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Abstract. A set D of vertices of a graph G is called a dominating set of G if every vertex
in V (G) − D is adjacent to a vertex in D. A dominating set S such that the subgraph ⟨S⟩
induced by S has at least one isolated vertex is called an isolate dominating set. An isolate
dominating set none of whose proper subset is an isolate dominating set is a minimal isolate
dominating set. The minimum and maximum cardinality of a minimal isolate dominating set
are called the isolate domination number γ0 and the upper isolate domination number Γ0

respectively. In this paper we initiate a study on these parameters.
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1. INTRODUCTION

By a graph, we mean a finite, undirected graph with neither loops nor multiple edges. For
graph theoretic terminology we refer to the book by Chartrand and Lesniak [2]. All graphs in
this paper are assumed to be non-trivial.

In a graph G = (V,E), the degree of a vertex v is defined to be the number of edges
incident with v and is denoted by deg v. The minimum of {deg v : v ∈ V (G)} is
denoted by δ(G) and the maximum of {deg v : v ∈ V (G)} is denoted by ∆(G). The open
neighbourhood of a vertex v ∈ V (G) is N(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed
neighbourhood is N [v] = N(v)∪ {v}. The subgraph induced by a set S of vertices of a graph
G is denoted by ⟨S⟩ with V (⟨S⟩) = S and E(⟨S⟩) = {uv ∈ E(G) : u, v ∈ S}. For a set S
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of vertices, a vertex v is said to be a private neighbour of a vertex u ∈ S with respect to S if
N [v] ∩ S = {u}. Furthermore, we define the private neighbour set of u, with respect to S,
to be pn[u, S] = {v : N [v] ∩ S = {u}}. Notice that u ∈ pn[u, S] if u is an isolate in ⟨S⟩, in
which case we say that u is its own private neighbour. A vertex cover in a graph G is a set of
vertices that covers all the edges of G. The minimum number of vertices in a vertex cover of G
is called the vertex covering number and is denoted by α0(G). If G and H are disjoint graphs,
then the join of G and H denoted by G+H is the graph such that V (G+H) = V (G)∪V (H)
and E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. A wheel on n vertices
(n ≥ 4), denoted by Wn, is the graph K1 + Cn−1. The vertex corresponding to K1 is called
the centre vertex of Wn. The corona of two disjoint graphs G1 and G2 is defined to be the
graph G = G1 ◦ G2 formed from one copy of G1 and |V (G1)| copies of G2 where the ith
vertex of G1 is adjacent to every vertex in the ith copy of G2.

The study of domination and related subset problems is one of the fastest growing areas
in graph theory. For a detailed survey of domination one can see [5,6] and [7]. A set D of
vertices of a graph G is said to be a dominating set if every vertex in V − D is adjacent to a
vertex in D. A dominating set D is said to be a minimal dominating set if no proper subset
of D is a dominating set. The minimum cardinality of a dominating set of a graph G is called
the domination number of G and is denoted by γ(G). The upper domination number Γ (G) is
the maximum cardinality of a minimal dominating set of G. The minimum cardinality of an
independent dominating set is called the independent domination number, denoted by i(G)
and the independence number β0(G) is the maximum cardinality of an independent set of G.
A set S of vertices is irredundant if every vertex v ∈ S has at least one private neighbour
with respect to S. The minimum and maximum cardinalities of a maximal irredundant set
are respectively called the irredundance number ir(G) and the upper irredundance number
IR(G). An inequality chain connecting these parameters was established in [3] as given
below.

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ (G) ≤ IR(G). (1)

A detailed survey of results about this domination chain can be seen in [6] wherein it has been
suggested that extending this chain by means of parameters whose values lie between any two
consecutive parameters in the chain is one direction of research. This paper introduces such
a domination parameter namely isolate domination number and upper isolate domination
number which are defined as follows.

