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Abstract. In this paper, we propose an alternative approach combining the advantages of
the Kohn–Vogelius formulation and the topological sensitivity analysis method for solving
geometric inverse problems. The Kohn–Vogelius formulation can rephrase the geometric
inverse problem into a shape optimization one minimizing an energy-like function. The
sensitivity analysis gives the leading term of the energy-like function variation with respect to
the presence of a small geometry perturbation inside the computational domain. The obtained
theoretical results lead to build a fast and accurate numerical reconstruction algorithm. The
efficiency and accuracy of the proposed algorithm are illustrated by some numerical results.
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1. INTRODUCTION

In this paper we consider a geometric inverse problem related to the anisotropic Laplace
equation. Let D ⊂ R2 denote a bounded domain with smooth boundary Σ = ∂D. Inside
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the domain D we assume the existence of a sub-domain A⋆
⊂ D with boundary ∂A⋆. The

geometric inverse problem that we consider can be formulated as follows.
−Given two boundary conditions on the accessible part Σa of the boundary Σ : an imposed

flux F ∈ H−1/2(Σa) and a measured datum ϕm ∈ H 1/2(Σa).
− Find the unknown boundary ∂A⋆ such that the solution φ of the anisotropic Laplace

equation satisfies the following overdetermined value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− div (µ(x)∇φ) = Q in D \A⋆,

µ(x)∇φ.n = F on Σa,

φ = ϕm on Σa,

φ = 0 on Σi ,

φ = σ on ∂A⋆,

(1)

where Σa and Σi are two parts of the boundary Σ (accessible and inaccessible parts) such that
Σ = Σa ∪Σi and Σa ∩Σi = ∅. The parameter µ is a smooth scalar positive function (µ and
∇µ belong to L∞(D)) describing the physical properties of the medium D and Q ∈ L2(D)
is a given source term. In this formulation the domain D \ A⋆ is unknown since the free
boundary ∂A⋆ is unknown. This problem is ill-posed in the sense of Hadamard [14].

A standard way of solving this geometric inverse problem is to transform it into a shape
optimization one. Typically it leads to an optimization problem of the form

min
A⊂D

E(D \A, φA),

subject to E(φA) = 0,

where A ↦−→ E(D \A) is a shape function depending on the domain A via the solution φA
to a given partial differential equation E(φ) = 0.

In [15], the shape optimization problem is formulated as follows

min
A⊂D

1
2

∫
Σa

|µ(x)∇φ.n− F |2dΣ ,

where φ is the solution to the Dirichlet problem⎧⎪⎪⎨⎪⎪⎩
− div (µ(x)∇φ) = Q in D \A,

φ = ϕm on Σa,

φ = 0 on Σi ,

φ = σ on ∂A.
In [8,18], the shape optimization problem consists in minimizing the following boundary
quadratic function,

min
A⊂D

1
2

∫
Σa

|φ − ϕm |
2dΣ ,

where φ is the solution to the Neumann problem⎧⎪⎪⎨⎪⎪⎩
− div (µ(x)∇φ) = Q in D \A,

µ(x)∇φ.n = F on Σa,

φ = 0 on Σi ,

φ = σ on ∂A.
The majority of the developed methods for solving this optimization type problems are

based on the shape differentiation techniques. It is proved in [3,6] that this kind of geometric
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inverse problems are severely ill-posed (i.e. unstable), for both Dirichlet and Neumann
conditions on the boundary ∂A. Thus they have to use some regularization methods to solve
them numerically.

We propose here an alternative approach combining the advantages of the Kohn–Vogelius
formulation [5] and the topological sensitivity analysis method [1,2,4,7,9–13,16,17,19].

The Kohn–Vogelius formulation is a self regularization technique and rephrase the
geometrical inverse problem into a shape optimization one. It leads to define for any given
domain A ⊂ D two forward problems. The first one is associated to the Neumann datum F ,
which will be named as the “Neumann problem”:

(Pn)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find φn ∈ H 1(D \A) solving
− div (µ(x)∇φn) = Q in D \A

µ(x)∇φn.n = F on Σa

φn = 0 on Σi ,

φn = σ on ∂A.

(2)

The second one is associated to the Dirichlet (measured) datum ϕm

(Pd )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find φd ∈ H 1(D \A) solving
− div (µ(x)∇φd ) = Q in D \A

φd = ϕm on Σa

φd = 0 on Σi ,

φd = σ on ∂A.

(3)

One can remark that if ∂A coincides with the actual boundary ∂A⋆ then the misfit between
the solutions vanishes, φd = φn . According to this observation, we propose an identification
process based on the minimization of the following energy type functional

E(D \A) =
∫
D\A

µ(x)|∇φd −∇φn|
2dx .

The optimization problem consists in determining the optimal location and shape of the
domain A solution to the following minimizing problem

(O)
{

Find the domain A∗ ⊂ D such that
E(D \A∗) ≤ E(D \A), ∀A ⊂ D.

To solve the minimization problem (O) we shall use the topological sensitivity analysis
method. It consists in studying the variation of the function E with respect to a small geometry
perturbation of the domain D. More precisely, let χξ,ρ be a small hole created inside the
background domain D. We assume that the perturbation χξ,ρ is centered at an arbitrary point
ξ ∈ D and has the form χξ,ρ = ξ + ρχ , where ρ > 0 and χ ⊂ R2 is a given, regular and
bounded domain containing the origin (its boundary ∂χ is of class C1).

