Yo, Zo, Uy, Vo, Wy L [ sin (21)F(t,a(t),b

% Jo 1),c(),d(1),e(t),f())dt,
Fs(Xo, Yo, Zo, Up, Vo, Wo) = 57 o™ cos (1) F(1,a(t),b(1), c(1),d(t), e(t),f(2))dt
Fo(Xo, Yo, Zo, Ug, Vo, Wo

),
— ot Jo sin (20 F(t,a(1), b(1), (1), d(1) (1), <>>
<z>

be with p = m/n,q =r/s, where m,n,s,r are positive integers p+#q,
(mmn) = (r,s) = 1, let k be the least common multiple of n and s, and
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a() = PP =)+ @)X+ gla = (g + DU+plp = N+ )W
Pe(=1+p)(=1+¢)(p* = ¢°) ’
by = =D+ Y+ = Dig+ NZ=(p=Dlp+ )V
(=1+p)(=1+ ) — &) ’
oty = =@+ OX+4lp = D+ DW=plg = (g + DU
(=1+p)(=1+ ) - ) ’
i) =~ @ =@ +)Y=pla—Dlg+ DZ+ap - D+ 1DV
(1) (=1+ )P - ) ’
_ -9+ 9X+pg-Dg+ DU+ - Dp+HW

0 1AL A — ) ’
= p-apt DY +ptg-Dg+DZ-q'p-1)p+ 1)V 3)
=1+ =1+ )P - ¢) ’
where
X(t) = Xocost — Yysint, Y(t) = Yycost+ Xpsint,
Z(t) = Zycos(pt) — Uysin(pt), U(t) = U, cos(pt) + Zysin(pt),
V(t) = Vycos(gt) — Wysin(qt), W(t) = Wycos(gqt) + Vysin(qt).

If the function F is 2nk — periodic with respect to the variable t, then for every
(XS, Yy, Zy, Uy, Vi WE;) solution of the system

Fi(Xo, Yo, 2, Uy, Vo, W) =0, k=1,...,6, (4)

satisfying
d a(fl7f2af3af4af57f6) <0 5
(Ko, Yor Zo, Uo, Vo, Wo) ) 80302000 v 3.2, 05,7 70 (3)

the differential Eq. (1) has a periodic solution x(t,e) tending to the solution x, (t) of
X0+ L+ + @)X+ + ¢ +p¢*)x + pPg*x = 0 given by

| N 3
Cpa(— 1) (1 + )P — ) (4Us cos(pi)) + 4Zysin(pt) — ¢ U cos(pi)

— ¢ Z;sin(pt) — p’qX;cost + p*qY;sint + pg’ X cost — pg’ Yy sin
— pWcos(qt) — pVisin(gt) + p* Wy cos(gt) + p* Vi sin(q1)), (6)

when ¢ — 0. Note that this solution is periodic of period 2mk.

Theorem 1 is proved in Section 3. Its proof is based on the averaging theory for
computing periodic orbits, see Section 2. Two applications of Theorem 1 for
studying the periodic solutions of Eq. (1) are given in the following four corollar-
ies. They are proved in Section 4.

The linear differential equation of sixth-order x(© + (1 +p> +¢*) X +
(P> + ¢+ p*¢P)i+ p*¢?x =0 provides a linear system in R® having a
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six-dimensional centre. Theorem 1 reduces the study of the limit cycles of the dif-
ferential equation of sixth-order (1) bifurcating from the periodic orbits of that
centre to find the nondegenerate zeros of the system of six equations and six un-
knowns given by (4). The zeros are non-degenerate in the sense that the Jacobian
of the system on them must be non-zero. In general, the problem of finding the
zeros of six non-linear equations with six unknowns is not easy, but of course it
is easier than looking for the periodic orbits directly.

Remark 1.

1. In the case p and ¢ are rational numbers different from 1, 0, —1 and p = ¢, then
we cannot apply Theorem 4 for studying the periodic orbits.