A dominating set S of a graph G is said to be an isolate dominating set of G if ⟨S⟩ has
at least one isolated vertex. An isolate dominating set S is said to be a minimal isolate domi-
nating set if no proper subset of S is an isolate dominating set. The minimum and maximum
cardinality of a minimal isolate dominating set of G are called the isolate domination number
γ0(G) and the upper isolate domination number Γ0(G) respectively. An isolate dominating
set of cardinality γ0 is called a γ0-set. Similarly, the sets γ-set, Γ -set and Γ0-set are defined.
Obviously, every independent dominating set in a graph is an isolate dominating set so that
every graph possess an isolate dominating set as every graph has an independent dominating
set. Hence the property being isolate domination is fundamental.

This paper initiates a study on these parameters isolate domination number γo and the
upper isolate domination number Γ0. More specifically, the exact values of γ0 and Γ0 for
some common classes of graphs such as paths, cycles, wheels and complete multipartite
graphs are determined in Section 2. As an important result it is proved in Section 3 that
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the parameters γ0 and Γ0 got fit into the domination chain 1 and consequently an extended
domination chain has been established. Further, some bounds for γ0 and Γ0 have been
discussed in terms of order, size, degree and covering number. Moreover, the parameter γo

for cubic graphs is proved to be γ or γ + 1 and those cubic graphs for which γ0 = γ + 1
are also obtained. Finally, we conclude the paper with some open problems along with some
directions for further research.

The following theorems are required in the subsequent sections.

Theorem 1.1 ([6]). A dominating set D is a minimal dominating set if and only if for each
vertex u in D, one of the following conditions holds.

(i) u is an isolate of ⟨D⟩.
(ii) There exists a vertex v in V − D, for which N(v) ∩ D = {u}.

Theorem 1.2 ([4]). For any graph G of order n, Γ (G) + δ(G) ≤ n.

Theorem 1.3 ([6]). If G is a graph with no isolated vertices, then the complement V − S of
every minimal dominating set S is a dominating set.

2. EXACT VALUES

In this section, we determine the value of isolate domination number and the upper isolate
domination number for some standard graphs such as paths, cycles, complete multipartite
graphs and wheels.

Proposition 2.1. (i) For the paths Pn and the cycles Cn, we have γ0(Pn) = γ0(Cn) =
n
3


, Γ0(Pn) =


n
2


and Γ0(Cn) =


n
2


.

(ii) For a complete k-partite graph G = Km1,m2,...,mk
, γ0(G) = Min{m1, m2, . . . ,mk }

and Γ0(G) = Max{m1, m2, . . . ,mk }. In particular, γ0(Kn) = Γ0(Kn) = 1.
(iii) For the wheel Wn on n vertices, γ0(Wn) = 1 and Γ0(Wn) =


n−1

2


.

(iv) If G is a graph of order n, then γ0(G+) = Γ0(G+) = n, where G+ is the graph
obtained from G by attaching exactly one edge at every vertex of G.

Proof. (i) Obviously γ0(P4) = 2 and when n ≠ 4, any γ-set of Pn is an isolate
dominating set as well, so that γ0(Pn) ≤ γ(Pn). Of course, the other inequality is
immediate so that γ0(Pn) = γ(Pn) and so γ0(Pn) =


n
3


as γ(Pn) =


n
3


. Now, if

Pn = (v1, v2, v3, . . . , vn) then the set S = {v2i−1/1 ≤ i ≤


n
2


} is a minimal isolate

dominating set so that Γo(Pn) ≥


n
2


. Further, as any set with more than


n
2


vertices

of Pn can no longer be a minimal isolate dominating set, we have Γ0(Pn) =


n
2


. In a

similar way one can prove that γ0(Cn) =


n
3


and Γ0(Cn) =


n
2


.

(ii) It is quite obvious that the k-parts of G are the only minimal isolate dominating sets of
G so that γ0(G) = Min{m1, m2, . . . ,mk } and Γ0(G) = Max{m1, m2, . . . ,mk }. In
particular γ0(Kn) = Γ0(Kn)= 1.

(iii) The centre vertex of Wn dominates all other vertices and therefore γ0(Wn) = 1. Also,
an isolate dominating set containing the centre vertex never contains any other vertex of
Wn as it ceases the formation of isolates. Therefore a minimal isolate dominating set of
the wheel with maximum cardinality must avoid the centre vertex and consequently it
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would be a Γ0-set of the subgraph induced by the remaining vertices, which is obviously
a cycle on n − 1 vertices. Hence the result follows from (i).