The topological sensitivity analysis method consists in measuring the sensitivity of the cost
function E with respect to the presence of a geometry perturbation. It leads to an asymptotic
expansion on the form:

E(D \ χξ,ρ) = E(D)+ f (ρ)S(ξ )+ o( f (ρ)), ∀ξ ∈ D,

where ρ ↦→ f (ρ) is a scalar positive function going to zero with ρ and describes the behavior
of the variation E(D \χξ,ρ)− E(D) with respect to ρ. The function ξ ↦−→ S(ξ ) measures the
sensitivity of E with respect to a geometry perturbation around the point ξ . The function S is
called the topological sensitivity or the topological gradient.
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In order to minimize the shape function E , the best location to insert a small geometry
perturbation in D is where the topological gradient S is most negative. In fact if S(ξ ) < 0, we
have E(D\χξ,ρ) < E(D) for small ρ. Particularly, the solution of the problem minχξ,ρ⊂DE(D\
χξ,ρ) is given by χ ⋆ξ,ρ = ξ

⋆
+ ρχ , such that S(ξ ⋆) < 0 and S(ξ ⋆) ≤ S(ξ ), ∀ξ ∈ D.

Based on this observation, we propose a simple and fast reconstruction algorithm for
solving the optimization problem (O). The function S is used as a descent direction in
the domain optimization process. The proposed process consists in building a sequence of
geometries (Ai )i≥0 with A0 = ∅. At the i th iteration, the domain Ai+1 is constructed by
creating a new geometry perturbation χ i in the domain Di = D \ Ai , i.e. Ai+1 = Ai ∪ χ

i .
The location and shape of the domain χ i is obtained using a topological sensitivity analysis
for the energy function E with respect to the insertion of a small geometry perturbation in the
domain Di .

The main contribution of this paper concerns the theoretical and numerical aspects. In
the theoretical part, we derive a sensitivity analysis for the considered energy like function
E with respect to the presence of a small geometry perturbation inside the domain D. The
established results are based on a rigorous and simplified mathematical analysis valid for a
large class of shape functions and an arbitrary shaped geometry perturbation. In the numerical
part, we propose a fast and accurate geometric reconstruction algorithm for solving the
shape optimization problem (O). The efficiency and accuracy of the proposed algorithm are
illustrated by some numerical results. Particularly, we will show that the regular and simple
shaped domain (disc or ellipse) can be reconstructed using only one iteration.

The paper is organized as follows. In the next section, we present the perturbed Neumann
and Dirichlet problems and we introduce the energy like function associated to a small
geometry perturbation. In Section 3, we discuss the influence of the geometry perturbation on
the perturbed solutions. Section 4 is devoted to a simplified formulation of the shape function
variation with respect to the creation of the hole χξ,ρ in D. The topological sensitivity analysis
for the function E is derived in Section 5. The proposed numerical algorithm is described in
Section 6.

2. THE PERTURBED PROBLEMS

In this section, we present the Neumann and Dirichlet problems in the perturbed domain.
In the presence of a small geometry perturbation χξ,ρ inside the domain D, the Neumann
problem consists in finding φρn ∈ H 1(D \ χξ,ρ) solution to

(Pρ
n )

⎧⎪⎪⎨⎪⎪⎩
− div (µ(x)∇φρn ) = Q in Dξ,ρ

µ(x)∇φρn · n = F on Σa

φρn = 0 on Σi

φρn = σ on ∂χξ,ρ,

(4)

with Dξ,ρ is the perturbed domain defined as Dξ,ρ = D \ χξ,ρ .
In the absence of any perturbation (i.e. ρ = 0), the Neumann problem reads: find

φ0
n ∈ H 1(D) solution to

(P0
n )

⎧⎨⎩
− div (µ(x)∇φ0

n ) = Q in D
µ(x)∇φ0

n · n = F on Σa

φ0
n = 0 on Σi .

(5)



Kohn–Vogelius formulation and topological sensitivity analysis based method for solving geometric inverse problems 47

Similarly, the perturbed Dirichlet problem consists in finding φρd ∈ H 1(D \ χξ,ρ) solution to

(Pρ

d )

⎧⎪⎪⎨⎪⎪⎩
− div (µ(x)∇φρd ) = Q in Dξ,ρ

φ
ρ

d = ϕm on Σa

φ
ρ

d = 0 on Σi

φ
ρ

d = σ on ∂χξ,ρ .

(6)

The Dirichlet problem in the non perturbed domain reads: find φ0
d ∈ H 1(D) solution to

(P0
d )

⎧⎨⎩
− div (µ(x)∇φ0

d ) = Q in D
φ0

d = ϕm on Σa

φ0
d = 0 on Σi .

(7)

We are now ready to introduce the considered energy-like function E . For each created
geometry perturbation χξ,ρ inside the domain D, the function E measures the difference
between the Neumann and Dirichlet perturbed solutions. It is defined as

E(D \ χξ,ρ) =
∫
Dξ,ρ

µ(x)|∇φρd (x)−∇φρn (x)|2dx, ∀χξ,ρ ⊂ D.

In the non perturbed domain (i.e. when ρ = 0), the function E has the expression

E(D) =
∫
D
µ(x)|∇φ0

d (x)−∇φ0
n (x)|

2
dx .

Then, the variation of the function E with respect to the presence of a small geometry
perturbation is given by

E(D \ χξ,ρ)− E(D)

=

∫
Dξ,ρ

µ(x)|∇φρd (x)−∇φρn (x)|2dx −
∫
D
µ(x)|∇φ0

d (x)−∇φ0
n (x)|

2
dx .