2. In the case p = g = 1 (respectively p = ¢ = 0), then we cannot applyTheorem
4 for studying the periodic orbits.

Corollary 2. If F(t,x,x, %, X, X, X) = (x — 1) sin¢, then the differential Eq. (1) with
p =%, q = 2 has one periodic solution x(1,¢) tending to the periodic solution x (1)
given by

x1(t) = —2cos(21),

of X9 + 2 X 425 + x =0 when ¢ — 0.
Corollary 3. If F(t, x,x, %, X, X, X) = (x*> — 1) sin ¢, then the differential Eq. (1) with

p = 2 and q = 3 has eighteen periodic solutions x; (t,e) for k = 1, ... ,18 tending to
the periodic solutions

xi(t) = —% 3 cos(21) +§\/§cos(t),x2(t) = %\/gcos(%) - %\/gcos t,
x3(t) = %\/gcos(Zt) +§\/§cos(t),x4(t) = —%\@cos@t) - %\/gcos 1,
xs(t) = \/Ecost—%\/gsint+%\/§cos(3t) —i—é\/gsin(ﬁ),

xe(1) = —\/icost—%\/gsint —%\/5005(30 +é\/gsin(3t),

x7(t) = \/Ecost+%\/gsint+%\/§cos(3t) - é\/gsin@t),

xg(1) = \/icost—l—%\/gsint - %\/icos@t) - é\/gsin@t),

Xo(t) = —%\/Esint— 21—1\/@sin(3t),

4 1
xX10(t) = ﬁ\/@sin t+ i\/zﬁsin(Sz),
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xi(t) = —% 3cos(2t) — %\/ﬁsint— ;—lmsin(&‘),
x12(t) = —% 3 cos(21) +%\/ﬁsint+%\/2_lsin(31),
x13(t) = %\/gcos(Zt) — %\/ﬁsint - %\/ﬁsin(%),
x14(1) = %\/gcos(%) + %\/ﬁsin t+ %\/ism(m,
x15(t) = —%\/ﬁsm(zz) - %@sinz+;—3\/§sin(3z),

X16(1) = % V/33sin(21) + % V33sin7 — % V/33sin(31),

2 2 4
x17(t) = I V33 sin(21) — £ V33sint + (e V/33sin(31),

2 . 2 . 4 .
x15(1) = T 33sin(21) —i-g\/ﬁsmt— g\/ﬁsm(&‘),

of x© +14% 4495 + 36x =0 when ¢ — 0.

2. Basic results on averaging theory

In this section we present the basic results from the averaging theory that we shall
need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from differ-
ential systems of the form

X = Fy(t,x) + eF (t,X) + & F(t, X, ¢), (7)

with ¢ = 0 to ¢ # 0 sufficiently small. Here the functions Fy, F; : R x Q — R" and
F R x QX (—¢,&) — R"are C* functions, T-periodic in the first variable, and Q
is an open subset of R". The main assumption is that the unperturbed system

X = Fy(1,x), (8)

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(#,z,¢) be the solution of the system (8) such that x(0,z,e) = z. We write the
linearization of the unperturbed system along a periodic solution x(¢,z,0) as

y = DxFO(tvx(t7Z>O))y' (9)

In what follows we denote by M,(¢) some fundamental matrix of the linear dif-
ferential system (9), and by ¢ : R* x R"* — R the projection of R” onto its first k
coordinates; i.e. & (x1,...,x,) = (X1, ..., X).

We assume that there exists a k-dimensional submanifold Z of Q filled with
T-periodic solutions of (8). Then an answer to the problem of bifurcation of
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T-periodic solutions from the periodic solutions contained in Z for system (7) is
given in the following result.

Theorem 4. Let W be an open and bounded subset of R*, and let p: C(W) — R"*
be a C* function. We assume that

(1) Z2=A{z, = (a,f(a)),x € CI(W)} C Q and that for each z, € Z the solution
x(t,z,) of (8) is T-periodic;

(ii) for each z, € Z there is a fundamental matrix M, (¢) of (9) such that the
matrix M,'(0) — M_'(T) has in the upper right corner the k x (n — k) zero
matrix, and in the lower right corner a (n — k) X (n — k) matrix A, with
det(A,) # 0.

We consider the function F : CI(W) — R*

Fla) = 5<1T /0 TMhl(z)Fl(z,x(z,za))dz) (10)

If there exists a € W with F(a) = 0 and det((dF /dx)(a))7#0, then there is a T-peri-
odic solution ¢(t,e) of system (7) such that ¢ (0,6) >z, as ¢ = 0.

Theorem 4 goes back to Malkin [8] and Roseau [9], for a shorter proof see [1].

We assume that there exists an open set V' with CI(}V) < Q such that for each
z € CI(V), x(¢,z,0) is T-periodic, where x(¢,z,0) denotes the solution of the unper-
turbed system (8) with x(0,z,0) = z. The set CI(V) is isochronous for the system
(7); i.e. it is a set formed only by periodic orbits, all of them having the same per-
iod. Then, an answer to the problem of the bifurcation of T-periodic solutions
from the periodic solutions x(¢,z,0) contained in CI(V) is given in the following
result.