(iv) Let S be any minimal isolate dominating set of G+. Then S must contain each pendant
vertex or its neighbour so that S contains at least n vertices. Further, if |S| > n, then
S must contain a pendant vertex together with its support and so S − {v}, where v is
the support, is an isolate dominating set of G+, a contradiction to the minimality of S.
Hence |S| = n. �

The following proposition determines the values of γ0(G) and Γ0(G) for a disconnected
graph G.

Proposition 2.2. If G is a disconnected graph with components G1, G2, . . . , Gr, then

(a) γ0(G) = min1≤i≤r {ti}, where ti = γ0(Gi) +
r

j=1,j≠i γ(Gj).
(b) Γ0(G) = max1≤i≤r {si}, where si = Γ0(Gi) +

r
j=1,j≠i Γ (Gj).

Proof. (a) Assume that t1 = min{t1, t2, t3, . . . , tr }. Let S be a γ0-set of G1 and let Di be
a γ-set of Gi for all i ≥ 2. Then the set S ∪ (

r
i=2 Di) is an isolate dominating set

of G so that γ0(G) ≤ γ0(G1) +
r

j=2 γ(Gj) = t1 = min1≤i≤r {ti}. Now, let S be
a minimal isolate dominating set of G. Then S must intersect the vertex set V (Gi) of
each component Gi and so S ∩ V (Gi) is a minimal dominating set of Gi, for all i = 1
to r. Further, at least one of the sets of S ∩ V (Gi), say S ∩ V (Gj), must be an isolate
dominating set of Gj . Therefore |S| ≥ γ0(Gj) +

r
i=1,i≠j γ(Gi) = tj ≥ min1≤i≤r {ti}

and hence γ0(G) = min1≤i≤r {ti}.
(b) For every value of i, a Γ0-set of Gi together with the set

r
j=1,j≠i Dj , where Dj

is a Γ -set of Gj , forms a minimal isolate dominating set of G. Therefore Γ0(G) ≥
max1≤i≤r {Γ0(Gi) +

r
j=1,j≠i Γ (Gj)}. Now, let S be any minimal isolate dominating

set of G. Then the set S ∩ V (Gi) is a minimal dominating set of Gi for every value of
i and in particular S ∩ V (Gi) must be a minimal isolate dominating set for at least one
value of i, say j. Then |S| ≤ Γ0(Gj) +

r
i=1,i≠j Γ (Gi) = sj ≤ max1≤i≤r {si}. �

3. EXTENDED DOMINATION CHAIN

Here we prove that the isolate domination parameters γ0 and Γ0 extend the existing
domination chain (1) as shown below.

Proposition 3.1. For any graph G, we have ir(G) ≤ γ(G) ≤ γ0(G) ≤ i(G) ≤ β0(G) ≤
Γ0(G) ≤ Γ (G) ≤ IR(G).

Thus the new variation of domination namely the isolate domination is interesting as it is
fundamental in the sense that it is defined for all graphs and extends the existing dominating
chain (1). Let us now proceed to establish the above extended domination chain given in
Proposition 3.1.

To start with, let us recall the terms minimality and 1-minimality of a set with respect to a
graph theoretic property. Let P be an arbitrary property of a set of vertices in a graph G. If a
set S has property P , then we say that S is a P -set. A P -set S is a 1-minimal P -set if for any
vertex u ∈ V − S, the set S ∪ {u} is not a P -set while it is a minimal P -set if no proper subset
of S is a P -set. Clearly, minimal P -sets are 1-minimal P -sets but not the converse; and the
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converse holds when the property P is super hereditary. Certainly, the property that isolate
domination is neither hereditary nor super-hereditary. But still, for this property as well, the
minimality and 1-minimality are equivalent as shown below.

Proposition 3.2. Let S be any isolate dominating set of a graph G. Then S is minimal if and
only if S is 1-minimal.

Proof. Let S be a 1-minimal isolate dominating set of G. Suppose there exists a proper subset
S′ of S that is also an isolate dominating set of G. Then S′ will contain all the isolates of
⟨S⟩. That is, what remains in S − S′ are non-isolates of ⟨S⟩. Choose one of those vertices of
S − S′, say v. Then the set S − {v} is an isolate dominating set of G, which is a contradiction
to the 1-minimality of S. Converse is obvious. �

Theorem 3.3. An isolate dominating set S of a graph G is minimal if and only if every vertex
in S has a private neighbour with respect to S.