To drive the expected asymptotic expansion for the function E and calculate the topological
sensitivity function S, we will start our analysis by studying the influence of the geometry
perturbation on the Neumann and Dirichlet problems solutions. We will derive in the next
section two estimates describing the asymptotic behavior of the variations φρn−φ0

n and φρd−φ
0
d

with respect to ρ.

3. ESTIMATE OF THE PERTURBED SOLUTIONS

In this section, we derive two estimates describing the perturbation caused by the creation
of a small hole χξ,ρ inside the domain D.

3.1. Estimate of the Neumann perturbed solution

From (Pρ
n ) and (P0

n ), one can check that the variation of the Neumann perturbed solution
v
ρ
n = φ

ρ
n − φ

0
n satisfies the system⎧⎪⎪⎨⎪⎪⎩

− div (µ(x)∇vρn ) = 0 in D \ χ ξ,ρ
µ(x)∇vρn · n = 0 on Σa

vρn = 0 on Σi

vρn = σ − φ
0
n on ∂χξ,ρ .

(8)
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Let Φξ
n be a scalar function defined by

Φξ
n (y) = [σ (ξ )− φ0

n (ξ )] log(|y|), ∀y ∈ R2.

Then, the Neumann perturbed solution φρn satisfies the following estimate.

Proposition 1. There exists a positive constant c > 0, independent of ρ, such thatφρn − φ0
n −

1
log(ρ)

Φξ
n (x − ξ )


1,Dξ,ρ

≤
c√

− log(ρ)
. (9)

Proof. Since ξ ̸∈ Dξ,ρ , we have ∆Φ
ξ
n = 0 in Dξ,ρ . Then, the total variation rn

ξ,ρ(x) =
φ
ρ
n (x)− φ0

n (x)− 1
log(ρ)Φ

ξ
n (x − ξ ) solves the following boundary value problem in D \ χ ξ,ρ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− div (µ(x)∇rn
ξ,ρ ) =

1
log(ρ)

∇µ(x) · ∇Φξn (x − ξ ) in D \ χξ,ρ

µ(x)∇rn
ξ,ρ · n = −

1
log(ρ)

µ(x)∇Φξn (x − ξ ) · n on Σa

rn
ξ,ρ = −

1
log(ρ)

Φ
ξ
n (x − ξ ) on Σi

rn
ξ,ρ = [σ − φ0

n ]− [σ (ξ )− φ0
n (ξ )]−

1
log(ρ)

Φ
ξ
n ((x − ξ )/ρ) on ∂χξ,ρ .

(10)

The condition imposed on the boundary ∂χξ,ρ is obtained using the log-function property
log(|x − ξ |) = log(|x − ξ |/ρ)+ log(ρ), ∀x ̸= ξ .

To derive the desired inequality (9), we will estimate the right hand side and the boundary
data in (10) separately. To this end, we introduce the following preliminaries results:
− From the fact that χ is an open domain containing the origin, there exists r > 0 such

that:
B(0, r ) ⊂ χ .
− The domain D is bounded in such a way that there exists R > 0 such that:
D ⊂ B(ξ, R), ∀ξ ∈ D.
− From the fact that C(0, rρ, R) =

{
y ∈ R2

; rρ < |y| < R
}
⊂ R2

\ {0}, it follows that
the function ψ : y ↦→ log(|y|) is smooth in C(0, rρ, R) and admits the estimate

∥∇ψ∥0,C(0,rρ,R) ≤ c
√
− log(ρ),

where c is a positive constant, independent of ρ.
• Estimate of the right hand side: Using the smoothness of the functions µ, σ and φ0

n near ξ
and the fact that D \ χ ξ,ρ − ξ ⊂ C(0, rρ, R), we deduce∇µ(x)∇Φξ

n (x − ξ )


0,D\χξ,ρ
≤ ∥∇µ∥L∞(D)

∇Φξ
n


0,C(0,rρ,R) ≤ c

√
− log(ρ).

Then, it follows 1
log(ρ)

∇µ(x)∇Φξ
n (x − ξ )


0,D\χξ,ρ

= O(
c√

− log(ρ)
). (11)

• Estimate of the imposed boundary data on Σ : Let R̃ > 0 such that χξ,ρ ⊂ B(ξ, R̃) and
B(ξ, R̃) ⊂ D. By trace theorem we haveµ(x)∇Φξ

n · n

−1/2,Σa

+
Φξ

n


1/2,Σi

≤ c
Φξ

n


1,DR̃

,
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where DR̃ = D \ B(ξ, R̃). It is easy to remark that the function x ↦→ Φ
ξ
n (x − ξ ) is smooth

(of class C1) in DR̃ and the norm
Φξ

n


1,DR̃

is uniformly bounded. Then, it follows

µ(x)∇rn
ξ,ρ · n


−1/2,Σa

+
rn
ξ,ρ


1/2,Σi

= O(
−1

log(ρ)
). (12)

• Estimate of the imposed boundary data on ∂χξ,ρ : We havern
ξ,ρ


1/2,∂χξ,ρ

≤
[σ − φ0

n ]− [σ − φ0
n ](ξ )


1/2,∂χξ,ρ

+
−1

log(ρ)

Φξ
n ((x − ξ )/ρ)


1/2,∂χξ,ρ

.