Theorem 5 (Perturbations of an isochronous set). We assume that there exists an
open and bounded set V with CI(V) < Q such that for each z € CI(V ), the solution
X(t,z) is T-periodic, then we consider the function F : CI(V) — R"

f(z):/o M (t,2)F\(t,x(t,z))dt. (11)

If there exists a € V with F(a) = 0 and det((dF /dz)(a))#0, then there exists a T-
periodic solution ¢(t,e) of system (7) such that ¢(0,e) > a as ¢ = 0.

For a shorter proof of Theorem 5 see Corollary 1 of [1]. In fact this result goes
back to Malkin [8] and Roseau [9].

3. Proof of Theorem 1
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X=y,
y=z,
Z‘: )
v=Ww,

W= —p@x = (0P + @ Pz = (L4 P+ @)w + eF(t,x, p, z,u,v,w). - (12)
The unperturbed system has a unique singular point, the origin. The eigenvalues of

the linearized system at this singular point are i, =pi and *gi. By the linear
invertible transformation

(X,Y,Z, UV, W) = B(x,y,z,u,v,w)",

where
¢ 0 -p-¢ 0 10
0 p¢ 0 r+q¢ 0 1
s | 0 7 0 I+ 0 1
p¢ 0 p(l+qg) 0 p 0
0o p 0 1+ 0 1

pPg 0 ql+p) 0 g O
we transform the system (12) such that its linear part is real Jordan normal from of
the linear part of system (12) with ¢ = 0, i.e.,

(X =7,
flewfufULMQJO%ﬂﬁe@JU»
7 = —pU+ eF(1,a(1),b(1), c(1),d(1), e(1), £(1)),

o (13)
V‘: —qW+ gf(l,a(t),b(t),c(l),d(l),e(l),f(l)),
(W =qV,

where

F = F(t,a(t),b(1), (1), d(1),e(r), (1)) = F(t,x,y,z,u, v,w),
with a(?), b(t), c(1), d(t), e(t) and f(¢) as in (3).
Note that the linear part of the differential system (13) at the origin is in its real
Jordan normal from. We shall apply Theorem 5 to the differential system (13). We
note that system (13) can be written as system (7) taking

X Y 0
Y X _F
Z —my F
= , Fo(x,1) = ! . Fi(xt) =
X U o(x, 1) nz 1(x, 1) 0
Vv —! F
w r 0

N
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We shall study the periodic solutions of system (13) in our case, i.e. the periodic
solutions of system (13) with ¢ = 0. These periodic solutions are

X(1) Xocost — Yysint
Y(1) Yycost+ Xysint
Z(1) Zycos (21) — Uysin (21)
U(1) | Uyeos (1) + Zysin (2 1)
V(1) Vocos (51) — Wosin (£7)
W(t) Wocos (51) 4+ Vosin (57)

This set of periodic orbits has dimension six, all having the same period 27k,
where k is defined in the statement of Theorem 1. To look for the periodic solu-
tions of our Eq. (1) we must calculate the zeros z = (Xo, Yo,Z0,Uo, Vo, Wo) of the
system F(z) =0, where F(z) is given by (11). The fundamental matrix M(¢) of
the differential system (13) with ¢ = 0, along any periodic solution is

cost —sint 0 0 0 0
sint cost 0 0 0 0
M) = M.() = 0 0 cos(2t) —sin(Z) 0 0
: 0 0 sin(%s) cos(2t) 0 0
0 0 0 0 cos (1) —sin (%r)
0 0 0 0 sin (£7)  cos (%7)

Now computing the function F(z) given in (11), we got that the system F(z) = 0,
can be written as system (4) with the function F(Xy, Yo, Zy, Uy, Vo, Wy) given in
(2). The zeros (Xj, Yy, Zy, Uy, Vi, Wy) of system (4) with respect to the variables
Xo, Yo, Zy, Uy, Vy, and W, provide periodic orbits of system (13) with ¢ # 0 suffi-
ciently small if they are simple, i.e. if (5) holds. Going back through the change
of variables, for every simple zero (X(*) Y Zy, U, V5, W*O) of system (4), we obtain
a 2k periodic solution x(¢) of the differential Eq. (1) for ¢ # 0 sufficiently small such
that x(r) tends to the periodic solution (6) of x© + (14 p?+¢*) %+
(P* + ¢ + p*¢*) X + p*¢*>x = 0 when ¢ — 0, where k is defined in the statement of
Theorem 1. Note that this solution is periodic of period 2znk. This completes the
proof of Theorem 1.