Proof. Let S be a minimal isolate dominating set and u be a vertex of S. If u is an isolate
in ⟨S⟩ then u is a private neighbour of itself. Suppose u is not an isolate of ⟨S⟩. If u has
no private neighbour with respect to S then the set S − {u} will be an isolate dominating
set. This contradicts the minimality of S and therefore u must have a private neighbour with
respect to S.

Conversely, suppose S is an isolate dominating set of G and every vertex of S has a private
neighbour with respect to S. We now show that S is a minimal isolate dominating set. If not,
then by Proposition 3.2, S cannot be a 1-minimal dominating set of G and so there is a
vertex u in S such that S − {u} is an isolate dominating set of G. Therefore, every vertex
in V − (S − {u}) must have at least one neighbour in S − {u} and consequently the vertex
u can have no private neighbours with respect S. This contradicts our assumption and hence
the result follows. �

Corollary 3.4. If S ⊆ V (G) is an isolate dominating set of G which is minimal with respect
to isolate domination, then S is a minimal dominating set of G.

Proof. Let S be a minimal isolate dominating set. Then by Theorem 3.3, every vertex of S
has a private neighbour with respect to S and consequently Theorem 1.1 implies that S is a
minimal dominating set. �

Corollary 3.5. For any graph G, we have γ(G) ≤ γ0(G) ≤ Γ0(G) ≤ Γ (G).

Proposition 3.6. Every maximal independent set is a minimal isolate dominating set.

Proof. Let S be a maximal independent set. Then every vertex in V − S is adjacent to at least
one vertex of S. Therefore S is a dominating set. As S is an independent set it is actually an
isolate dominating set and also every vertex of S has a private neighbour with respect to S
namely itself and so the result follows from Theorem 3.3. �

Corollary 3.7. For any graph G, γ0(G) ≤ i(G) ≤ β0(G) ≤ Γ0(G).
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Corollaries 3.5 and 3.7 together establish the required extended domination chain
mentioned in Proposition 3.1.

Let us now consider the corona H = K3 ◦ mK1. It is straight forward to verify that
γ(H) = 3, γ0(H) = m + 2 and i(H) = 2m + 1. This gives the following proposition.

Proposition 3.8. For every positive integer r there exists a graph G such that i(G)−γ0(G) >
r and γ0(G) − γ(G) > r.

Proposition 3.8 says that the differences i − γ0 and γ0 − γ are arbitrary. In fact, the
parameters γ, γ0 and i can assume arbitrary values as shown in the following theorem.
Further, one can observe that i(G) = γ0(G) when γ0(G) ≤ 2 and γ0(G) = 1 if and only if
γ(G) = 1.

Theorem 3.9. Let a and b be two positive integers with a ≤ b. Then there exist graphs G and
H such that

(i) γ0(G) = a and i(G) = b, if a ≥ 3.
(ii) γ(H) = a and γ0(H) = b, if a ≥ 2.

Proof. (i) Consider the path P = (u1, u2, . . . , u3a−3) on 3a − 3 vertices and attach
b − a + 1 pendant vertices at each of u1 and u2. Now, let G be the resultant graph.
Certainly, the set {u1, u2} ∪ {u5+3i/i ∈ {0, 1, 2, 3, . . . , a − 3}} is an isolate dominating
set of G with cardinality a and so γ0(G) ≤ a. Since G − (N [u1] ∪ N [u2]) is a path,
γ(G − (N [u1] ∪ N [u2])) =


3a−6

3


= a − 2. Also at least two vertices are required

to dominate the set N [u1] ∪ N [u2] and so γ0(G) ≥ a. Hence γ0(G) = a. Now, the set
{u2} ∪ {u5+3i/i ∈ {0, 1, 2, 3, . . . , a − 3}} together with the pendant vertices adjacent to u1

is an independent dominating set of G with cardinality b and therefore i(G) ≤ b. Further, if
I is an independent dominating set of G, then both u1 and u2 cannot be in I simultaneously.
If u1 ∈ I , then I must contain all the b − a + 1 pendant vertices adjacent to u2 and
similar argument follows when I contains u2. Also as discussed above a dominating set of
G−(N [u1]∪N [u2]) requires at least a−2 vertices and hence i(G) ≥ 1+b−a+1+a−2 = b.
Thus i(G) = b.