Using the trace theorem and the fact that x ↦→ (σ −φ0
n )(x) is smooth in χξ,ρ , one can deduce[σ − φ0

n ]− [σ − φ0
n ](ξ )


1/2,∂χξ,ρ

≤
[σ − φ0

n ]− [σ − φ0
n ](ξ )


1,χξ,ρ

= O(ρ).

Let χr = χ \ B(0, r ), we have ξ + ρχr ⊂ χξ,ρ . By the change of variable x = ξ + ρy and
the trace theorem, one can deriveΦξ

n ((x − ξ )/ρ)


1/2,∂χξ,ρ
≤

Φξ
n


1,χr

.

From the fact that y ↦→ log(|y|) is smooth in χr , it follows that the quantity
Φξ

n


1,χr

is
uniformly bounded and we have

−1
log(ρ)

Φξ
n ((x − ξ )/ρ)


1/2,∂χξ,ρ

= O(
−1

log(ρ)
).

Consequently,rn
ξ,ρ


1/2,∂χξ,ρ

= O(
−1

log(ρ)
). (13)

Finally, combining the estimates (11)–(13), one can deduce that there exists c > 0 such thatφρn − φ0
n −

1
log(ρ)

Φξ
n


1,Dξ,ρ

=
rn
ξ,ρ


1,Dξ,ρ

≤
c√

− log(ρ)
.

3.2. Estimate of the Dirichlet perturbed solution

From (Pρ

d ) and (P0
d ), one can check that the variation of the Dirichlet perturbed solution

v
ρ

d = φ
ρ

d − φ
0
d solves the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩

− div (µ(x)∇vρd ) = 0 in D \ χ ξ,ρ
v
ρ

d = 0 on Σa

v
ρ

d = 0 on Σi

v
ρ

d = σ − φ
0
d on ∂χξ,ρ .

(14)

Similar to the Neumann case, we introduce a scalar function Φ
ξ

d associated to the Dirichlet
problem, defined by

Φ
ξ

d (y) = [σ (ξ )− φ0
d (ξ )] log(|y|), ∀y ∈ R2.
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We have the following estimate.

Proposition 2. There exists a positive constant c > 0, independent of ρ, such thatφρd − φ0
d −

1
log(ρ)

Φ
ξ

d


1,Dξ,ρ

≤
c√

− log(ρ)
. (15)

Proof. The proof of this estimate can be established using an adaptation of the proof
developed in Section 3.2.

Remark 1. If the physical property µ is constant in the domain D (i.e. D is a homogeneous
material), the source term in (10) vanishes and the asymptotic behavior (with respect to ρ) of
the perturbed solution will be O( −1

log(ρ) ) instead of O( 1√
− log(ρ)

).

Corollary 1. If the domain D is occupied by a homogeneous material, then the Neumann
and Dirichlet perturbed solutions satisfy the estimatesφρn − φ0

n −
1

log(ρ)
Φξ

n (x − ξ )


1,Dξ,ρ

= O(
−1

log(ρ)
),φρd − φ0

d −
1

log(ρ)
Φ
ξ

d (x − ξ )


1,Dξ,ρ

= O(
−1

log(ρ)
).

4. VARIATION OF THE ENERGY-LIKE FUNCTION

We present in this section a simplified expression of the variation E(D \χ ξ,ρ)−E(D). The
obtained formulation plays important role in the topological sensitivity analysis of E .

The variation of the energy-like function E reads

E(D \ χ ξ,ρ)− E(D) =
∫
Dξ,ρ

µ(x)|∇φρd −∇φ
ρ
n |

2dx −
∫
D
µ(x)|∇φ0

d −∇φ
0
n |

2
dx

=

∫
Dξ,ρ

µ(x)|∇φρn |
2dx −

∫
D
µ(x)|∇φ0

n |
2
dx

+

∫
Dξ,ρ

µ(x)|∇φρd |
2dx −

∫
D
µ(x)|∇φ0

d |
2
dx

− 2

[∫
Dξ,ρ

µ(x)∇φρn · ∇φ
ρ

d dx −
∫
D
µ(x)∇φ0

n · ∇φ
0
ddx

]
.

In order to derive a topological asymptotic expansion for the function E , we start our analysis
by the following preliminary result.

Theorem 1. The variation of E caused by the presence of a small geometry perturbation
χξ,ρ inside the background domain D admits the expression

E(D \ χ ξ,ρ)− E(D) =
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

−

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds
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+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρd − φ

0
d )ds

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn − φ

0
n )ds.

Proof. The variation E(D \ χ ξ,ρ)− E(D) can be decomposed as

E(D \ χ ξ,ρ)− E(D) = ℑn(ρ)+ ℑd (ρ)− 2ℑm(ρ), with

ℑn is the Neumann term

ℑn(ρ) =
∫
D\χξ,ρ

µ(x)|∇φρn |
2dx −

∫
D
µ(x)|∇φ0

n |
2
dx,

ℑd is the Dirichlet term

ℑd (ρ) =
∫
D\χξ,ρ

µ(x)|∇φρd |
2dx −

∫
D
µ(x)|∇φ0

d |
2
dx,

and ℑm is the mixed term

ℑm(ρ) =
∫
D\χξ,ρ

µ(x)∇φρn · ∇φ
ρ

d dx −
∫
D
µ(x)∇φ0

n · ∇φ
0
ddx .

Next, we will examine each term separately.
− The Neumann term: we have

ℑn(ρ) =
∫
Dξ,ρ

µ(x)|∇φρn −∇φ
0
n |

2
dx + 2

∫
Dξ,ρ

µ(x)∇(φρn − φ
0
n ) · ∇φ0

ndx

−

∫
χξ,ρ

µ(x)|∇φ0
n |

2
dx .