4. Proof of Corollaries 2 and 3
Proof of Corollary 2. Consider the function F(f,x,x,%,x, X, X) = (x—1)sint,

which corresponds to the case p= and ¢ = 2. The functions
Fi(Xo, Yo, Zo, Uy, Vo, W) fori = 1,...,6 of Theorem 1 are

B|—
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F1(Xo, Yo, Zo, Up, Vo, W) = % + 910 Wo,
Fa(Xo, Yo, Zo, Uo, Vo, Wo) = —% Vo,
F3(Xo, Yo, Zo, Uo, Vo, Wo) = %Zo,
Fa(Xo, Yo, Zo, Up, Vo, W) = fS Uy,
Fs5(Xo, Yo, Zo, Up, Vo, W) = Tl Yy,

1

Fo(Xo, Yo, Zo, Uy, Vo, W) = §Xo-
System F| = F, = F3 = F4 = Fs = F¢ = 0 has only real solution
(ng Y;7287 US? VS7 WZ) = (070707()’07 _45)

Since the Jacobian
det a(Fhf%f%f%fSaFG) |
6(X0, Yo, Zy, Uy, Vo, WO) (XO’YO’ZO’UO’VO’WO):(XB’Y(*)’Z(*)’U(*)’VB’W*O)
B —16
332150625

by Theorem 1 Eq. (1) has the periodic solution of the statement of the
corollary. [

Proof of Corollary 3. Consider the function F(x,x,%, X, X, X,7) = (x> — 1)sin¢,
which corresponds to the case p = 2 and ¢ = 3. The functions F;(Xy, Yo, Zo,
Uy, Vo, Wo) for i = 1,...,6 of Theorem 1 are

o1 1,1, ]
- Z_ | - Y2 —
57600 ° 72757600 ° 1536 3600

1 1 1
XoWo = 17550 YoV or

1
Y, X
2304 X0 Yo =775 Yo Mo = 150X or

—Upy Y+ UpVo— ZyWy,

F1(Xo, Y0, 20, Ug, Vo, Wo) = —

1
_ X2
4608 3600 0t 11520

f (X07 Y07207 U07 V07 WO)

Us

Fi3(Xo, Y0,2Z0, Uy, Vo, Wo) =

1440 14400 14400

1 1 1
Fa(Xo, Y0, 2, Uy, Vo, Wp) = 1440 ——UyWy— 144020 Yo+ 1440020 Vo,

1 1
23040Y0 " 5760
1 1 1

1 1
Y5+ U?— X;— Zi+ Yo V5.
T4608 " ° 720070 4608 720020 5760 1070

Fs(Xo, Y0, 20, Uy, Vo, Wo) = Y0W0+36OOUOZO,

F6(X07 Y05207 U07 V07 WO)
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System Fi=F,=F3=F4=Fs=F¢=0 has the -eighteen solutions
(X, Yo, Zy, Up, Vi, W) given by

(16\/_ 0,0,20v/3,0 o) (—16\/§,0,0, —20\/§,0,0),

(16\/_00 20\f00) (—16\/5,0,0,20\@,0,0),

(24[ 2,8v/6,0,0,20v/6, 6o\f) (—24\6,8\/6,0,0,20\/6, —60\/5),
(24f —8/6,0,0, —201/6, 60\/_> (—24f2,—8\/6,0,0,—20\@,—60\6),

(0 —=V42,0,0, — 40\/_—0> <0,—2\/21§,0,0,470\/21§,0>,

(0 16\/"020f—@\/-0> (0,—17—6\/510,20\/1@\/2“1,0),
(0 16\/”0 —20V/3, — 160\/"0) <0,—§\/§T,0,—zoﬂ,@\/ﬁ,o>,
(0 16\/‘60\/‘0160\/‘0> (0,—%@,—%@,0,—%@,0),
(0,%@,—%@,0,%@,0),<o,—%¢§,%\/§,o,—%\/ﬁ,o>.

These 18 solutions of the system F| =F, =F3;=F4=Fs=TFs=0, have
been obtained independently using mathematica and maple.

Since the Jacobian (5) for theses eighteen solutions (Xj, Y5, Zg, Uy, Vi, W;) is

-1 -1 -1 -1 -1
1433272320000 1433272320000 1433272320000 1433272320000’ 955514880000’
-1 -1 -1 1 1
955514880000°955514880000° 955514880000 278691840000 278691840000’

1 1 1 1
30098718720000°30098718720000° 3009871872000030098718720000°
1 1 1 1

19269550080000°1926955008000019269550080000"19269550080000°

respectively, we obtain using Theorem 1, the eighteen solutions given in statement
of the corollary. [
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