(ii) Let H be the graph consisting of a path on a vertices and b − a+1 pendant edges attached
with each vertex of the path. Now it can be easily verified that γ0(H) = b and γ(H) = a. �

4. BOUNDS

In this section we obtain some bounds for the isolate domination number γ0. Obviously
the value of γ0 for a graph of order n ranges from 1 to n. The earlier is attained only for
graphs with maximum degree n − 1 and the later is attained only for graphs with no edges.
Further, it has been proved in [1] that γ0(G) = n − 1 if and only if G = P2. The following
proposition characterizes the connected graphs G of order n for which γ0(G) = n − 2.

Proposition 4.1. Let G be a connected graph of order n. Then γ0(G) = n − 2 if and only if
G is one of the graphs P3, P4, C3 and C4.

Proof. Suppose γ0(G) = n − 2 and S is a γ0-set. Then ⟨V − S⟩ = K2 or K2. It is enough to
prove that n ≤ 4. By Theorem 1.3, V − S is a dominating set of G. Now, if ⟨V − S⟩ = K2,
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then V − S will be an isolate dominating set of G and hence n ≤ 4. Suppose ⟨V − S⟩ = K2.
If a vertex u in V − S has more than one neighbour in S, then (S − N(u)) ∪ {u} will be an
isolate dominating set of G with cardinality less than n − 2, giving a contradiction. Therefore
each of the two vertices in V − S has at most one neighbour in S, which implies that |S| ≤ 2
and consequently we have n ≤ 4. Converse is obvious. �

In view of Theorem 1.3, the value of the domination number γ(G) of a graph G will not
exceed half of the order of G. But unlike dominating sets, the complement of a minimal
isolate dominating set need not be an isolate dominating set. For instance, in a double star
the set of all pendant vertices is a minimal isolate dominating set whereas its complement is
not an isolate dominating set. However, the isolate domination number γ0 does not exceed n

2 ,
where n is the order of the given graph. This is proved in the following theorem.

Theorem 4.2. If G is a connected graph on n vertices, then γ0(G) ≤ n
2 . Further, if a and

b are positive integers with b ≥ 2a then there exists a graph G on b vertices such that
γ0(G) = a.

Proof. Let D be a γ-set of G. If ⟨D⟩ has an isolate then D itself is a minimal isolate
dominating set and so we are through. Suppose ⟨D⟩ has no isolates. Then it follows from
Theorem 1.1 that every vertex in D has a private neighbour in V − D with respect to D. Let
u be a vertex in D having minimum number of private neighbours, say k, with respect to D
and therefore γ + γk ≤ n. Also, it is clear that the set X = (D − {u}) ∪ S, where S is a
γ0-set of ⟨pn[u, D]⟩, is an isolate dominating set of G so that γ0(G) ≤ |X| ≤ γ − 1 + k. We
now claim that γ − 1 + k ≤ γ+γk

2 . Obviously, this inequality is true when γ = 2. Now if
2(γ −1+k) > γ+γk, where γ ≠ 2, then (γ −2) > k(γ −2) and thus getting a contradiction,
as k > 1. Hence γ0(G) ≤ |X| ≤ γ − 1 + k ≤ γ+γk

2 ≤ n
2 .

Now, suppose a and b are any two positive integers with b ≥ 2a. Let H be any connected
graph on a vertices. Then, for the graph G obtained by attaching b − 2a + 1 pendant vertices
at exactly one vertex of H and attaching exactly one pendant vertex at each of the remaining
vertices, we have γ0(G) = a and |V (G)| = b. �

Remark 4.3. It is quite obvious that for any vertex v of a graph G the set S = V (G) − N(v)
is an isolate dominating set of G. As this is true in particular for a vertex of maximum
degree, it follows that γ0(G) ≤ n − ∆(G). Clearly, this bound is attained for all graphs
with ∆(G) = n − 1 and also for the complete bipartite graphs.