From the weak formulation of (8), one can derive∫
Dξ,ρ

µ(x)|∇φρn −∇φ
0
n |

2
dx =

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds

and ∫
Dξ,ρ

µ(x)∇(φρn − φ
0
n ) · ∇φ0

ndx

=

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · nφ0

nds +
∫
Σi

µ(x)∇(φρn − φ
0
n ) · nφ0

nds.

The integral on the boundary ∂χξ,ρ can be decomposed as∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · nφ0

nds

= −

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds +

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · nφρn ds.

Then, it follows

ℑn(ρ) = −
∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds + 2

∫
Σi

µ(x)∇(φρn − φ
0
n ) · nφ0

nds
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+ 2
∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · nφρn ds −

∫
χξ,ρ

µ(x)|∇φ0
n |

2
dx . (16)

− The Dirichlet term: the term ℑd can be decomposed as

ℑd (ρ) =
∫
Dξ,ρ

µ(x)|∇φρd −∇φ
0
d |

2
dx + 2

∫
Dξ,ρ

µ(x)∇(φρd − φ
0
d ) · ∇φ0

ddx

−

∫
χξ,ρ

µ(x)|∇φ0
d |

2
dx .

Using the weak formulation of (14) and the fact that φρd − φ
0
d = 0 on ∂D, we have∫

Dξ,ρ

µ(x)|∇φρd −∇φ
0
d |

2
dx =

∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

and ∫
Dξ,ρ

µ(x)∇(φρd − φ
0
d ) · ∇φ0

ddx

=

∫
Dξ,ρ

Q (φρd − φ
0
d )dx +

∫
∂χξ,ρ

µ(x)∇φ0
d · n (φρd − φ

0
d )ds.

Then, we derive

ℑd (ρ) =
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds + 2

∫
Dξ,ρ

Q (φρd − φ
0
d )dx

+ 2
∫
∂χξ,ρ

µ(x)∇φ0
d · n (φρd − φ

0
d )ds −

∫
χξ,ρ

µ(x)|∇φ0
d |

2
dx . (17)

− The mixed term: this term can be written as

ℑm(ρ) =
∫
Dξ,ρ

µ(x)∇φρn · ∇(φρd − φ
0
d )dx +

∫
Dξ,ρ

µ(x)∇(φρn − φ
0
n )∇φ0

ddx

−

∫
χξ,ρ

µ(x)∇φ0
n∇φ

0
ddx .

Applying the Green formula for Eq. (4) and making use of the condition φρd −φ
0
d = 0 on ∂D,

we obtain∫
Dξ,ρ

µ(x)∇φρn · ∇(φρd − φ
0
d )dx =

∫
Dξ,ρ

Q (φρd − φ
0
d )dx +

∫
∂χξ,ρ

µ(x)∇φρn · n (φρd − φ
0
d )ds.

From the weak formulation of (8) and the fact that φ0
d − φ

0
n = 0 on Σi , it follows∫

Dξ,ρ

µ(x)∇(φρn − φ
0
n )∇φ0

ddx

=

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · nφ0

dds +
∫
Σi

µ(x)∇(φρn − φ
0
n ) · nφ0

nds.

Then, we deduce

ℑm(ρ) =
∫
Dξ,ρ

Q (φρd − φ
0
d )dx +

∫
∂χξ,ρ

µ(x)∇φρn · nφ
ρ

d ds +
∫
Σi

µ(x)∇(φρn − φ
0
n ) · nφ0

nds

−

∫
∂χξ,ρ

µ(x)∇φ0
n · nφ

0
dds −

∫
χξ,ρ

µ(x)∇φ0
n∇φ

0
ddx . (18)
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− The total variation: exploiting the obtained expressions (16)–(18), it follows

E(D \ χ ξ,ρ)− E(D) = ℑn(ρ)+ ℑd (ρ)− 2ℑm(ρ)

=

∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

−

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn + φ

ρ

d − 2φ0
d )ds

−

∫
χξ,ρ

µ(x)|∇φ0
d −∇φ

0
n |

2
dx .

Using Green formula and taking into account of the normal orientation∫
χξ,ρ

µ(x)|∇φ0
d −∇φ

0
n |

2
dx = −

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φ0

d − φ
0
n )ds

then, we deduce

E(D \ χ ξ,ρ)− E(D) =
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

−

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρd − φ

0
d )ds

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn − φ

0
n )ds.

5. TOPOLOGICAL SENSITIVITY ANALYSIS

We are now ready to derive the sensitivity analysis for the energy-like function E with
respect to the presence of a small geometry perturbation χξ,ρ inside the domain D. As it
is described in the following theorem, the sensitivity function S depends on the physical
property of the domain, the boundary condition on ∂χξ,ρ and the solutions of the non-
perturbed Dirichlet and Neumann problems.

Theorem 2. The function E defined by

E(D \ χ ξ,ρ) =
∫
D\χξ,ρ

µ(x)|∇φρd −∇φ
ρ
n |

2dx,

admits the following topological asymptotic expansion

E(D \ χ ξ,ρ) = E(D)+
−1

log(ρ)
S(ξ )+ o

(
−1

log(ρ)

)
,

with S is the topological gradient given by

S(x) = 2πµ(x)
[
|φ0

d (x)− σ (x)|
2
− |φ0

n (x)− σ (x)|
2
]
,∀x ∈ D.
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Proof. From Theorem 1, we have

E(D \ χ ξ,ρ)− E(D) =
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

−

∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds (19)

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρd − φ

0
d )ds

+

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn − φ

0
n )ds. (20)

Next we will derive an asymptotic expansion for each term.
− Asymptotic expansion for the first term in (19):

Using the fact that φρd = σ on ∂χξ,ρ , we have∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds

=

∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d −

1
log(ρ)

Φ
ξ

d ) · n (σ − φ0
d )ds

+
1

log(ρ)

∫
∂χξ,ρ

µ(x)∇Φξ

d · n (σ − φ0
d )ds. (21)

By trace theorem, it follows⏐⏐⏐⏐⏐
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d −

1
log(ρ)

Φ
ξ

d ) · n (σ − φ0
d )ds

⏐⏐⏐⏐⏐
≤

µ(x)∇(φρd − φ
0
d −

1
log(ρ)

Φ
ξ

d ) · n

−1/2,∂χξ,ρ

σ − φ0
d


1/2,∂χξ,ρ

≤

φρd − φ0
d −

1
log(ρ)

Φ
ξ

d


1,Dξ,ρ

σ − φ0
d


1,χξ,ρ

.

Using Proposition 2 and the fact that σ − φ0
d is uniformly bounded in χξ,ρ , one can easily

deduce⏐⏐⏐⏐⏐
∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d −

1
log(ρ)

Φ
ξ

d ) · n (σ − φ0
d )ds

⏐⏐⏐⏐⏐ = o
(
−1

log(ρ)

)
.

To examine the last term in (21), we begin by the following decomposition∫
∂χξ,ρ

µ(x)∇Φξ

d · n (σ − φ0
d )ds = µ(ξ )

∫
∂χξ,ρ

∇Φ
ξ

d · n ds(σ (ξ )− φ0
d (ξ ))

+

∫
∂χξ,ρ

∇Φ
ξ

d · n
[
µ(x)(σ − φ0

d )(x)− µ(ξ )(σ − φ0
d )(ξ )

]
ds.

By a similar argument as in (13), one can establish∫
∂χξ,ρ

∇Φ
ξ

d · n
[
µ(x)(σ − φ0

d )(x)− µ(ξ )(σ − φ0
d )(ξ )

]
ds = O(ρ).
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From the fact that y ↦→ − 1
2π log(|y|) is the fundamental solution of the Laplace operator and

taking into account of the normal orientation, one can derive∫
∂χξ,ρ

∇Φ
ξ

d · n ds = −2π [σ (ξ )− φ0
d (ξ )].

Consequently, the first term in (19) admits the following expansion∫
∂χξ,ρ

µ(x)∇(φρd − φ
0
d ) · n (φρd − φ

0
d )ds =

−2π
log(ρ)

µ(ξ )
[
σ (ξ )− φ0

d (ξ )
]2
+ o

(
−1

log(ρ)

)
.

− Asymptotic expansion for the second term in (19):
The asymptotic expansion for the second term in (19) can be established with the help of

the same technique developed in the previous paragraph. Then, one can easily obtain∫
∂χξ,ρ

µ(x)∇(φρn − φ
0
n ) · n (φρn − φ

0
n )ds =

−2π
log(ρ)

µ(ξ )
[
σ (ξ )− φ0

d (ξ )
]2
+ o

(
−1

log(ρ)

)
.

− Estimate of the term (20):
From the fact that φρn = φ

ρ

d = σ on ∂χξ,ρ , the term (20) can be rewritten as∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρd − φ

0
d )ds +

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn − φ

0
n )ds

=

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (2σ − φ0

d − φ
0
n )ds.

Recall that − div (µ(x)∇(φ0
d − φ

0
n )) = 0 in χξ,ρ . Then, by Green formula one can derive∫

∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (2σ − φ0

d − φ
0
n )ds

=

∫
χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · ∇(φ0

d + φ
0
n − 2σ )dx .

Finally, using the smoothness of the functions φ0
n , φ0

d and σ near the point ξ , one can deduce
that the term (20) satisfies the estimate∫

∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρd − φ

0
d )ds +

∫
∂χξ,ρ

µ(x)∇(φ0
d − φ

0
n ) · n (φρn − φ

0
n )ds

= o
(
−1

log(ρ)

)
.

6. NUMERICAL EXPERIMENTS

This section is devoted to some numerical investigations. In the first part of this section,
we present a numerical validation of the topological asymptotic expansion established in
Theorem 2. In the second part, we propose a fast and accurate reconstruction algorithm for
solving the geometric inverse problem.
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6.1. Validation of the asymptotic formula

It is proved in Theorem 2, that the variation of the function E , with respect to the insertion
of a small geometry perturbation χξ,ρ in the domain D, satisfies the estimate

E(D \ χξ,ρ) = E(D)+
−2π

log(ρ)
S(ξ )+ o

(
−1

log(ρ)

)
,

with

S(x) = µ(x)
[
|φ0

d (x)− σ (x)|
2
− |φ0

n (x)− σ (x)|
2
]
, ∀x ∈ D.

In this section, we present a numerical validation of this asymptotic behavior. It consists in
studying the variation of the following function

Vξ (ρ) = E(D \ χξ,ρ)− E(D)+
2π

log(ρ)
S(ξ )

with respect to −1
log(ρ) for some arbitrary locations of the perturbation χξ,ρ in the domain D.