The reader may be quite familiar with the result that for a graph G of diameter two,
γ(G) ≤ δ(G). But it is not true in the case of isolate domination number. For example,
the graph G of Fig. 1 is of diameter two whereas γ0(G) = 3 that exceeds δ(G).

Proposition 4.4. If G is a triangle free graph without isolated vertices, then γ0(G) = 2.

Proof. As G has no isolated vertices, there exists at least one edge xy in G. As G is triangle-
free, no vertex in G is adjacent to both x and y and therefore the set {x, y} will form an
isolate dominating set in G and so γ0(G) ≤ 2. If γ0(G) = 1, then G has an isolated vertex, a
contradiction to the assumption that G has no isolated vertices. �
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Fig. 1. A graph G of diameter two with γ0(G) > δ(G).

Proposition 4.5. For any graph G on n vertices, γ0(G) + α0(G) ≤ n, where α0(G) is the
vertex covering number of G. This bound is sharp.

Proof. Let S be a vertex cover of G with |S| = α0(G). If a vertex u ∈ S is not dominated
by any vertex of V − S, then S − {u} will be a vertex cover of cardinality less than
α0 and therefore V − S is a dominating set of G. Further, as S is a vertex cover of G,
V − S is an independent set. Thus, V − S is an isolate dominating set of G and hence
γ0(G) ≤ |V − S| = n − α0(G).

This bound is attained for the graph G of Fig. 2 as γ0(G) = 2, α0(G) = 3 and n = 5. �

Next we obtain a bound along with the characterization for the upper isolate domination
number Γ0. It is obvious that for any graph G, 1 ≤ Γ0(G) ≤ n and Γ0(G) = n if and only if
G is a graph with no edges. Further, as β0(G) ≤ Γ0(G), it follows that Γ0(G) = 1 if and only
if G is Kn. Moreover, as Γ0(G) ≤ Γ (G), it follows from Theorem 1.2 that Γ0(G) ≤ n − δ.
The following theorem characterizes the graphs whose upper isolate domination number is
n − δ.

Theorem 4.6. For any graph G of order n, the following are equivalent.

(i) Γ (G) = n − δ(G).
(ii) Γ0(G) = n − δ(G).

(iii) G = Kn−δ(G) + H , where H is any graph of order δ(G).

Proof. (i) ⇔ (ii)
Assume that Γ (G) = n − δ(G) and let S be a Γ -set of G. As S is a minimal dominating

set, by Theorem 1.1, every vertex of S must have at least one private neighbour with respect to
S. Consider a vertex u ∈ S and a minimal isolate dominating set S1 of ⟨pn[u, S]⟩. Clearly, the
set D = (S − {u})∪S1 is an isolate dominating set of G. Also, every vertex of D has a private
neighbour with respect to D. Therefore Theorem 3.3 implies that D is a minimal isolate
dominating set of G so that Γ0(G) ≥ |D| = |S| − 1 + |S1| ≥ n − δ(G) as |S| = n − δ(G)
and |S1| ≥ 1. As Γ0(G) ≤ Γ (G) it follows that Γ0(G) ≤ n−δ(G). Thus Γ0(G) = n−δ(G).
Conversely, if Γ0(G) = n − δ(G), then n − δ ≤ Γ (G) as Γ0(G) ≤ Γ (G) and therefore it
follows from Theorem 1.2 that Γ (G) = n − δ(G).
(ii) ⇔ (iii)

Assume that Γ0(G) = n − δ(G) and let S be a Γ0-set of G of cardinality n − δ and
u be an isolated vertex in ⟨S⟩. Then u is adjacent to all the vertices of V − S. Hence no
vertex of V − S can be a private neighbour of any vertex of S other than the vertex u. Hence
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Theorem 3.3 implies that every vertex of S − {u} is a private neighbour of itself so that S is
an independent set of G and consequently every vertex of S is adjacent to all the vertices of
V − S. Then G = Kn−δ(G) + H , where H is a graph of order δ(G).