We denote by α the unknown parameter describing the behavior of the function ρ ↦→
Vξ (ρ) with respect to − log(ρ), i.e

|Vξ (ρ)| = O ((− log(ρ))α) .

Then, one can observe that α can be characterized as the slope of the line approximating the
variation ρ ↦→ log(|Vξ (ρ)|) with respect to log (− log(ρ)).
The numerical simulations are done using the following data:
− The background domain is defined by the square D = [−1, 1]× [−1, 1].
− The (arbitrary chosen) locations ξi of the considered perturbation χ i

ρ = ξi + ρB(0, 1) are
described in the following table

Perturbation χ i
ρ χ1

ρ χ2
ρ χ3

ρ χ4
ρ

Location ξi ξ1 = (0.2, 0.2) ξ2 = (−0.4, 0.3) ξ3 = (−0.5,−0.1) ξ4 = (0.7,−0.4)

Our numerical algorithm is based on the following main steps:

• Step 1:
− compute the solutions φ0

d and φ0
n in the domain D.

− compute E(D).
• Step 2: for each perturbation χ i

ρ = ξi + ρB(0, 1), i = 1, . . . , 4:
− compute S(ξi ),
− choose ρi

0 = max{ρ > 0, such that ξi + ρ
i
0 B(0, 1) ⊂ D},

− compute an approximation of the function ρ ↦→ E(D \ χ i
ρ), ρ ∈ ]0, ρi

0]
• Step 3: deduce a numerical approximation of the function ρ ↦→ log(|Vξ i (ρ)|), ρ ∈

]0, ρi
0].

The obtained results are described in Fig. 1. For each considered perturbation χ i
ρ =

ξi + ρB(0, 1), i = 1, . . . , 4, we plot the variation of the function ρ ↦→ log(|Vξ i (ρ)|) with
respect to log (− log(ρ)) using different mesh step.

From the plotted curves in Fig. 1, we deduce the slopes αi , i = 1, . . . , 4 (see the
following table) describing the behavior of the function ρ ↦→ Vξ i (ρ) with respect to− log(ρ).
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(a) Perturbation χ1
ρ . (b) Perturbation χ2

ρ . (c) Perturbation χ3
ρ . (d) Perturbation χ4

ρ .

Fig. 1. Variation of log(|Vξ i (ρ)|) with respect to log (− log(ρ)).

The perturbation χ i
ρ : χ1

ρ χ2
ρ χ3

ρ χ4
ρ

The slope αi , i = 1, . . . , 4 α1 = −1.1 α2 = −1.17 α3 = −1.18 α4 = −1.2

The obtained slopes αi describing the behavior of the function ρ ↦→ Vξ i (ρ) with
respect to − log(ρ) for the considered perturbations χ i

ρ , i = 1, . . . , 4..

For each considered perturbation χ i
ρ , one can observe here that the obtained slope αi satisfies

the inequality: αi < −1, i = 1, . . . , 4, which confirm the behavior predicted by the
theoretical result

Vξ (ρ) = o
(
−1

log(ρ)

)
.

6.2. Reconstruction procedures

In this section, we aim to build a numerical procedure for detecting an unknown geometry
A⋆ inserted in a given domain D from overdetermined boundary data on ∂D. We start our
analysis by considering a simple and smooth shaped geometry. We will show in this particular
case that A⋆ can be reconstructed using only one iteration. An iterative reconstruction
procedure is proposed in Section 6.2.2 for detecting more complicated geometry. The
proposed reconstruction algorithms are based on the topological asymptotic expansion
established in Theorem 2.

6.2.1. One-iteration reconstruction procedure
In this paragraph, we propose a fast and accurate reconstruction procedure for detecting

simple and smooth geometries A⋆. We will show here that circular and ellipse shaped objects
can be reconstructed using only one iteration. The main steps of the proposed procedure are
described in the following algorithm.

The one-iteration algorithm:

� Solve the problems (P0
n ) and (P0

d ) in the initial domain D,
� Compute the topological sensitivity function S(x),∀x ∈ D,
� Determine t⋆ ∈ [0, 1] such that E(D \ At⋆ ) ≤ E(D \ At ), ∀t ∈ [0, 1], where

At = {x ∈ D; S(x) ≤ tδmin} with δmin is the most negative value of the function S
in D.

In order to show the performances of the proposed one-iteration algorithm, we present
some numerical illustrations. We will consider three numerical examples. The first one
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concerns the reconstruction of circular-shaped objects. In the second example, we examine
the numerical reconstruction of various ellipses having different locations and sizes. In the
third example, we discuss the case of geometry with corners.

(a) Reconstruction of circular-shaped objects: the unknown domain A⋆ is described by a
disc inserted in the square D = [0, 1] × [0, 1]. In this example, we examine the numerical
reconstruction of various discs having different radius r . The obtained results are illustrated
in Fig. 2. For each considered radius, we show:
− the negative zone (red zone) described by the function x ↦→ (x,S(x)), ∀x ∈ D,
− the iso-values of the sensitivity function S in the presence of the unknown boundary ∂A⋆,
− a zoom on zone containing the isovalue of S (color lines) approximating the boundary ∂A⋆

(black line).
One can easily observe in Fig. 2, that the one-iteration algorithm gives quite efficient

reconstruction results for different sizes of circular-shaped objects.

(b) Reconstruction of ellipse-shaped objects: the unknown domain A⋆ is described by an
ellipse inserted in the unit disc D = B(0, 1). In this example, we examine the numerical
reconstruction of various ellipses having different locations and sizes. The obtained results
are illustrated in Fig. 3. For each case, we plot the iso-values of the sensitivity function S
(color lines) in the presence of the unknown boundary ∂A⋆ (black line). Here again, as one
can see in Fig. 3, the one-iteration algorithm gives quite efficient reconstruction results for
different locations and sizes of ellipse-shaped objects.

(c) Reconstruction of geometry with corners: We apply now the proposed algorithm to
detect more complicated geometry. Our aim is to reconstruct geometry containing straight
lines and corners from overdetermined boundary data. More precisely, we want to detect the
square A⋆ whose vertices are the points (0.25, 0.5), (0.5, 0.25), (0.75, 0.5), (0.5, 0.75).

We see in Fig. 4 that the unknown square A⋆ is located in the zone where the topological
sensitivity function S is the most negative (red zone) but the boundary of A⋆ cannot be well
approximated by any iso-value curve. One can remark here, that the one-iteration algorithm
detects the zone containing the unknown geometry but the reconstruction result is not good.
In order to perform this result and get an efficient reconstruction result for geometries with
corners, we suggest an iterative reconstruction procedure in the next section.

6.2.2. Iterative reconstruction procedure
In this section, we propose an iterative process for reconstructing the unknown geometry

A⋆. The topological sensitivity S is used to build a sequence of geometries (Ai )i≥0, with
A0 = ∅. At the i th iteration, the geometry Ai+1 is obtained by creating a new hole χ i in the
domain Di = D \Ai , i.e. Ai+1 = Ai ∪ χ

i . The location and shape of the created hole χ i is
defined by the topological sensitivity function S.

At the i th iteration, the topological sensitivity S i describes the cost function variation with
respect to the insertion of a small geometry perturbation in the domain Di . From Theorem 2,
one can deduce

E(Di \ χξ,ρ)− E(Di ) =
−1

log(ρ)
S i (ξ )+ o

(
−1

log(ρ)

)
,

where the topological gradient S i is given by

S i (x) = 2πµ(x)
[
|φi

d (x)− σ (x)|
2
− |φi

n(x)− σ (x)|
2
]
, ∀x ∈ Di ,
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Fig. 2. Reconstruction of circular-shaped objects A⋆ having different sizes.
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Fig. 3. Reconstruction of ellipse-shaped objects having different locations and sizes.

Fig. 4. Iso-values of the function S (colors lines) and the unknown square (black line).

with φi
d and φi

n are the solutions to the following problems

(P i
n)

⎧⎨⎩
− div (µ(x)∇φi

n) = Q in D \Ai

µ(x)∇φi
n · n = F on ∂D
φi

n = σ on ∂Ai ,

(P i
d )

⎧⎨⎩
− div (µ(x)∇φi

d ) = Q in D \Ai

φi
d = ϕm on ∂D
φi

d = σ on ∂Ai .

In the proposed procedure, the location of the unknown geometry χ i is given by the point
ξ ⋆i where the topological sensitivity is the most negative i.e. S i (ξ ⋆i ) ≤ S i (x),∀x ∈ Di . The
shape of χ i is defined by a level set curve of the scalar function S i :

χ i
=

{
x ∈ Di ; S i (x) ≤ ci ≤ 0

}
,

where ci is a constant chosen in such a way the cost function E decreases as most as possible.
Our numerical implementation is based on the following main steps.

The iterative algorithm:

• Initialization : choose D0 = D, A0 = ∅, and set i = 0.
• Repeat until S i

≥ 0 in Di :

� solve the problems (P i
n) and (P i

d ) in Di ,
� compute the topological sensitivity S i ,
� determine χ i and set Ai+1 = Ai ∪ χ

i and Di+1 = D \Ai+1,
� i ← i + 1.
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Fig. 5. Iterative reconstruction of objects with corners.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

Fig. 6. The geometry Ai obtained during the optimization process.

In order to test the performances of this iterative process, we apply the proposed algorithm
for detecting objects with corners. The unknown domain is described by the square A⋆ whose
vertices are the points (0.25, 0.5), (0.5, 0.25), (0.75, 0.5), (0.5, 0.75). The obtained result is
presented in Fig. 5.

We see in Fig. 5, that the considered square is well approximated by a level-set curve of
the topological sensitivity function S4. One can remark here, that we have obtained a quite
reconstruction of an object with corners using only few iterations (only four iterations).

The geometry Ai obtained during the optimization process is illustrated in Fig. 6.

7. CONCLUDING REMARKS

The presented work is focused on the detection of objects immersed in anisotropic medium
from overdetermined boundary data. The proposed approach is based on the Kohn–Vogelius
formulation and the topological sensitivity analysis method. The main contributions of this
paper concern the theoretical and numerical aspects.
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The theoretical part is devoted to a sensitivity analysis for an energy-like function E with
respect to a small geometry perturbation of the background domain. An asymptotic expansion
is derived with the help of preliminaries estimates describing the influence of the geometry
perturbation on the Neumann and Dirichlet problems solutions.

The numerical part is concerned with some numerical investigations. The unknown
geometry is reconstructed using a level-set curve of the topological sensitivity function S.

In this part we have shown that the smooth and simple shaped geometry (like circular or
ellipse shaped geometry) can be reconstructed using only one iteration. In the case of more
complicated geometry, an iterative reconstruction process is proposed and illustrated by some
numerical results.

The considered model can be viewed as a prototype example of geometric inverse
problems arising in many industrial problems. The presented approach is general and can
be adapted for various Partial Differential Equations.
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