Conversely, suppose G = Kn−δ(G) + H , where H is a graph of order δ(G). Then the set
V (Kn−δ(G)) is a minimal isolate dominating set of G so that Γ0(G) ≥ n − δ(G). The other
inequality follows immediately from Theorem 1.2 and the extended domination chain given
in Proposition 3.1. �

5. CUBIC GRAPHS

Here we discuss the isolate domination parameters for cubic graphs.

Proposition 5.1. If G is an r-regular graph with r ≥ 2, then γ0(G) ≤ γ(G) + r − 2 and the
bound is sharp.

Proof. Let S be a γ-set of G. If ⟨S⟩ has an isolate then γ0(G) = γ(G) and therefore
γ0(G) ≤ γ(G) + r − 2 as r ≥ 2. Now, let us assume that ⟨S⟩ has no isolates and let
u be a vertex of S. Then u must have at least one neighbour in S and so it can have at
most r − 1 private neighbours with respect to S. Now the set (S − {u}) together with
a γ0-set of ⟨pn[u, S]⟩ will form an isolate dominating set of G and therefore γ0(G) ≤
|(S − {u}) ∪ pn[u, S]| ≤ γ + r − 2. The bound is attained for the complete bipartite graph
Kr,r. �

Corollary 5.2. For a cubic graph G, the value of γ0(G) is either γ(G) or γ(G) + 1.

By virtue of Corollary 5.2, the family of all cubic graphs can be split into two classes,
namely Class 1 and Class 2 such that cubic graphs for which γ0 = γ are of Class 1 and the
rest are of Class 2. As the value of the parameters γ0 and γ are equal to 3 for the Petersen
graph, the Class 1 family is non-empty and indeed Class 2 also is non-empty as it includes
the complete bipartite graph K3,3.

Lemma 5.3. Let G be a 3-regular graph. If γ0(G) = γ(G) + 1, then for every vertex v in a
γ-set D of G, pn[v, D] is an independent set of cardinality 2.

Proof. Assume that γ0(G) = γ(G) + 1. Let D be a γ-set of G and let v be a vertex in D.
Since γ0(G) > γ(G), v is not an isolated vertex of ⟨D⟩. Therefore, pn[v, D] is a subset of
V (G) − D with |pn[v, D]| ∈ {1, 2}. Now, if |pn[v, D]| = 1, then the set D − {v} together
with the only private neighbour of v will form an isolate dominating set of G with cardinality
γ(G) which is a contradiction. Therefore |pn[v, D]| = 2. Further, if v1, v2 ∈ pn[v, D] and
v1v2 ∈ E(G) then (D − {v}) ∪ {v1} is an isolate dominating set of G of cardinality γ(G).
Hence, pn[v, D] is an independent set of cardinality two. �

Lemma 5.4. Let G be a 3-regular graph. Then γ0(G) = γ(G)+1 if and only if ⟨D⟩ = ∪K2,
for every γ-set D of G.

Proof. Assume that γ0(G) = γ(G) + 1. Let D be a γ-set of G and let v ∈ D. Since
γ0(G) > γ(G), v is not an isolated vertex of ⟨D⟩. By Theorem 1.1, the vertex v has a
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private neighbour in V − D. Therefore v can have at most two neighbours in D. If v has two
neighbours in D then the set D − {v} together with the only private neighbour of v will form
a γ0-set of G of cardinality γ(G). Hence v has exactly one neighbour in D.

Conversely, let ⟨D⟩ = ∪K2, for every minimum dominating set D of G. Now, we have
to prove that γ0(G) = γ(G) + 1. In contrary, if γ0(G) = γ(G) then the corresponding
γ0-set is a minimum dominating set of G having an isolated vertex. This contradicts our
assumption. �

6. OPEN PROBLEMS

This paper introduces a new variation of domination namely isolate domination and just
initiates a study on this notion. We list some interesting problems for further research that we
encountered during the course of our investigation.

(1) Find a characterization of graphs G for which (i) γ(G) = γ0(G) (ii) γ0(G) = n
2 and

(iii) γ0(G) = i(G).
(2) Find a structural characterization of cubic graphs G for which γ0(G) = γ(G) + 1.
(3) Obtain good bounds for both γ0(G) and Γ0(G).
(4) Study of these parameters for trees would be interesting.
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